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Outline
• Review last class

– Gradient and convection boundary condition
• Diffusion equation in radial coordinates
• Solution by separation of variables
• Result is form of Bessel’s equation
• Review Bessel functions
• Eigenfunction expansion in Bessel 

functions
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Review Homework Problem
• Page 561 problem 5: find u(x,t) for 0 ≤ x ≤ L
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• Start with separation of variables solution
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• For ∂u/∂x|x=0 = 0, C1 = 0
• For ∂u/∂x|x=L = 0, λ = nπ/L for integer n
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Review Homework Problem II
• General solution is sum of all eigenfunctions

• General orthogonal 
relationship for An
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• Final cosine result has A0

0 for cosines
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Review Convection Problem
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Review Dimensionless Problem
• Diffusion 

equation
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Review Finding λn
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Review Initial Conditions
• Usual formula for Cm but λm ≠ mπ

• Constant initial temperature, T0, gives Θ0 = 1
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Review Solution
• General solution
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• Need root-finding method to obtain 
eigenvalues, λm = (hL/k) cot λm

• Solution for T(x,0) = T0 (Θ0 = 1)

Cm
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Review Solution for hL/k = 1
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Review Solution for hL/k = 10
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Review Summary
• Create Sturm-Lioville problem for non-

zero spatial boundary conditions
– Define u(x,t) = v(x,t) + w(x)
– Use u – uref in original equation

• Solve by separation of variables
– Time solution will be exponential

• Apply boundary conditions to determine 
eigenvalues
– Also gets constants C1 and C2 which 

determines functions that are in solution
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Review Summary II
• Write solution as sum of all possible 

eigenfunctions with individual constants
• Use eigenfunction expansion to match 

initial conditions
– If a solution for u(x,t) = v(x,t) + w(x) is used 

the eigenfunction expansion must be for 
u0(x) – w(x)

• Solution is sum of all eigenfunctions 
with constants determined from 
matching initial conditions
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Cylindrical Diffusion Equation
• General diffusion 

equation for three 
dimensions
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Radial Diffusion Equation
• Governs diffusion (heat conduction) in 

cylinder for t ≥ 0 and 0 ≤ r ≤ R
– u(r,t) is temperature, species concentration
– Initial condition u(r,0) = u0(r)
– No boundary condition at r = 0 except that 

u(0,t) is finite
• ∂u/∂r|r=0 = 0 by symmetry
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• Diffusivity, α, is 
material property 
(length)2/(time)
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New Variable for u(R,t) = uR

• u(r,t) = v(r,t) + uR
– v(r,t) satisfies diffusion equation
– v(R,t) = 0 and v(0,t) is finite

• Gives a Sturm-Liouville problem for radial function

• Since uR is a constant, u(r,t) is a solution 
to the original problem
– It satisfies the differential equation and the 

boundary conditions
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Separation of Variables
• Assume v(r,t) = P(r)T(t)
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Solve ODEs to Get v(r,t)
• Have exponential ODEs in time and 

Bessel’s equation for radial function
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dr
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d λ

• Solution of Bessel’s equation is P(r) = 
BJ0(λr) + CY0(λr)
– J0 and Y0 are (order zero) Bessel functions 

of first and second kind, respectively

• This is form of 
Bessel’s equation
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Review Bessel’s Equation

• Arises in mechanical and thermal 
problems in circular geometries

• The value of ν is a known parameter
• Use power series solution technique 

known as Frobenius method 
• Have two linearly independent solutions
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Gamma Functions

• Function Γ(x) generalizes factorials to 
non-integer arguments
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• Definition

• Analog of (n+1)! = (n+1)n!
• For integer x, Γ(n+1) = n! = nΓ(n)
• Used for coefficients of Bessel functions 

with noninteger order
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Bessel Functions, First Kind
• Separate expressions for integer and non-

integer values of ν
• Use n for integer values of ν

• First few terms
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Bessel Function Plot
Bessel Functions of the First Kind for Integer Orders
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Bessel Functions, Second Kind
• Yn(x) is defined as follows for integer ν = n

• General solution to Bessel’s equation 
given by Bessel functions of order n  or ν
– y(x) = AJn(x) + BYn(x) for integer ν = n
– y(x) = AJν(x) + BJ-ν(x) for noninteger ν
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Bessel Function Plot
Bessel Functions of the Second Kind of Integer Order
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Bessel Equation Solutions
• If we want a solution for x = 0 we cannot 

use Yn(x) so a general solution that 
includes x = 0 is y(x) = AJn(x)

• Formally define Yν(x) for non-integer ν

( )
νπ

νπ νν
ν sin

)()(cos)( xJxJxY −−
=

• In limit as n approaches an integer, this 
definition approaches Yn(x)

• Gives y(x) = AJν(x) + BYν(x) for any ν
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Bessel Function Summary
• Bessel’s equation, x2d2y/dx2 + xdy/dx + 

(x2 - ν2)y = 0, main applications are to 
problems in radial geometries.

