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Seven – Turbulence Modeling 

Introduction 

Although there is a strong confidence in our ability to solve the Navier Stokes equations on 
modern computers, that confidence is limited to laminar – not turbulent – flows.  Unfortunately, 
most flows of engineering interest are turbulent.  Although there have been some solutions of the 
Navier Stokes equations directly for turbulent flows (a process known as DNS for direct numerical 
simulation), these computations are not practical for engineering analysis.  They require 
extensive computer resources, are applicable only to simple geometries, and do not directly 
provide the average quantities of interest in engineering design. 

Instead of direct simulation, CFD applications to turbulent flow use models.  These models range 
from simple algebraic models to those which require the solution of one or more partial differential 
equations.  In general, the more complex the flow, the more complex of a turbulence model is 
required.  Particular problems occur in modeling turbulence with large amounts of swirl as occurs 
in combustors and turbomachinery. 

These notes begin with a simple discussion of turbulence and move on to the formal statistical 
analyses that are used in turbulence.  We will see that the formal statistical analysis leads to a 
closure problem that requires additional assumptions to model physical processes. 

The most important idea in these notes is that the choice of wall boundary conditions that you use 
for turbulent flows determines limits on the grid spacing.  The choice to (a) model the laminar 
sublayer at a wall or to (b) use wall functions sets conditions on the grid size near the wall that 
must be followed to ensure a correct solution. 

What is turbulence? 

The transition between laminar and turbulent flow, in any geometry, is characterized by the 
Reynolds number, Re, based on the appropriate characteristic velocity, U, and the appropriate 
length parameter, L, for the flow. 

 
ν

UL
=Re  [7-1] 

As usual, ν is the kinematic velocity.  When the Reynolds number is below a critical level, the flow 
is laminar.  Increases in the Reynolds number above this critical level lead to a transition region, 
and further increases lead to a fully turbulent region.* 

                                                           
* For free convection flows, the borders between laminar, transition and turbulent flow are 

determined by the Rayleigh number, 
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thermal expansion, which equals 1/T for an ideal gas, g is the acceleration of gravity, ΔT is a 
characteristic temperature difference, and α is the thermal diffusivity. 
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Turbulence is characterized by random behavior.  The value of the flow properties (velocity 
components, temperature, species concentrations) at any point in the flow vary in a random 
manner over time.  This random variation may be about a constant (steady-state) average, or it 
may be about some overall average trend in time. 

Turbulence is a three-dimensional phenomenon.  A fully developed laminar flow in a cylindrical 
pipe varies only in the radial direction.  (There is no variation in the angular coordinate or down 
the length of the pipe after the flow becomes fully developed.)  However, if such a flow were 
turbulent, there would be variation in the flow in all three coordinate directions. 

Turbulent flows are characterized by turbulent eddies.  In 
pictures of turbulent flows we see underlying structures that 
move (translate) and rotate in the mean flow.  These 
underlying structures are called turbulent eddies.  When we 
examine a visualization of a turbulent flow we see that these 
eddies have many different length scales.*  The largest eddies 
have a characteristic velocity and length scale that are of the 
same order of magnitude as the characteristic velocity and 
length scale (U and L) for the main flow.  In these large eddies 
(with large Reynolds numbers) the inertia effects dominate and 
viscous effects are negligible.  [Recall that the Reynolds 
number is a measure of the ratio of inertia forces (ρU2) to 
viscous forces (μU/L).] 

The main flow (at some mean velocity like U) supplies energy 
to the large eddies.  This increases their rotation rate and 
decreases their size.  The larger eddies supply smaller eddies with energy.  This creates the 
following energy cascade. 

1. The kinetic energy from the main flow is transferred into kinetic energy of the larger 
eddies. 

2. The kinetic energy from the larger eddies is transferred into the kinetic energy of the 
smaller eddies. 

3. The kinetic energy of the smallest eddies is dissipated by viscous effects. 

In this way, the turbulence produces increased energy dissipation (and hence increased pressure 
loss) for the flow.  The turbulence structures provide a mechanism by which energy is 
transformed from the main flow kinetic energy into viscous dissipation.**  This mechanism is not 
present in laminar flows.  Although turbulence increases pressure drop because of this energy 
transfer to viscous forces, it also produces increased mixing rates that are important in heat 
transfer, mixing processes, and combustion. 

