Numerical Solutions of the Diffusion Equation
Larry Caretto
Mechanical Engineering 501AB
Seminar in Engineering Analysis
March 18, 2009

Outline
• Review last class
• Numerical solutions of the diffusion equation in one space dimension
 – Explicit algorithm
 – Stability of algorithms
 – Crank-Nicholson algorithm
 – (Fully) implicit algorithm
 – DuFort-Frankel algorithm

Review Numerical Analysis
• Transform differential equation into a system of algebraic equations
• Obtain solution for discrete points in domain
• Two basic approaches: finite differences and finite elements
• Start with finite elements
• Get expressions for derivatives and measure of error with their use

Review Finite Difference Grids
• Grid notation for four independent variables: x, y, z, and t

 \[\begin{align*}
 x_0 &= x_{\text{min}} & x_N &= x_{\text{max}} & x_i - x_{i-1} &= \Delta x_i \\
 y_0 &= y_{\text{min}} & y_M &= y_{\text{max}} & y_j - y_{j-1} &= \Delta y_j \\
 z_0 &= z_{\text{min}} & z_K &= z_{\text{max}} & z_k - z_{k-1} &= \Delta z_k \\
 t_0 &= t_{\text{min}} & t_L &= t_{\text{max}} & t_n - t_{n-1} &= \Delta t_n
 \end{align*} \]

• Dependent variable \(u(x, y, z, t) \) at discrete points \(u(x_i, y_j, z_k, t_n) \)
• Use notation below for this value of \(u \)

 \[u_{ijk}^n = u(x_i, y_j, z_k, t_n) \]

Review Truncation Error
• If we truncate series after \(m \) terms

 \[f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^nf}{dx^n}(x-a)^n \]

 Terms used
 Truncation error, \(\varepsilon_m \)

 Can write truncation error as single term at unknown location (derivation based on the theorem of the mean)

 \[\varepsilon_n = \sum_{n=0}^{m} \frac{1}{n!} \frac{d^nf}{dx^n}(x-a)^n = \frac{1}{(m+1)!} \frac{d^{m+1}f}{dx^{m+1}}(x-a)^{m+1} \]

Review Order of the Error
• Derivative expressions have error that is proportional to \(h^n \)
• This power, \(n \), is called the order of the error
• Use notation \(O(h^n) \) to indicate this error
• Reducing step size by a factor of \(a \) reduces \(n^{\text{th}} \) order error by \(a^n \)

 \[\varepsilon_z \approx \varepsilon \left(\frac{h_z}{h_1} \right)^n \]
Review Derivative Expressions

- First-order error, first derivatives
 \[f'_i = \frac{f_{i+1} - f_i}{h} + O(h) \]
 \[f'_i = \frac{f_i - f_{i-1}}{h} + O(h) \]

- Second-order error, first derivatives
 \[f'_i = -\frac{f_{i+2} - 4f_{i+1} + 3f_i}{2h} + O(h^2) \]
 \[f'_i = \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2) \]

- Second derivative
 \[f''_i = \frac{f_{i+1} + f_{i-1} - 2f_i}{h^2} + O(h^2) \]

Find \(f' \) and \(f'' \) for \(\sin(1) \)

Second order central

\[f'_i = \frac{f_{i+1} - f_{i-1}}{2h} + O(h^2) \]
\[f''_i = \frac{\sin(1.01) - \sin(0.99)}{0.02} + O(h^4) \]

Review Roundoff Error

- Possible in derivative expressions from subtracting close differences
- Example \(f(x) = e^x \):
 \[f'(x) \approx \frac{(e^{x+h} - e^{x-h})}{2h} \]
 and error at \(x = 1 \) is \(\frac{(e^{1+h} - e^{1-h})}{2h} - e \)

\[E = \frac{3.004166 - 2.722815}{2(0.01)} - 2.718282 = 4.5 \times 10^{-3} \]

\[E = \frac{2.7185536702 - 2.7180100139}{2(0.00001)} - 2.718281828459 = 4.5 \times 10^{-3} \]

\[E = \frac{2.71828210028724 - 2.71828155660388}{2(0.00000001)} - 2.718281828 = 5.9 \times 10^{-5} \]

