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Solution of Laplace’s Equation

Laplace’s equation describes the equilibrium distribution of energy, species and electromagnetic fields under certain assumptions.  It is a second-order, partial-differential equation with closed boundaries.  The simplest case to consider is a rectangular region with x and y coordinates such that 0 ( x ( L and 0 ( y ( H.  The dependent variable is a potential, u(x,y), which may be temperature, electromagnetic potential, velocity potential or a range of other physical variables.  We assume that the potential is known over the complete boundary.  In subsequent problems we will consider the case where the potential gradient, rather than the potential, is known over a portion of the boundary.  In two dimensions, Laplace’s equation with a simple set of boundary conditions may be written as follows
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Here, the boundary conditions give u = 0 at x = 0, x = L, and y = 0.  At y = H, the boundary condition is a known function of x.  Note that there may be a discontinuity at edges of the upper boundary (x = 0, y = H) and (x = L, y = H).

The solution of Laplace’s equation proceeds by a method known as the separation of variables.  In this method we postulate a solution that is the product of two functions, X(x) a function of x only and Y(y) a function of the y only.  With this assumption, our solution becomes.


u(x,t) = X(x)Y(y)
[2]

We do not know, in advance, if this solution will work.  However, we assume that it will and we substitute it for u in equation [1].  Since X(x) is a function of x only and Y(y) is a function of y only, we obtain the following result when we substitute equation [2] into equation [1].
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[3]

If we divide the final equation through by the product X(x)Y(y), and move the y derivative to the other side of the equal sign, we obtain the following result.
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The left hand side of equation [6] is a function of x only; the right hand side is a function of y only.  The only way that this can be correct is if both sides equal a constant.  This also shows that the separation of variables solution works.  In order to simply the solution, we choose the constant
 to be equal to2.  This gives us two ordinary differential equations to solve.
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Equation [5] shows that we have two separate differential equations, each of which has a known general solution.  These equations and their general solutions are shown below. 
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From the solutions in equations [6] and [7], we can write the general solution for u(x,t) = X(x)T(t) as follows.
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[8]

We now apply the boundary conditions shown with the original equation [1] to evaluate the constants A, B, C, and D.  If we substitute the boundary condition at x = 0 into equation [8], get the following result.
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Because sin(0) = 0 and cos(0) = 1, equation [9] will be satisfied for all y only if B = 0.  Thus, we set B = 0.  Next we apply the solution in equation [8] (with B = 0) to the boundary condition at y = 0
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[10]

Since sinh(0) = 0 and cosh(0) = 1, this boundary condition will be satisfied only if D = 0.  The third boundary condition that u = 0 occurs at x = L.  At this point we have the following result, using solution in [8] with B = 0 and D = 0 as found previously.
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Equation [11] can only be satisfied if the sine term is zero.  This will be true only if L is an integral times .  If n denotes an integer, we must have 
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Since any integral value of n gives a solution to the original differential equations, with the boundary conditions that u = 0 at both boundaries, the most general solution is one that is a sum of all possible solutions, each multiplied by a different constant.  In the general solution for one value of n, which we can now write as Asin(nx)Csinh(ny), with n = nx/L, we can write the product of two constants, AC, as the single constant, Cn., which may be different for each value of n.  The general solution which is a sum of all solutions with different values of n is written as follows
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The final boundary condition, the one at y = H, states that u(x,H) is a given function of x, uN(x).  Setting u(x,H) = uN(x) in equation [13] gives the following result.
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In reviewing the solution for u(x,y), we see that the differential equation for X(x) is a Sturm-Liouville problem.  This is a result of both the form of the differential equation for X(x) and the boundary conditions for X(x), implied by the boundary conditions that u(0,y) = 0 and u(L,y) = 0.  These boundary conditions can be satisfied only if X(0) = 0 and X(L) = 0, giving the homogenous boundary conditions required for a Sturm-Liouville problem.

