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Overview
• Review last class

– Separation of variables and eigenfunction 
expansions for initial condition

• Gradient boundary condition
– In-class exercise for one of the homework 

problems
• Convection boundary condition

– Use variable transforms to get 
homogenous boundary conditions required 
for a Sturm-Liouville problem
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Review Diffusion and Laplace
• Partial differential equations related to 

conservation principles of fluxes 
governed by potentials
– Heat transfer from temperature gradient
– Mass diffusion from concentration gradient
– Current from electrostatic potential
– Magnetic fluxes
– Ideal fluid flow from velocity potential
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Review Multidimensional PDEs

• General diffusion 
equation for three 
dimensions
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Review Diffusion Solutions
• Governs heat conduction and species 

diffusion for t ≥ 0 and 0 ≤ x ≤ xmax
– u(x,t) is temperature, species concentration
– Initial condition u(x,0) = u0(x)
– Boundaries u(0,t) = uL(t); u(xmax,t) = uR(t)
– Started with u(0,t) = u(xmax,t) = 0
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• Diffusivity, α, is 
material property 
(length)2/(time)
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Review Separation of Variables
• Assume u(x,t) = X(x)T(t)
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• Dividing by αX(x)T(t) gives f(t) = g(x) 
which must equal a constant
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Review General Solution
• Solve two ODEs
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• Can use this as starting point for any 
boundary or initial conditions
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Review Homogenous BCs
• Look at case where u(0,t) = u(xmax,t) = 0
• In this case, X(x) is the solution to a 

Sturm-Liouville problem
• X(x) = Bsin(λx) + Ccos(λx)
• X(0) = 0 = Bsin(0) + Ccos(0) = C = 0
• X(xmax) = 0 = Bsin(λxmax)
• Must have λxmax = nπ (n an integer)
• Complete set of orthogonal 

eigenfunctions: sin(nπx/xmax)
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Review Initial Condition
• General solution: sum of all eigenfunctions

• Eigenfunction 
expansion gives 
any initial condition
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Review Solution for u0(x) = U
t = 0.0001

t =
 0.

00
5

t =
 0.

00
8

t = 0.01 t = 0.02

t = 0.03
t = 0.04

t = 0.05

t = 0.08

t = 0.10

t = 0.125

t = 0.15

t = 0.175
t = 0.2

t = 0.30

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

x/L

u/
U

11

Review Nonzero Boundaries
• Sturm-Liouville eigenfunction expansion 

requires zero boundary conditions
• For nonzero boundaries, u(0,t) = uL and 

u(xmax,t) = uR split solution into two 
functions u(x,t) = v(x,t) + w(x)
– v satisfies diffusion equation with zero 

boundary conditions: ∂v/∂t = α∂2v/∂x2 with 
v(0,t) = v(xmax,t) = 0; v(x,0) = u(x,0) – w(x)

– w satisfies ODE d2w/dx2 = 0 with boundary 
conditions w(0) = uL and w(xmax) = uR

– u = v + w satisfies PDEs, BC and ICs
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Review Nonzero Boundaries II
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boundary solution v(x,0) gives
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v(x,0) = u0(x) – w(x)

w(x)v(x,t)
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Review u0(x) = U0 Example
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Other Boundary Conditions
• Can have boundary conditions on 

gradients
– Physical meaning is flux

• Zero gradient of temperature, mass fraction, 
etc. means is zero flux of heat, diffusion, etc.

– Sturm-Liouville problem requires zero 
gradient boundary condition

– Start with separation of variables solution
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Homework Problem for 2/9
• Text, p 561, prob 13: find u(x,t) for 0 ≤ x ≤ L
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Class Exercise
• Work problem on previous chart
• Start with separation of variables result

• Apply zero gradient boundary conditions 
to get eigenfunction solution

• Use eigenfunction expansion for initial 
conditions
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Convection Boundary Condition
• Look at gradient and mixed boundary 

conditions
• Show how making differential equation 

dimensionless can lead to Sturm-
Liouville problem in initial formulation

• Consider convective heat transfer to 
sides of slab in region –L ≤ x ≤ L
– Because of symmetry solve 0 ≤ x ≤ L with 

zero gradient (symmetry) condition at x = 0
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Problem Diagram
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Problem Definition

• Diffusion equation
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• Initial condition         T(x,0) = f0(x)

• Symmetry boundary condition
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Dimensionless Variables
• We can convert the boundary condition 

at x = L to a Sturm-Liouville problem by 
defining a new variable like θ =  T – T∞

• All other occurrences of T, which are in 
derivatives, will not change

• For convenience we typically define the 
following dimensionless variables 
(based on previous results)
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Substitute Dimensionless
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Dimensionless Problem
• Diffusion 

equation
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• Initial      T(x,0) = f0(x) 
condition

• Symmetry boundary 
condition
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General Solution
• Start with separation of variables 

solution in dimensionless coordinates
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Boundary at ξ = 1
• Substitute solution into dimension-

less convection boundary condition 
at ξ = 1
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Finding λn
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Getting Initial Conditions
• Solution as sum of all eigenfunctions
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Sturm-Liouville problem even though 
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Getting Initial Conditions II
• Usual formula for Cm but λm ≠ mπ

• Constant initial temperature, T0, gives Θ0 = 1
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Solution
• Substitute formula for Cm into previous 

solution
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• Need root-finding method to obtain 
eigenvalues, λm
– For typical accuracy, can use only first 

term in sum if τ = αt/L2 > 0.2
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Values for λn

25.506425.172425.13679
22.410822.036521.99578
19.327018.902418.85497
16.259415.771315.71436
13.214212.645312.57435
10.20039.52939.43544
7.22816.43736.29913
4.30583.42563.17312
1.42890.86030.31111

hL/k = 10hL/k = 1hL/k = .1n
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Solution for hL/k = 1
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Solution for hL/k = 10
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Diffusion Equation Summary
• Create Sturm-Lioville problem for non-

zero spatial boundary conditions
– Define u(x,t) = v(x,t) + w(x)
– Use u – uref in original equation

• Solve by separation of variables
– Product solution X(x)T(t)
– Time solution, T(t), will be exponential
– X(x) is sine and cosine for Cartesian

• Apply boundary conditions to determine 
eigenvalues and eigenfunctions
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Diffusion Equation Summary II
• Write solution as sum of all possible 

eigenfunctions with individual constants
• Use eigenfunction expansion to match 

initial conditions
– If a solution for u(x,t) = v(x,t) + w(x) is used 

the eigenfunction expansion must be for 
u0(x) – w(x)

• Solution is sum of all eigenfunctions 
with constants determined from 
matching initial conditions.
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Diffusion Equation Summary III
• Sine eigenfunctions start at n = 1
• Cosine eigenfunctions start at n = 0 and 

C0 equation has factor of 1/L not 2/L
• Can convert diffusion equation with 

source term into homogenous equation
– Homework problem 27 (K, p 561): Find 

w(x) such that u(x,t) = v(x,t) + w(x), where 
v(x) satisfies diffusion equation with v(0,t) = 
v(L,t) = 0 to solve
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