Numerical PDE Solutions

- Define a finite-difference grid in the independent variables \((x, y, z, t)\)
- Place grid points on region boundary whose values are found from boundary conditions for the problem
- At some grid location convert differential equation into a finite difference equation
 - Observe truncation error in process
 - Neglect truncation error to get set of algebraic equations to solve

Diffusion Equation

- Apply difference formulas derived for ordinary derivatives to partial derivatives
- Use notation to consider different coordinate directions
- Apply to diffusion equation
- Grids \(x_i = x_0 + i \Delta x \) and \(t_n = t_0 + n \Delta t \)
- Try finite difference expressions below to get simple finite-difference equation

\[\frac{\partial u}{\partial t} = \frac{u_{i+1}^{n+1} - u_i^n}{\Delta t} + O(\Delta t) \]
\[\frac{\partial^2 u}{\partial x^2} = \frac{u_{i+1}^{n+1} + 2u_i^n - u_{i-1}^{n+1}}{(\Delta x)^2} + O((\Delta x)^2) \]
Diffusion Equation II

- Substitute finite difference expressions into differential equation
\[\frac{u^{n+1}_i - u^n_i}{\Delta t} = \alpha \frac{u^n_{i+1} + u^n_{i-1} - 2u^n_i}{(\Delta x)^2} + O(\Delta t, (\Delta x)^2) \]

- Ignore truncation error, solve for \(u^{n+1}_i \)
\[u^{n+1}_i = \alpha \frac{\Delta t}{(\Delta x)^2} (u^n_{i+1} + u^n_{i-1} + (1 - 2f)u^n_i) \]

- Obtain potential at \(x = x_i \) and \(t = t_{n+1} \) in terms of \(u \) values at old time step

Explicit Method Example

- Pick \(\alpha = 1 \), \(\Delta x = 0.25 \), \(N_x = 4 \), \(\Delta t = 0.01 \)
- \(f = \alpha \Delta t/(\Delta x)^2 = 1.01/0.25^2 = 0.16 \)
- Pick initial \(u^0_i = 1000 \) and boundaries, \(u^n_0 = u^n_{N_x} = 0 \) for \(n \geq 0 \)
- Apply \(u^{n+1}_i = f(u^n_{i+1} + u^n_{i-1}) + (1 - 2f)u^n_i \)
- \(u'_i = f(u^n_{i+1} + u^n_{i-1}) + (1 - 2f)u^n_i = 0.16(0 + 1000) + 0.68(1000) = 1000 \)
- \(u'_i = f(u^n_{i+1} + u^n_{i-1}) + (1 - 2f)u^n_i = 0.16(1000 + 1000) + 0.68(1000) = 1000 \)
- \(u'_i = f(u^n_{i+1} + u^n_{i-1}) + (1 - 2f)u^n_i = 0.16(1000 + 0) + 0.68(1000) = 1000 \)
- Repeat for subsequent time steps

Explicit Method Results \(f = 0.16 \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(i = 0)</th>
<th>(i = 1)</th>
<th>(i = 2)</th>
<th>(i = 3)</th>
<th>(i = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 0)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 1)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 4)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Explicit Results \(f = 0.16 \)

<table>
<thead>
<tr>
<th>(x = x_i)</th>
<th>(t = 0)</th>
<th>(t = 0.01)</th>
<th>(t = 0.02)</th>
<th>(t = 0.03)</th>
<th>(t = 0.04)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 0)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 1)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 4)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>

Explicit Method Results \(f = 0.32 \)

<table>
<thead>
<tr>
<th>(x = x_i)</th>
<th>(t = 0)</th>
<th>(t = 0.01)</th>
<th>(t = 0.02)</th>
<th>(t = 0.03)</th>
<th>(t = 0.04)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 0)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 1)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 2)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 3)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>(n = 4)</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Explicit Results $f = 0.64$