Because we have a Sturm-Liouville problem for X(x), we know that the solutions sin(nx/L) form a complete orthogonal set over the region 0 ≤ x ≤ L.  We can use this fact in equation [14] to get a solution for Cm.  If we multiply both sides by sin(mx/L), where m is another integer, and integrate from a lower limit of zero to an upper limit of L, we get the following result.
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In the second row of equation [15] we can reverse the order of summation and integration because these operations commute.  We then recognize that the integrals in the summation all vanish unless m = n, leaving only the sine-squared integral to evaluate.  Solving for Cm and evaluating the last integral
 in equation [15] gives the following result.
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For any initial condition, then, we can perform the integral on the right hand side of equation [16] to compute the values of Cm and substitute the result into equation [13] to compute u(x,y).  For example, consider the simplest case where uN(x) = UN, a constant.  In this case we find Cm from the usual equation for the integral of sin(ax).
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Since cos(m) is 1 when m is even and –1 when m is odd, the factor of 1 – cos(m) is zero when m is even and 2 when m is odd.  This gives the final result for Cm shown below.
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Substituting this result into equation [13] gives the following solution to the diffusion equation when u(x,H) = uN(x) = UN, a constant, and all other boundary values of u are zero.
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[19]

If we substitute the equation for n into the summation terms we get the following result.
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[20]

If we compare this equation to equation [19] in the notes on the solution of the diffusion equation, we see that the sine terms are the same.  The exponential time term, 
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, in the diffusion equation, has been replaced by the hyperbolic sine terms in equation [20].  This similarity arises from the fact that we have the same ordinary differential equation, with the same zero boundary conditions, for the variable X(x) in each problem.  This is an important feature of separation of variable solutions.  The contribution to the solution from a term like 
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 will be the same in different partial differential equations where the separation of variables solution works and that the boundary conditions for the term are the same.

Equation [20] shows that the ratio u(x,y)/UN depends on the dimensionless parameters x/L, y/L, and H/L.  Thus we can compute universal plots of the solution for different values of H/L.  A contour plot of the solution u(x,y) where U = 1 and H/L = 1 is shown in Figure 1 below.

Figure 1.  MATLAB Plot of Laplace Equation Solution
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The expansion of the boundary condition that u(y,H) = uN(x) by eigenfunctions of a Sturm-Liouville solution required homogenous boundary conditions.  This requirement for of zero boundary conditions at all boundaries except the one at y = 0 appears to be a limitation on the approach used here.  However, we can generalize the solution done here to more general problems by using the principle of superposition.  In this approach we look to the solution of four problems like the one done above and use the results to obtain the solution to the following general problem.
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[21]

(The subscripts N, S, E, and W refer to the north, west, east and west sides of the rectangular region.)  To solve this general problem, we solve four separate problems like we just did for equation [1] for four separate potentials, u1(x,y), u2,(x,y), u3(x,y), and u4(x,y).  The desired result is the sum of these potentials.

u(x,y) = u1(x,y) + u2(x,y) + u3(x,y) + u4(x,y)
[22]

Each of the subscripted functions, ui(x,y) represents a solution of the differential equation in equation [21], but with different boundary conditions.  The different boundary conditions for the different dependent variables, ui(x,y), are shown below.
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[23]

The solution posed in equation [22] with the boundary conditions in equation [23] is a complete solution to the differential equation and boundary conditions in equation [20].  Since each function ui(x,y) satisfies the homogenous differential equation, the sum of these four functions also satisfies the differential equation.  Furthermore, equation [24] shows that the boundary conditions on the individual ui(x,y) solutions, give the following boundary conditions on u(x,y).
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[24]
Thus, the solution proposed in equation [22], with the boundary conditions in equation [23] satisfies the differential equation and the boundary conditions of the original problem in equation [21].
The solution for u1(x,y) is the one found above and is given by equation [13].
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[25]

The Cn coefficient in this equation is given by equation [16], which is copied below.
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[26]

The solution for u3(x,y) is similar to the one for u1(x,y) except that the roles of the x and y coordinates, and the corresponding maximum lengths, H and L, are reversed.  Exchanging x and y and reversing H and L in equations [25] and [26] give us the solution for u3(x,y).
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[27]

The Cn coefficient in this equation is given by equation [16], with an interchange of x and y, an interchange of L and H, and use of uW(y) as the boundary condition.  The resulting equation is shown below.