                                                           
* Although smoking is not permitted in campus buildings, all of us have probably noticed the 
smoke from a burning cigarette, which provides a good visualization of the development and 
structure of turbulent flows.  This flow usually starts as a laminar flow next to the cigarette, then 
goes through a transition region to a turbulent flow.  In the turbulent flow there are many eddies 
with varying characteristic sizes.  These eddy structures persist for a while then break up.  This is 
illustrated in the photograph shown here taken from the web site shown below: 
Humphrey_Bogart_by_Karsh_(Library_and_Archives_Canada).jpg  
** Lewis F. Richardson (1881-1953), who wrote an Article entitled “Numerical Prediction of 
Weather Process: in 1922, wrote a poem that characterizes this process. 

Big whorls have little whorls 
That feed on their velocity 
And little whorls have lesser whorls 
And so on to viscosity. 

Laminar

Turbulent
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The typical lengths of the smallest turbulent eddies are about 10-4 to 10-5 meters in turbulent flows 
that are typical of engineering applications.  A direct numerical simulation of turbulent flows would 
require a computational grid small enough to resolve these length scales while being able to span 
the entire item being designed.  Even for a small item with a length of 0.01 m, 100 to 1000 grid 
nodes would be required in each coordinate direction.  For a three-dimensional flow this means a 
total of 106 to 109 grid points.  Such a large number of grid nodes, even for a very small scale 
device, makes DNS impractical for applications to typical engineering devices. 

Time-averaged Navier-Stokes equations (RANS) 

In order to analyze the random nature of turbulent flow, we write the typical flow property, φ, as 
the sum of a time-average property, φ̄, and a fluctuating property, φ’.  We will first define what we 
mean by these quantities and then derive some general results for them.  We will next use those 
results to derive the time-averaged Navier Stokes equations for turbulent flows.  The resulting 
equations are often called the Reynolds-Averaged, Navier-Stokes (RANS) equations in honor or 
Osborne Reynolds who first proposed this approach. 

The formal definition of the division into a time average and a fluctuating quantity is shown below. 

 'ϕϕϕ +=  [7-2] 

The time average property, φ̄ , is defined by the following equation. 
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In this equation the averaging period, Δt, is assumed to be large enough to obtain a meaningful 
average.  In transient flows (where the mean quantities are changing with time) the averaging is 
done by the use of an ensemble approach.  However, the result is the same; there is an average 
property and a fluctuation due to the turbulence.  In the transient flows the ensemble average is 
regarded as the average that would be obtained if the same transient flow were studied several 
times and the measurements of each study were averaged. 

From the definitions of the average and the fluctuating quantity we can see that the average of a 
fluctuating quantity is zero. 
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In equation [7-4] we used the important result that the average of an average flow quantity is 
simply the original average.  However, if we examine the average of two flow quantities, we do 
not get that result.  This is shown below where φ and ψ are used to denote two different flow 
quantities. 
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The overall result of equation [7-5] is usually summarized as follows. 

 ''ψϕψϕψϕ +=  [7-6] 

Here we see that the average of the product consists of two terms.  The first is the product of the 
averages.  The second is the average of the product of the fluctuations.  Only if these fluctuations 
were perfectly anticorrelated would this average of the product be zero.  It is this basic result that 
provides an introduction to turbulence quantities in the time-averaged Navier-Stokes equations. 

Equation [7-6] tells us that the average of the product of two fluctuating quantities, which may be 
the same, will typically not vanish in a turbulent flow.  We can use this result to define the root 
mean square average as our typical measure of the magnitude of a turbulent fluctuation.  We 
define this quantity as follows. 

 ∫
Δ

Δ
==

t

rms dt
t 0

22 )'(1)'( ϕϕϕ  [7-7] 

The velocity fluctuations in a turbulent flow, using Cartesian coordinates and the usual velocity 
components, are u’, v’, and w’.  The kinetic energy of the turbulence, k, is given by the sum of the 
squares of these velocity fluctuations. 
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We see that this is a typical fluid mechanics “kinetic energy” term, which is actually a kinetic 
energy per unit mass. 

The time average of the spatial derivative of a flow quantity, φ, is found as follows. 
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Thus the average of the derivative (with respect to the coordinate xi) is simply the derivative of the 
average.  This result applies to derivatives of any order. 