<table>
<thead>
<tr>
<th>i = 0</th>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0.00</td>
<td>x = 0.25</td>
<td>x = 0.50</td>
<td>x = 0.75</td>
<td>x = 1.00</td>
</tr>
<tr>
<td>n = 0</td>
<td>t = 0.64</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>n = 1</td>
<td>t = 0.08</td>
<td>0</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>n = 2</td>
<td>t = 0.12</td>
<td>0</td>
<td>-35.3</td>
<td>639.6</td>
</tr>
<tr>
<td>n = 3</td>
<td>t = 0.16</td>
<td>0</td>
<td>-260.9</td>
<td>599.3</td>
</tr>
<tr>
<td>Exact</td>
<td>t = 0.20</td>
<td>125.1</td>
<td>176.9</td>
<td>125.1</td>
</tr>
<tr>
<td>Error</td>
<td>t = 0.20</td>
<td>385.9</td>
<td>422.5</td>
<td>385.9</td>
</tr>
</tbody>
</table>

What Happened?

- We are seeing effects of instability
- Difference equations may not converge
 - Unstable equations grow without bound
 - May have stable equations that produce incorrect results
 - Conditional stability requires step size less than that needed for accuracy
 - Goal of absolute stability not always possible
- Discussions of stability complex, can sometimes use physical arguments

Stability of Explicit Method

- If the values of u_{i+1} and u_{i-1} are fixed an increase in u_i^n should increase u_i^{n+1}
- If f is greater than 0.5, an increase in u_i^n will cause a decrease in u_i^{n+1}
- We can avoid this incorrect result by keeping $f = \alpha \Delta t / (\Delta x)^2 \leq 0.5$
- This imposes a time step limit that may be less than the limit required for accuracy in the solution

FTCS Truncation Error

- Derivation in appendix for notes on solving PDEs gives this equation

$$TE_i^n = \alpha \sum_{k=2}^{\infty} (\Delta x)^{2k-2} \left[\frac{2}{(2k)!} \frac{\partial^{2k} T}{\partial x^{2k}} \right]$$

$$TE_i^n = \frac{\alpha (\Delta x)^2}{2} \left(1 - f \right) \frac{\partial^4 T}{\partial x^4} + \frac{\alpha (\Delta x)^4}{6} \left(1 - f^2 \right) \frac{\partial^6 T}{\partial x^6} + \cdots$$

- Setting $f = \alpha \Delta t / (\Delta x)^2 = 1/6$ eliminates first term in the truncation error

Crank-Nicholson Method

- Seek more accurate time derivative
- Provides implicit method
 - Value of u_{i+1}^{n+1} depends on other u_{i+1}^{n+1}
 - More work per step, but can take longer time steps with this method
 - Apply to diffusion equation at time $n + 1/2$

$$\frac{\partial u_i^{n+1}}{\partial t} = \frac{u_i^{n+1} - u_i^n}{2 \Delta t} + O((\Delta t)^2) = u_i^{n+1} - u_i^n + O((\Delta t)^2) = \alpha \frac{\partial^2 u_i}{\partial x^2}$$

Space Derivative at $t_{n+1/2}$

- Take average of space derivative at time steps n and $n + 1$
- Show average is second order accurate

$$f_{i+1} = f_i + f_{i+1} - f_i^h = \frac{h^2}{2} + f_i^h$$

$$f_{i-1} = f_i - f_{i-1} = \frac{h^2}{2} - f_i^h$$

$$f_{i+1} + f_{i-1} = 2 f_i + 2 f_i^h = \frac{h^2}{2} + 2 f_i^h + \cdots$$

$$f_i = f_{i+1} + f_{i-1} = \frac{h^2}{4} - f_i^h = \frac{h^2}{4} \cdots = \frac{f_{i+1} + f_{i-1}}{2} + O(h^2)$$
Using Space Derivative at \(t_{n+1/2} \)

- Apply average to space derivative
 \[
 \frac{\partial^2 u}{\partial x^2} \bigg|_{n+1/2} = \frac{1}{2} \left[\frac{\partial^2 u}{\partial x^2} \bigg|_n + \frac{\partial^2 u}{\partial x^2} \bigg|_{n+1} \right] + O(\Delta t^2)
 \]
- Substitute into diffusion equation
 \[
 \frac{\partial^2 u}{\partial t^2} \bigg|_{n+1/2} - \frac{\partial^2 u}{\partial x^2} = \frac{u_{n+1} - u_n}{\Delta t} + \frac{u_{n+1} - 2u_n + u_{n-1}}{2(\Delta x)^2} + O(\Delta t^2)
 \]
- Introduce \(f = \alpha \Delta t / (\Delta x)^2 \) and rearrange