[image: image29.wmf]÷

ø

ö

ç

è

æ

p

÷

ø

ö

ç

è

æ

p

=

ò

H

L

n

H

dy

H

y

n

y

u

C

H

W

n

sinh

sin

)

(

2

0

)

3

(


[28]

The x dependence of the solution for u2(x,y) will be the same as in the solution for u1(x,y).  This holds because the solution obtained by separation of variables is a product of two separate solutions X(x) and Y(y) and the x boundary conditions for u2(x,y) are the same as those for u1(x,y).  If we make a coordinate transformation to a new coordinate, y’ = H – y, the boundary conditions in the y’ coordinate system for u2 will have the same form as those for u1 in the y coordinate system.  Furthermore, the differential equation has only the second derivative in y.  We can find the second derivative for the new y’ coordinate as follows.
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[29]
Thus Laplace’s equation has the same form, 
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, for both the y and the y’ coordinate system.  This means that the solution for u2 in the y’ coordinate system will be the same as u1 in the y coordinate system.  Thus we can take the solution for u1 in equations [25] and [26] and replace y in that solution by y’ = H – y to get the correct solution for u2.  (We also replace the old boundary condition for uN by the one for uS.)
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Except for the substitution of the “south” boundary condition, uS(x) that applies at y = 0, the equation for C(2) is the same as that for C(1).  We can apply the same coordinate transformation in the x direction and use the same logic to obtain the solution for u4 from the solution for u3, by replacing x by L – x in that solution.  
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These results show how we can obtain a solution with general boundary conditions, while retaining the ability to develop eigenfunction expansions which rely upon the existence of zero boundary conditions.

Solutions of Laplace’s equation based on complex variables
Background on complex variables – A complex variable is a quantity that has a real and an imaginary part.  Such numbers are usually written as z = x + iy where i = 
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and ( = tan-1(y/x).  The relationship between these two representations of a complex number is based on Euler’s formula


ei( = cos(() + i sin(()
[40]
This gives the relationships that x = r cos(() and y = r sin(().

The rules for operations with complex numbers are shown below.  In these rules z1, z2, and z3 are complex numbers defined such that zk = xk + i yk, = rke-(k and c is a real number.


z3 = z1 ( z2  =>  x3 = x1  ( x2  and  y3 = y1  ( y2
[41]


z2 = cz1  =>  x2 = cx1  and y2 = cy1
[42]
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The complex conjugate of a complex number z, which is denoted as 
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 or z*, is found by setting i to –i.  Thus if z = x + iy = rei(, 
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=x - iy = re-i(.  From the definitions of r and the complex conjugate, we see that r = 
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We can have some complex variables, which are functions of other complex variables.  Such a functional relationship is usually written in terms of the real part, u(x,y) and the imaginary part v(x,y) as follows:


f(z) = u(x,y) + iv(x,y)
[47]

For example, if f(z) = z2 = (x + iy)2 = x2 +2ixy + (iy)2 = x2 – y2 + 2ixy, we would have u(x,y) = x2 – y2 and v(x,y) = 2xy.  When we consider the derivative of a complex function, using the usual definition of a derivative from the first course in calculus, we have the following result.
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[48]

Since z represents a two-dimensional space (containing both the x and y directions) we may have different definitions of this derivative depending on the directions in which we approach the limit.  An important result of complex analysis, known as the Cauchy-Riemann conditions states that f(z) is differentiable at z if the following conditions hold.
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In the previous example of f(z) = z2 where u(x,y) = x2 – y2 and v(x,y) = 2xy. We have the follow results when we apply the Cauchy-Riemann conditions
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Thus the Cauchy-Riemann conditions are satisfied and we can write the derivative df/dz as follows.
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Note that this result is simply the result we would have obtained by taking the derivative of f(z) = z2 directly as df/dz = 2z = 2(x +iy).  Functions that satisfy the Cauchy-Riemann conditions and are continuous are called analytic functions.
The Cauchy-Riemann conditions provide the link between the complex analysis and the solutions to Laplace’s equation.  If the take 
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Since
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In a similar way, we could take 
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of the first Cauchy-Riemann condition and 
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of the second condition, and use the same manipulations of equations [52] and [53] to show that the imaginary part of the analytical function also satisfies Laplace’s equation.
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[54]

Although we have approached this result by considering the requirements for a complex variable to have a derivative, we have obtained an important result for solutions of Laplace’s equations.  If we have one solution, u(x,y) to Laplace’s equation, we will also have a companion solution, v(x,y) related to the original solution by the Cauchy-Riemann conditions of equation [49], repeated below.
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[49]