We are now ready to derive the time-average Navier-Stokes equations.  We start with equation 
[1-81]; this general transport equation is copied below. 
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To simplify the derivation, we will assume that we have constant properties and a zero source 
term.  Further assume that we have a steady problem so that the time derivative is zero.  We will 
divide the equation by the product, ρc, and write our initial equation as follows. 
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In this equation we have defined γ(φ) as follows 
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γ
ϕ
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Recall that in the general equation c = 1 unless φ is the temperature in the energy equation.  In 
most cases, then, the denominator in equation [7-11] is simply the density, ρ.  If φ represents the 
temperature in the energy equation then c = cp or cv, depending on the equation.  In the 
momentum equation, γ(φ) would be the kinematic viscosity, ν = μ/ρ; in the energy equation with 
temperature, it would be the thermal diffusivity, α = k/ρcp.  (Note that for the momentum equation, 
Γ(φ) is the dynamic viscosity, μ, and for the energy equation, with temperature as the variable, Γ(φ) 
is the thermal conductivity.) 

We want to obtain the time average of the entire transport equation in [7-10].  We do this by 
substituting both sides of this equation into the definition of the time average from equation [7-3]. 
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Both sides of equation [7-12] are averages of spatial derivatives.  We can use the result of 
equation [7-9] that the average of (spatial) derivatives are simply the derivatives of averages to 
rewrite equation [7-12] as follows. 
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We can use the result of equation [7-6] for the average of a product to rewrite equation [7-13] as 
follows. 
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If we compare equations [7-10] and [7-14], we see that the time averaged equation in [7-14] has 
two differences.  The first is that the average quantities appear in [7-14] in place of the 
instantaneous quantities in [7-10].  The second change is the addition of the correlation term 
involving the average of two fluctuating quantities.  This is the mathematical term that leads to 
problems in the computations of turbulent flows using the time-averaged Navier Stokes 
equations. 

When we use the general balance equation to represent the continuity equation, we take φ = 1 
and Γ = 0.  In this case the fluctuation term vanishes and we have the constant-property, steady-
state equation for turbulent flows as follows. 

 0=
∂
∂

i

i

x
u

 [7-15] 

In principle, we could take the time average of equation [7-14] to get a differential equation for the 
correlation terms.  However, this would introduce new, higher order correlations.  This creates 
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what is known as the closure problem.  At some point we have to give up using the time averages 
and try to use models for the correlation terms.  This is the next topic of these notes. 

Introduction to models of turbulent flows 

The general approach for modeling the fluctuation terms is based on the Boussinesq assumption 
that this additional term can be modeled in the same was as a viscous or diffusive flux term.  That 
is we assume that we can use an equation like the following. 
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Here, the “t” subscript on the generalized transport coefficient, γ, indicates that we are defining a 
transport coefficient for turbulent flow.  With this definition, we can rewrite equation [7-14] as 
follows. 
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With this formulation, the basic balance equations for turbulent flow have the same form as the 
equations for laminar flow.  Thus we can use the same computational algorithms for solving the 
turbulent flows.  We have moved the problem from one of calculating the flows to one of 
calculating the turbulent transport coefficient. 

In cases where φ is a velocity component, uj, we use a slightly different form of equation [7-16], 
that is based on the general equations for the viscous stresses and the momentum equations in 
equations [3-4] and [3-5].  Those equations are copied below. 
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We want to substitute equation [3-4] into equation [3-5] and apply the steady-state, constant-
property assumptions that we are using here.  The steady-state assumption allows us to drop the 
transient term.  Our assumption of constant properties, allows us to bring properties outside of 
derivative operators.  For constant density, the dilatation, Δ, is zero. 
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Although flux terms for heat conduction and diffusion involve only a single gradient, we see that 
the viscous stress terms involve two separate gradients.  Thus, we define the general velocity 
component correlation term as follows. 
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Here we have defined μt and νt as the turbulent dynamic and kinematic viscosities.  Again, we are 
hiding our ignorance of turbulent flows in these terms.  We are left with equations that are similar 
to the laminar flow equations, but we have to find a way to predict μt and νt.  We see that the term 

'' ji uuρ−  follows the same form of the equation as the viscous stress term, τij.  These terms are 
called the Reynolds stress terms.  We see that they are symmetric, so there are only six different 
Reynolds stress terms.  We will show below that advanced turbulence models seek to predict 
each Reynolds stress. 

The mixing-length model of simple turbulent flows 

Considerations of turbulent flows started with Reynolds’s work in the late 1800s and the 
contemporary assumption by Boussinesq that the Reynolds stresses could be related to the 
gradients of the mean flow velocity components.  Subsequently in the early 1900s Prandtl 
developed the model of the boundary layer in fluid flows.  Von Karman later expanded this work.  
This work developed Prandtl’s mixing-length theory as a useful approach for modeling simple 
turbulent flows. 