Crank-Nicholson Equation

- Resulting equation has three values at new time step
 \[
 - \frac{f}{2} u_{i+1}^{n+1} + (1 + f) u_i^{n+1} - \frac{f}{2} u_{i-1}^{n+1} = \frac{f}{2} \left[u_{i+1}^n + u_{i-1}^n \right] + (1 - f) u_i^n
 \]
- Tridiagonal system of equations easily solved by special application of Gauss elimination called Thomas algorithm
 \[
 - fu_{i+1}^{n+1} + 2(1 + f) u_i^{n+1} - fu_{i-1}^{n+1} = R_i
 \]

Crank-Nicholson Equations

- Consider case where boundary potentials \(u_0 \) and \(u_N \) are specified
- Rewrite equations in matrix form to show tridiagonal structure

Thomas Algorithm

- General format for tridiagonal equations

\[
\begin{bmatrix}
B_0 & C_0 & 0 & 0 & \cdots & 0 & 0 \\
A_1 & B_1 & C_1 & 0 & \cdots & 0 & 0 \\
0 & A_2 & B_2 & C_2 & \cdots & 0 & 0 \\
0 & 0 & A_3 & B_3 & \cdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & B_{N-1} & C_{N-1} \\
0 & 0 & 0 & 0 & \cdots & A_N & B_N
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
x_2 \\
\vdots \\
\vdots \\
x_{N-1} \\
x_N
\end{bmatrix}
=
\begin{bmatrix}
D_0 \\
D_1 \\
D_2 \\
\vdots \\
\vdots \\
D_{N-1} \\
D_N
\end{bmatrix}
\]

Thomas Algorithm II

- Gauss elimination upper triangular form

\[
\begin{bmatrix}
1 & -E_0 & 0 & \cdots & 0 & 0 \\
0 & 1 & -E_0 & \cdots & 0 & 0 \\
0 & 0 & 1 & -E_2 & \cdots & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 - E_{N-1} \\
0 & 0 & 0 & 0 & \cdots & 1
\end{bmatrix}
\begin{bmatrix}
x_0 \\
x_1 \\
x_2 \\
\vdots \\
\vdots \\
x_{N-1} \\
x_N
\end{bmatrix}
=
\begin{bmatrix}
F_0 \\
F_1 \\
F_2 \\
\vdots \\
\vdots \\
F_{N-1} \\
F_N
\end{bmatrix}
\]

Thomas Algorithm III

- Forward computations
 - Initial: \(E_0 = -C_0 / B_0 \), \(F_0 = D_0 / B_0 \)
 - For \(i = 1, \ldots, N-1 \):
 \[
 E_i = \frac{-C_i}{B_i + A_i E_{i-1}} \quad F_i = \frac{D_i - A_i F_{i-1}}{B_i + A_i E_{i-1}}
 \]
- Get last \(x \) value first
 \[
 x_N = F_N = \frac{D_N - A_N F_{N-1}}{B_N + A_N E_{N-1}}
 \]
- Back substitute: \(x_i = F_i + E_i x_{i+1} \)
Crank Nicholson Results

• Results for $\alpha = 1$, $L = 1$, $\Delta x = 0.01$, $\Delta t = 0.0005$, $f = \alpha \Delta t / (\Delta x)^2 = 5$

<table>
<thead>
<tr>
<th>i = 0</th>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0</td>
<td>x = 0.01</td>
<td>x = 0.02</td>
<td>x = 0.03</td>
<td>x = 0.04</td>
</tr>
<tr>
<td>n = 0</td>
<td>t = 0</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>n = 1</td>
<td>t = 0.0005</td>
<td>358.26</td>
<td>588.17</td>
<td>735.71</td>
</tr>
<tr>
<td>n = 2</td>
<td>t = 0.001</td>
<td>218.22</td>
<td>408.43</td>
<td>562.69</td>
</tr>
<tr>
<td>n = 3</td>
<td>t = 0.0015</td>
<td>166.26</td>
<td>322.13</td>
<td>460.74</td>
</tr>
<tr>
<td>n = 4</td>
<td>t = 0.002</td>
<td>139.05</td>
<td>272.65</td>
<td>396.35</td>
</tr>
<tr>
<td>n = 5</td>
<td>t = 0.0025</td>
<td>121.84</td>
<td>240.25</td>
<td>352.17</td>
</tr>
<tr>
<td>n = 6</td>
<td>t = 0.003</td>
<td>105.75</td>
<td>217.08</td>
<td>319.77</td>
</tr>
</tbody>
</table>