• Physical problem gives value for ν
• The general solution to Bessel’s 

equation is y = C1Jν(x) + C2Yν(x) where 
C1 and C2 are constants that are 
determined by the boundary conditions 
on the differential equation.
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Bessel’s Equation Summary II
• Jν(x) and Yν(x): Bessel functions, order 
ν, first and second kind, respectively.
– have oscillatory behavior
– found in various tables and computer 

library solutions
– At x = 0, J0(x) = 1 and Jn(x) = 0 for n ≠ 0
– As x approaches zero, Yn(x) approaches 

minus infinity
• Can transform some equations into the 

form of Bessel’s equation. 
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Radial Diffusion Solution
• Transform Bessel’s equation whose 

solution is y = AJn(x) + BYn(x)
• Define z = x/k so y = AJn(kz) + BYn(kz)
• Transformed equation is

• Radial diffusion equation has ν = 0 
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Transformation Details
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equation

• Define z = x/k so that x = kz
– dy/dx = dy/d(kz) = (1/k)dy/dx
– d2y/dx2 = = d2y/d(kz)2 = (1/k2)d2y/dx2

– Substitute into Bessel’s equation and divide 
entire equation by z
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Bessel as Sturm-Liouville
• Compare transformed Bessel’s equation 

to Sturm-Liouville problem
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• Bessel is Sturm-Liouville equation with 
r(z) = p(z) = z, q(z) = -ν2/z and λ = k2

Weight function p(z)
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Radial Diffusion Solution II
• Radial diffusion 

equation for P(r)
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is y = AJν(kz) + BYν(kz)

• Solution to radial diffusion (ν = 0)
equation is AJ0(λr) + BY0(λr) 
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Radial Diffusion Solution III
• Start with general solution P(r) = AJ0(λr) 

+ BY0(λr)
• Solution applies in region to 0 ≤ r ≤ R 
• Must have P(r) finite at r = 0
• Since Y0(r) → -∞ as r → 0 we must 

have B = 0 for P(r) to be finite at r = 0
• Condition P(R) = 0 requires J0(λR) = 0
• Need solutions, α, of equation J0(α) = 0

– Call solutions to J0(α) = 0 the zeros of J0
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Zeros of Bessel Functions
Bessel Functions of the First Kind for Integer Orders
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Bessel Function Zeros, αmn

Ref: Abramowitz and Stegun, NBS AMS 55
Note increase by about π between successive 

zeros

17.9598216.4706314.93092m = 5
14.7959513.3236911.79153m = 4
11.6198410.173478.65373m = 3
8.417247.015595.52008m = 2
5.135623.831712.40483m = 1

J2(αm2) = 0J1(αm1) = 0J0(αm0) = 0
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Zeros of J0
Bessel Functions of the First Kind for Integer Orders
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Zeros of J1
Bessel Functions of the First Kind for Integer Orders
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Zeros of J4
Bessel Functions of the First Kind for Integer Orders
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Bessel Eigenfunctions, Jn(αmn)
• Different eigenfuctions are all Bessel 

functions of the same order, n
– Unlike sines and cosines we can have 

many different Bessel functions
– For both kinds of functions, the eigen-

functions are given by the zeros
– sin(nπ) = 0 or cos[(2n+1)π/2] = 0
– Jn(αmn) = 0 does not have fixed intervals 

like the sine and cosine
– For radial solution, J0(λR) = 0 gives λmR = 
αm0; define km0 = αm0/R, so λm = km0
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Sine nπx for Different n Values
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Bessel Function J0(αm0x)
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Bessel Function Expansion
• General 

eigenfunction 
expansions

• Bessel eigen-
functions: Jn(kmnx)
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Normalization Integral
• Integral of xJn(kmnx)dx depends on n 

and definition of kmn

• For n = 0 general result is

• For J0(kmnR) = 0 this simplifies to

• General result uses Struve H function
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Integrals to Compute am

• Integrals with Bessel functions may 
give complicated results
– Use symbolic int function of MATLAB

• Some simple cases are possible 
using equations on page 194 of 
Kreyszig
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• Useful only when desired power of x 
matches the Bessel function order
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Example: f(x) = 1
• Construct Bessel function expansion for f(x) = 

1 in region 0 ≤ x ≤ 1 using J0 in case where 
J0(km0R) = 0 for R = 1

• Here we have a “simple” integral with ν – 1 = 
0 so ν = 1
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Example Expansion
Bessel Function Expansion for f(x) = 1
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Back to Radial Diffusion Problem
• Have exponential ODEs in time and 

Bessel’s equation for radial function
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• Boundary conditions: C = 0 and λmR = αm0
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Initial Condition
• Radial equation for P(r) is a Sturm-

Liouville problem so we use  eigenfunc-
tion expansion for initial condition
– Region is 0 ≤ r ≤ R and p(r) = r is weight 

function

0
1

00 )()0,()( mm
m

Rmm RurJCruru αλλ =+== ∑
∞

=

( )

[ ]

( )

[ ]21

2
0

00

0

2
0

0
00

)(
2

)(

)(

)(

RJR

druurrJ

drrJr

druurrJ
C

m

R

Rm

R

m

R

Rm

m

λ

λ

λ

λ ∫

∫

∫ −
=

−
=

48

Example: u0(r) = U, a Constant
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Radial Diffusion
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