The mixing-length model remains a useful model for simple two-dimensional flows in jets and 
near-wall regions.  In addition, this basic analysis is used to develop the wall functions that are 
used as boundary conditions in CFD turbulent flow models.  In the mixing-length model, there is a 
viscous (laminar) sublayer close to the wall.  Beyond this sublayer, there is a transition region into 
a fully turbulent boundary layer.  The turbulent boundary layer near the wall is characterized by 
the following quantities in a two dimensional flow where the x direction is the predominant flow 
direction, with flow velocity u, and the y direction is the direction perpendicular to the flow.  For 
flows near walls, the point y = 0 is the wall. 

 
μ

ρ
ρ

τ τ

ττ
τ

yu
y
yy

u
uuu w ==== ++  [7-20] 

Here, τw is the wall shear stress and the quantity uτ is called the friction velocity.  The law of the 
wall postulates that there is a relationship between the dimensionless velocity and distance 
variables defined in equation [7-20]. 
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For flows near a wall, this relationship has different forms.  The region closest to the wall (y+ < 5) 
is the laminar sublayer in which the normal equations for viscous stresses are valid.  Beyond this 
region the values of u+ are given by the following equations. 
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In equation [7-22], we have introduced the constants κ, known as the von Karman constant, 
which has a value of 0.4, B = 5.5, E = 9.8, and A.  The values of these constants are for smooth 
walls.  We have also introduced the boundary-layer thickness, δ, for the velocity profile away from 
the boundary layer. 

The results above have not made explicit use of the mixing-length; instead, it has shown the final 
results.  The mixing-length model is a way of determining a characteristic length, l, for the 
turbulence.  If we take a simple dimensional analysis of the turbulent kinematic viscosity, νt, with 
dimensions of length squared over time, we see that this variable has the same dimensions as 
the product of a velocity and a length.  Thus we can write the turbulent kinematic viscosity as a 
product of a velocity and a length.  If we take the velocity as U and the length scale as l, we can 
write: 

 νt = Cμ U l [7-23] 

where = Cμ is an empirical constant. 

The k-ε model of turbulent flow 

The most popular model for modeling turbulence in common flows of engineering interest is 
called the k-ε model.  This model uses the kinetic energy of turbulence, defined in equation [7-8] 
and the turbulence dissipation rate, ε.  This dissipation rate measures the rate of energy transfer 
from kinetic energy in the smallest eddies when they do work against the viscous forces.  
Formally the dissipation is defined in terms of the deformation (or strain) rates, eij which are 
defined below. 
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The formal definition of the dissipation is shown in equation [7-25].  The dimensions of dissipation 
are energy divided by (mass times time).  (As noted in the paragraph following equation [7-8], we 
conventionally define the energy per unit mass as the “kinetic energy”; that is being done here.) 
The SI units for ε are m2/s3. 

 ijij ee ''2νε =  [7-25] 

We are using the summation convention here.  The implied summation over the two repeated 
indices, i and j, gives nine terms in this equation.  Also, ν in this equation is the actually kinematic 
viscosity, not the turbulent kinematic viscosity. 

The basic approach of equation [7-23] in which the turbulent velocity is treated as the product of a 
length scale times a velocity scale is also used here.  In the k-ε model the velocity scale is the 
square root of the kinetic energy of turbulence; i.e., U = k1/2.  The length scale is equal to k3/2/ε.  
Substituting these terms into equation [7-23] gives the following equation for the turbulent 
viscosity. 
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The values of k and ε used to compute the turbulent viscosity are found by solving partial 
differential equations that have the same form as the usual balance equations.  These equations 
are described below. 

A balance equation for the turbulent kinetic energy can be derived by combining the time 
averaged Navier-Stokes for all components after multiplying each by the fluctuating velocity 
components.  This is similar to the approach used to obtain equation [1-45] for the kinetic energy 
of the main flow.  The resulting balance has several terms that cannot be evaluated and must be 
modeled.  This balance equation is shown below and the various terms in the equation are 
discussed following the equation.  The summation convention is used in this equation.  In some 
cases a double summation, over repeated i and j indices is implied. 
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The two terms on the left hand side represent the usual transient and convection terms.  
Similarly, the first term on the right hand side represents the diffusive transport of turbulent kinetic 
energy.  This term is similar to the usual gradient term that we have in our general balance 
equation.  The remaining terms in equation [7-27] are regarded as source terms in the general 
balance equation.  However, these terms are not found directly.  Instead, they must be modeled.  
We will consider each of these terms below. 
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 represents the turbulent diffusion of kinetic energy.  This is 

the transport of turbulent kinetic energy by the fluctuations themselves.  It is modeled as a 
gradient term. 
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The quantity σk is called the turbulent Prandtl number for kinetic energy, which is an empirical 
constant for turbulent flows.  See the discussion of the turbulent Prandtl number on page 7.12. 