Fully Implicit Results

• Same as CN results: $\alpha = 1$, $L = 1$, $\Delta x = 0.01$, $\Delta t = 0.0005$, $f = \alpha \Delta t / (\Delta x)^2 = 5$

<table>
<thead>
<tr>
<th>i = 0</th>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0</td>
<td>x = 0.01</td>
<td>x = 0.02</td>
<td>x = 0.03</td>
<td>x = 0.04</td>
</tr>
<tr>
<td>n = 0</td>
<td>t = 0</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>n = 1</td>
<td>t = 0.0005</td>
<td>358.26</td>
<td>588.17</td>
<td>735.71</td>
</tr>
<tr>
<td>n = 2</td>
<td>t = 0.001</td>
<td>218.22</td>
<td>408.43</td>
<td>562.69</td>
</tr>
<tr>
<td>n = 3</td>
<td>t = 0.0015</td>
<td>166.26</td>
<td>322.13</td>
<td>460.74</td>
</tr>
<tr>
<td>n = 4</td>
<td>t = 0.002</td>
<td>139.05</td>
<td>272.65</td>
<td>396.35</td>
</tr>
<tr>
<td>n = 5</td>
<td>t = 0.0025</td>
<td>121.84</td>
<td>240.25</td>
<td>352.17</td>
</tr>
<tr>
<td>n = 6</td>
<td>t = 0.003</td>
<td>105.75</td>
<td>217.08</td>
<td>319.77</td>
</tr>
</tbody>
</table>

Crank Nicholson Results II

<table>
<thead>
<tr>
<th>i = 0</th>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0</td>
<td>x = 0.01</td>
<td>x = 0.02</td>
<td>x = 0.03</td>
<td>x = 0.04</td>
</tr>
<tr>
<td>n = 7</td>
<td>t = 0.0035</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 8</td>
<td>t = 0.004</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 9</td>
<td>t = 0.0045</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 10</td>
<td>t = 0.005</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 11</td>
<td>t = 0.0055</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 12</td>
<td>t = 0.006</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 13</td>
<td>t = 0.0065</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 14</td>
<td>t = 0.007</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 15</td>
<td>t = 0.0075</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 16</td>
<td>t = 0.008</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 17</td>
<td>t = 0.0085</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
</tbody>
</table>

Fully Implicit Results II

• Discretize diffusion equation at t_{n+1}

\[
\frac{\partial u}{\partial t} = \frac{u_{i+1} - u_i}{\Delta t} + O(\Delta t) \quad \text{and} \quad \frac{\partial^2 u}{\partial t^2} = \frac{u_{i+1} + u_{i-1} - 2u_i}{(\Delta t)^2} + O(\Delta t)^2
\]

\[
\frac{\partial^2 u}{\partial t^2} - \alpha^2 \frac{\partial^2 u}{\partial x^2} = \frac{u_{i+1} - u_i - u_i - u_{i-1} + 2u_i}{(\Delta x)^2} + O((\Delta t), (\Delta x)^2) = 0
\]

- $f(t_{i+1}) = f(t_i)$

• Tridiagonal system of equations

• Almost same work as CN and no spurious oscillations, but less accuracy

Crank Nicholson Results III

Fully Implicit Method

<table>
<thead>
<tr>
<th>i = 0</th>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0</td>
<td>x = 0.01</td>
<td>x = 0.02</td>
<td>x = 0.03</td>
<td>x = 0.04</td>
</tr>
<tr>
<td>n = 8</td>
<td>t = 0.004</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 9</td>
<td>t = 0.0045</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 10</td>
<td>t = 0.005</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 11</td>
<td>t = 0.0055</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 12</td>
<td>t = 0.006</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 13</td>
<td>t = 0.0065</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 14</td>
<td>t = 0.007</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 15</td>
<td>t = 0.0075</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 16</td>
<td>t = 0.008</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
<tr>
<td>n = 17</td>
<td>t = 0.0085</td>
<td>0</td>
<td>109.4</td>
<td>180.3</td>
</tr>
</tbody>
</table>
Fully Implicit Results III