The term (really nine similar terms with the summation convention) 
j

i
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a Reynolds stress times a gradient of the mean flow.  This term represents the production of 
turbulent kinetic energy by transfer of kinetic energy from the mean flow, and is usually given the 
symbol Pk.  If we use equation [7-19] for the Reynolds stress terms, we can write this term as 
follows. 
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If we substitute equations [7-28] and [7-29] into equation [7-27], we obtain the following result. 
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The first two terms on the right-hand side can be combined to give the equation for the kinetic 
energy of turbulence. 
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The laminar viscosity in the diffusion term is much smaller than the turbulent viscosity (divided by 
the Prandtl number for k) and is usually not included in the computations.  Note that this equation 
has the same form as the general CFD equation (transient – convection – diffusion – source) so 
we perform the numerical analysis of this equation by the usual CFD algorithms for other 
variables. 

Although we defined the turbulent dissipation, ε, in equation [7-25], we do not use this equation to 
compute ε.  Instead, we have to solve another partial differential equation to compute this 
quantity.  The final equation differential equation for the dissipation, with all the modeling 
assumptions already made, is shown below. 

 
k

CP
k

C
xxx

u
t k

i

t

ii

i
2

21
ερεε

σ
μερρε

εε
ε

−+
∂
∂

∂
∂

=
∂

∂
+

∂
∂

 [7-32] 

The first three terms in this equation are the usual terms in the general balance equation, 
representing the transient term, the convection term and the diffusion term.  For the turbulent 
flow, we use the mean velocities in the convection term and the turbulent transport coefficient in 
the diffusion term.  The effective transport coefficient is expressed as the ratio of the viscosity to 
the Prandtl number for dissipation, σε.  The last two terms in equation [7-32], with the empirical 
constants Cε1 and Cε2, represent the production and destruction of dissipation.  This equation is 
very similar to the corresponding equation [7-31] for the kinetic energy of turbulence. 

The various empirical constants used in the standard k-ε model are summarized below. 

 3.10.192.144.109.0 21 ===== εεεμ σσ kCCC  [7-33] 

These notes have described the original k-ε model which still has wide use in engineering 
applications.  Other versions of this model known as the renormalizable group (RNG) and the 
realizable k-ε models use alternative derivations of the model to be more consistent with the basic 
physics of turbulence.  These models have different differential equations for the production and 
dissipation terms and different equations for computing the turbulent viscosity from k and ε.  The 
empirical constants used in these models are also different.  These models are recommended in 
flows that high strain rates (i.e. large velocity gradients). 

Boundary conditions and wall functions 

In applying turbulence models like the k-ε model it is necessary to specify boundary conditions for 
the dependent variables, such as k and ε, at a variety of physical boundaries encountered in the 
flow.  The most complex application of boundary conditions is at solid walls.  At large Reynolds 
numbers, the laminar sublayer is so small that it is not possible to use a grid that is fine enough to 
resolve this region.  As a consequence, the boundary conditions at solid walls are usually 
handled by the mixing length relations from equation [7-22]. 

The starting point for the derivation of wall functions is the part of equation [7-22] which is valid for 
y+ values between 30 and 500.  Here we use the second form of that equation. 
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In the general consideration of wall functions, u+ is regarded as a normalized velocity component 
parallel to the wall and y+ is regarded as a normalized distance perpendicular to the wall.  To use 
this equation we need a value for the wall shear stress, τw, which is used in the normalizing 
variable, uτ = ρτ /w .  (Equation [7-20] shows how this parameter is used in the definitions of u+ 
and y+.)  This parameter is usually calculated from the equilibrium assumption that the production 
and dissipation of turbulence are equal.  In this case one can derive the following relationship 
between uτ and the turbulent kinetic energy. 

 kCu 4
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μτ =  [7-35] 

We can combine equations [7-34] and [7-35] to get an expression for the velocity at the first node 
in from the wall. 
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In this equation Cμ, and E are known dimensionless constants,1 ν is the (laminar) kinematic 
viscosity, and k and y are the values, respectively, of turbulent kinetic energy and distance from 
the wall at the first node.  Other wall functions are used for k, ε, and other transported variables 
such as temperature and species concentrations. 

At outlets, the gradients of turbulent kinetic energy and dissipation are assumed to be zero in the 
direction of the flow.  At inlets it is necessary to specify profiles of k and ε.  Ideally these should 
come from measurements on flows similar to the one being modeled.  If such data are not 
available, the inlet values of k and ε can be estimated form the following equations. 
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Here L is a characteristic length, which may be taken as the hydraulic diameter of an inlet.  
(Recall that the hydraulic diameter is 4A/P, where A is the area and P is the perimeter.  For 
circular flow passages this is the diameter.)  The constant C is a small number in the range of 
0.01 to 0.05.  Another way to specify k is to specify the turbulence intensity.  This is defined as 
the ratio of the kinetic energy of turbulence to the mean velocity squared.  This is equivalent to 
allowing the user to specify C in the initialization equation for k above 

The wall functions proposed above are limited to “large” Reynolds numbers.  Separate wall 
functions are required for lower Reynolds numbers.  The renormalizable group (RNG) and the 
realizable k-ε models, mentioned above as alternative k-ε models have different initial condition 
specifications and different wall functions. 

                                                           
1 E = 9.8 and for the k-ε model, Cμ = 0.09. 
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Wall boundary conditions and grid sizing in CFD codes 

Perhaps the most important idea of these notes is the relationship between the grid size and the 
turbulence model.  As noted in the previous section there are two possible approaches to wall 
boundary conditions: (1) use a find grid that computes the laminar sublayer (y+ < 5) or (2) use 
wall functions based on boundary layer theory of turbulent flow.  The choice of which approach to 
use is coupled to the choice of grid size. 

• If you want to model the laminar sublayer, it is important to have some number of 
grid nodes (about ten or more) in the region for which y+ < 5. 

• If you plan to use wall functions, the first grid node away from the wall must have 
a y+ value greater than 30 (and less than 500). 

You will generally not know what the y+ values will be until the computations are completed.  
However, you must check these values in the completed computations to ensure that they are in 
the proper range throughout the flow.  Fluent provides an option to produce plots of y+ values that 
you can check. 

Special wall functions are used for the energy equation in cases where there is a high Mach 
number that leads to significant heating by viscous dissipation. 

The usual wall-function approach is based on the assumption of equilibrium turbulence, viz. the 
production of turbulence equals the dissipation of turbulence.  This is a good assumption for high 
Reynolds numbers.  However in regions of low (but turbulent) Reynolds numbers this assumption 
is not valid and modified wall functions (sometimes called enhanced or non-equilibrium wall 
functions) are used in this case.  Chapter 12 in the Fluent Users’ Manual has complete discussion 
of the various turbulence models and the different approaches to handling the wall boundary 
conditions. 

Other transport equations: the turbulent “Prandtl” number 

All the discussion to this point has considered a model for the turbulent viscosity that is used in 
the momentum equations.  How do we compute the effect of turbulence on the energy equation 
or the species balance equation?  This is done by making an empirical correction to the turbulent 
viscosity to obtain the appropriate turbulent diffusion coefficient for the other properties. 

The empirical parameter used is called the turbulent Prandtl number.  In heat transfer the Prandtl 
number is a property of the fluid defined by the equation Pr = μcp/k.  We rewrite the definition of 
the kinematic viscosity, ν = μ/ρ, as μ = ρν; similarly, we can rewrite the definition of the thermal 
diffusivity, α = k/ρcp as k = ρcpα.  Substituting these results into the definition of Prandtl number 
gives an alternative expression for the Prandtl number as Pr = μcp/k = (ρν)μcp/(ρcpα) = ν/α.  Thus, 
if we know the laminar kinematic viscosity and Prandtl number for a fluid, we can find the thermal 
diffusivity for the fluid from the equation α = ν/Pr. 