<table>
<thead>
<tr>
<th>i = 0</th>
<th>i = 1</th>
<th>i = 2</th>
<th>i = 3</th>
<th>i = 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = 0.009</td>
<td>0.0106</td>
<td>0.0113</td>
<td>0.0120</td>
<td>0.0127</td>
</tr>
<tr>
<td>n = 18</td>
<td>n = 19</td>
<td>n = 20</td>
<td>n = 21</td>
<td>n = 22</td>
</tr>
<tr>
<td>x = 0</td>
<td>x = 0.01</td>
<td>x = 0.02</td>
<td>x = 0.03</td>
<td>x = 0.04</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>t = 0.0125</th>
<th>Exact</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.009</td>
<td>202.67</td>
<td>152.76</td>
</tr>
<tr>
<td>0.0106</td>
<td>152.76</td>
<td>102.20</td>
</tr>
<tr>
<td>0.0113</td>
<td>152.20</td>
<td>102.20</td>
</tr>
<tr>
<td>0.0120</td>
<td>152.20</td>
<td>102.20</td>
</tr>
<tr>
<td>0.0127</td>
<td>152.20</td>
<td>102.20</td>
</tr>
</tbody>
</table>

Richardson/Leapfrog

- Use two time step central differences
 \[\frac{\partial u}{\partial t} = \frac{u_{i+1}^{n} - u_{i-1}^{n}}{2\Delta} + O(\Delta t^2) \]
- Result is explicit with second order accuracy in time
 \[u_{i+1}^{n+1} = u_{i}^{n+1} + \alpha \frac{u_{i+1}^{n} + u_{i-1}^{n} - 2u_{i}^{n}}{(\Delta x)^2} \]
- However result is unstable for any \(f \) and cannot be used

DuFort Frankel

- Modification of Richardson method to provide stability
- Replace \(2u_{i}^{n} \) in second derivative by average at time steps \(n+1 \) and \(n-1 \)
- Introduces another \(O(\Delta t^2) \) error

\[\frac{\partial u}{\partial t} = \frac{u_{i+1}^{n} - u_{i-1}^{n}}{2\Delta} + O(\Delta t^2) \]

\[u_{i+1}^{n+1} = u_{i}^{n+1} + \alpha \frac{u_{i+1}^{n} + u_{i-1}^{n} - 2u_{i}^{n}}{(\Delta x)^2} \]

\[v = \alpha \frac{\Delta t}{(\Delta x)^2} \]

- Result is explicit for values at time \(n+1 \)
- Explicit start required to get first set of values at time \(n-1 \)
This Week’s Homework

- Download assignment from web
 - Find first and second derivative of \(\sin x \) at \(x = 1 \) for \(h = .1, .01, \) and \(.001 \) using second-order central-difference expressions
 - Repeat for \(x = 0.01 \) with \(h = .001 \) and \(.0001 \)
 - Do problems 5, 23, and 28 on pp 646-647 of Hoffman (diffusion equation solutions)
 - Computer assignment due after midterm
- Download and run program used to get charts just shown for one of the suggested assignments

Explicit Method Example

- How many values can you compute for initial conditions below with \(f = 0.25 \)

 \[
 u_i^{n+1} = f(u_{i+1}^n + u_{i-1}^n) + (1 - 2f)u_i^n = \frac{u_{i+1}^n + u_{i-1}^n}{4} + \frac{u_i^n}{2}
 \]

<table>
<thead>
<tr>
<th></th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>?</td>
<td>?</td>
<td>80</td>
<td>90</td>
<td>95</td>
<td>90</td>
<td>80</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>88.75</td>
<td>92.5</td>
<td>88.75</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>