This is the basic kind of relationship used in turbulent flows.  If we have an empirical model for the 
turbulent Prandtl number, Prt, we can find the turbulent thermal diffusivity, αt, from the turbulent 
kinematic viscosity by the equation αt = νt,/Prt.  Recall the basic equation [7-17] for turbulent 
transport copied below. 
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Recall that we defined the general coefficient γ(φ) = Γ(φ)/(ρc) in equation [7-11].  For momentum 
transport (where c = 1), γ is the kinematic viscosity, ν, and Γ is the dynamic viscosity, μ.  Although 
the Prandtl number is formally defined as μcp/k = ν/α, in turbulence models, the turbulent 
“Prandtl” number for a particular flow variable, φ, is defined as the ratio ν/γ(φ) and is given the 
symbol σφ.  (Here I put quotation marks around Prandtl to indicate that the name Prandtl number 
is applied to ratios other than the original definition of the Prandtl number as ν/α.  With this 
definition of the general turbulent Prandtl number we can rewrite equation [7-17] as follows. 
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As noted above, the turbulent transport property is usually much larger than the laminar transport 
property and is often ignored in computations.  The laminar “Prandtl” number is a fluid property 
that can be found from data supplied with the CFD codes or entered as input by the user from 
property tables.  The turbulent “Prandtl” number is usually set as a default value in the CFD code.  
These default values are usually satisfactory for most applications.  Users can override these 
default values if they have other data available to them to justify this. 

Other turbulence models 

Several other models that solve two partial differential equations have been proposed, and each 
has their proponents.  However none of these seems to have received better acceptance than the 
k-ε model. 

For complex flows, typically those with large amounts of swirl, the Reynolds Stress model is used.  
This model solves six partial differential equations, one for each independent Reynolds stress 
term.  In addition, the dissipation equation [7-32] must be solved to obtain terms used in the 
differential equations for the Reynolds stresses.  The use of the Reynolds stress model has not 
been completely successful.  For some flows this model gives much better agreement with 
experimental data as compared to the k-ε model.  For other flows, little improvement is obtained 
by going from the k-ε model to the Reynolds stress model. 

The general equation for the Reynolds stress model is shown below. 
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      Transient   Convection        Diffusion                      Production            Dissipation 
                                                                                                                  Pressure Strain   Rotation 

The first five terms appearing in full in the above equation, reading from left to right, are the usual 
transient, convection, diffusion, production and dissipation terms.  The remaining terms, the 
pressure-strain term, Πij, and the rotational term Ωij are described below.  The δij term is the 
Kronecker delta.  All other terms in the above equation have been defined previously.  Note that 
we have a repeated sum over the repeated indexl.  The i and j indices represent a particular 
Reynolds stress and we have to solve equation [7-39] for the six unique Reynolds stresses. 

The pressure strain interaction terms are important ones in this equation, but they are also the 
most difficult ones to model accurately.  They come about from pressure fluctuations that occur 
when two eddies interact with each other and when an eddy in one flow region interacts with the 
main flow in another region.  The simplest form of this term is 
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In this equation, C1 = 1.8, C2 = 0.6, and the Pk term is the total production of kinetic energy 
defined in equation [7-29].  The rotational term uses the local rotation vector, ω, whose 
components are ωk.  It also uses the symbol εijk which is zero if any two indices are the same and 
+1 if i = 1, j = 2, and k = 3.  For all other combinations of ijk, εijk = -1 if the indices ijk are an odd 
permutation of ijk or +1 if the indices are an even permutation of ijk.  (In an odd or even 
permutation an odd or even number of moves are required to get 123 into the given set of 
indices.  For example 321 is an odd permutation since it only takes one move, swapping the 3 
with the 1.  The order 231 is an even permutation since we need two moves.  We first swap the 1 
and the 3 (giving 321) then we swap the 2 and the 3 to get the 231 result.  Other orders of swaps 
are possible, but it will always take an even number of swaps to permute 123 into 231.  With 
these definitions, the rotation term is 

 ( )llll jkiikjkij uuuu εεω ''''2 +−=Ω  [7-41] 

This term has an implied summation over the two repeated indices k and l. 

In the Reynolds stress model, the kinetic energy of turbulence is found from the sum of the three 
Reynolds stresses with the same index. 
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Because k can be found from this equation, it is not necessary to solve a separate equation for k.  
However, it is still necessary to solve an equation for the dissipation, ε.  Thus, the Reynolds 
stress model requires the solution of seven partial differential equations to compute the 
turbulence properties. 

An approximate form of the Reynolds stress model, known as the algebraic Reynolds stress 
model, has been used.  In this model the source terms for production and destruction of the 
Reynolds stress terms are assumed to be equal in magnitude.  This means that it is not 
necessary to solve differential equations.  Instead, a system of six simultaneous linear equations 
is solved at each node for the Reynolds stresses at that node.  It is still necessary to solve a 
differential equation for the kinetic energy and the dissipation. 

A new model called the v2f (or v2-f) model has been used to allow improved results (as compared 
to the k-ε model) for low Reynolds number turbulent flows. 

The Spalart-Allmaras model is a one-equation model that solves a transport equation for the 
turbulent viscosity. It was designed specifically for aerospace applications involving flows along a 
surface.  The detached eddy simulation (DES) model is a modified version of the Spalart-
Allmaras model that is designed to be a less expensive alternative to LES. 
These notes have not discussed turbulence models for compressible flows.  In such models it is 
necessary to consider density fluctuations.  One approach for doing this is the use of Favre 
averages in which the instantaneous flow quantity is split into two parts as follows. 
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Models of reacting flows sometimes use a differential equation for the evolution of the probability 
distribution function (pdf) of the flows.  These models have not been extended to general 
turbulence modeling. 

The concept of direct numerical simulation was mentioned in the introduction to these notes.  A 
related concept is the use of large eddy simulation (LES).  This is a case where the computational 
grid is fine enough to resolve the large scale structures in the turbulent flow.  A model is still 
required to characterize the smaller scales.  These models are called sub-grid-scale models.  At 
present, LES does not provide a significant advantage for routine computations of flows in simple 
engineering design applications.  However, it is the best way to get good results for complex 
transient turbulent flows. 

Conclusions on turbulence models 

Because of the widespread use of turbulent flows in practical systems, it is imperative that a 
method be developed for computation of turbulence in computational fluid dynamics.  
Unfortunately, there is no one model that will provide assurance that the properties of the 
turbulent flows will be computed accurately. 

The k-ε model and Reynolds stress models are the ones most commonly used in commercial 
codes and practical applications.  The k-ε model is usually adequate for simple turbulent flows in 
which there is not a large degree of swirl.  For swirling flows, the Reynolds stress model usually 
produces better results than the k-ε model, but this improved performance is not ensured. 

The Spalart-Allmaras model is the model of choice for external flows, both in aerospace 
applications and for ground vehicles.  An alternative model to the k-ε model is the k-ω model 
where ω = ε/k; this model is used mainly for free shear flows. 

Advanced models such as LES have the potential for improving the accuracy of turbulent CFD 
results, but are presently too costly to be used for routine engineering design problems.  DNS is 
still regarded mainly as a research tool. 

We have not discussed the overall solution procedures.  The turbulence equations may require a 
finer time and grid scale than the equations for other flow quantities.  We also have to be careful 
to maintain the linkages in calculating k and ε, which are used to compute μt.  Once μt.is 
computed, it is used to compute the mean velocities.  The mean velocities are used in the 
equations for k and ε, and so on. 

Guidance on turbulence models 

The choice of the turbulence model to use and the associated choice of how to handle the 
boundary conditions is a complex question.  The Fluent user’s guide states that “no single 
turbulence model is universally accepted as being superior for all classes of problems.”  The 
simplest approach for economical solutions of internal flow problems is the use of the k-ε model 
with wall functions.  (Enhanced wall functions should be used if the Reynolds number is low.)  For 
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external flows the Spalart-Allmaras model should be used.  This model may be used with wall 
functions or resolution of the viscous sublayer.  Chapter 12 of the Fluent Users’ manual gives a 
full discussion of turbulence models and guidance for when to apply a particular model and the 
types of boundary conditions that can be used with a particular model. 

Some references on turbulence and turbulence models 

As noted above, Chapter 12 in the user’s guide for Fluent discusses the basic turbulence models 
and provides guidance for their use in Fluent.  This manual is available from the help menu in 
Fluent. 

The two main references used for this set of notes were the chapters on turbulence modeling in 
the following texts: 

J. H. Ferzinger and M. Perić, Computational Methods for Fluid Dynamics, (third edition) Springer, 
2002.  (Chapter nine on turbulent flows.) 

H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics. The 
Finite Volume Method” (Second edition), Prearson, Prentice-Hall, 2007.  (Chapter three on 
turbulence and its modeling.) 

The Ferzinger and Perić text has more discussion of advanced methods such as DNS and LES.  
The Versteeg and Malalasekera text has more background on the fundamentals of turbulence.  
The two classical references in this field are: 

H. Tennekes and J. L. Lumley, A First Course in Turbulence, The MIT Press, 1972. 

B. E. Launder and D. B. Spaulding, Mathematical Models of Turbulence, Academic Press, 1972.  
(also, “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics 
and Engineering, 3:269, 1974.) 

I have not reviewed the text listed below, but the first edition of this text has some good online 
reviews. 

D. C. Wilcox, Turbulence Modeling for CFD, (second edition) DCW Industries, Inc., 1998.  See 
the book web site: http://www.dcwindustries.com/books/0963605151.htm 