We can show that these solutions are mutually perpendicular as follows.  The vector gradients of the two components, u and v can be expressed in terms of the unit vectors in the x and y directions (i and j) as follows.
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We find the angle between these two gradients by taking their dot product.  Recalling that i•i = j•j = 1 and j•i = i•j = 0, we get the following result for the dot product of these two vectors.
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[56]

We can use the Cauchy-Riemann conditions to show that this vector dot product is zero.  Substituting those conditions from equation [49] gives
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Solutions of Laplace’s equations that have continuous, second-order partial derivatives are known as harmonic functions.  The physical relationships that lead to Laplace’s equation commonly use the concept of a potential.  For example, in a two-dimensional, inviscid flow, we can define a velocity potential, (, such that the two velocity components, vx and vy are given by the equations
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[55]

For an incompressible fluid flow, the continuity (conservation of mass) equation requires the following relationship hold among the velocity components in a two-dimensional flow.
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Substituting equations [55] into equation [56] shows that the velocity potential satisfies Laplace’s equation.
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Thus we should be able to define a second variable, (, which also satisfies Laplace’s equation.


[image: image64.wmf]0

2

2

2

2

=

¶

Y

¶

+

¶

Y

¶

y

x


[58]

Furthermore, lines of constant ( will be perpendicular to lines of constant (.  In addition, the solutions for ( and ( will satisfy the Cauchy-Riemann conditions:
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From these conditions and the definitions of the velocity potential, (, in equation [55], we have the following definitions of the velocity components in terms gradients of the (.
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In fluid mechanics, ( is called the stream function.
Important results from complex analysis
The solutions to Laplace’s equation can be used to construct a complex variable, F(z) = u(x,y) + iv(x,y).  The Cauchy theorem for integration of complex variables can be applied to F(z) in a solution region of arbitrary (two-dimensional) shape to obtain important results for Laplace’s equation in two dimensions.  (See section 16.6 of Kreyszig for proofs of these statements.)

1.
The solutions to Laplace’s equation have a minimum and a maximum on the boundary.

2.
If the boundary has a specified value (Dirichlet problem) that is the same at all points of the boundary, the solution for the entire region is that boundary value.

3.
The solution to a problem with Dirichlet boundary conditions is unique

The theory of complex integration is a significant topic in its own right and we do not have time to cover it here.  However these results, which are based on the treatment of solutions to Laplace’s equation as complex variables, are useful ones for making a reality check on our solutions.  If we find a point in the region where the solution has a value that is greater than the maximum boundary value or less than the minimum boundary value we can be sure that we have an error.

In contrast to the uniqueness of the solution to the Dirichlet problem, the solution to the problem where we specify a gradient at all points of the boundary (the Neumann problem) is not unique.  This is easy to see.  If we have a solution, u1, that satisfies Laplace’s equation and satisfies the gradient boundary conditions, any other solution u2 = u1 + C, where C is a constant, will also satisfy the differential equation and the gradient boundary conditions.

In addition to the results from complex analysis for Laplace’s equation, we can also obtain results from vector calculus regarding solutions to Laplace’s equation.  In particular if there is a flux, f, which is found as the gradient of the potential u, the solution of Laplace’s equation, we can show that the net flow of the flux f across the boundaries of the region in which Laplace’s equation applies is zero. This is true for any coordinate system.

Radial geometry
In a cylindrical coordinate system, 0 ≤ r ≤ R, 0 ≤ z ≤ H, Laplace’s equation has the following form.
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[61]
Regardless of the boundary conditions, the solution proceeds by separation of variables.    We postulate a solution that is the product of two functions, Z(z) a function of the z coordinate only and P(r) a function of the radial coordinate, r, only.  With this assumption, our solution becomes.


u(r,t) = P(r)Z(z)
[62]

We substitute equation [62] for u in equation [61].  Since P(r) is a function of r only and Z(z) is a function of z only, we obtain the following result.
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[63]

Substituting these results into equation [62] and dividing the result through by the product P(r)Z(z), gives following.
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[64]

Equation [64] says that a function of r only equals a function of z only.  This can only be true if each term equals a constant.  As before, we want to choose the constant to give us a Sturm-Liouville problem in the direction that has homogenous boundary conditions.  We set the term with homogenous boundary conditions to be equal to2.  Then the other term will be equal to 2.  For a solid cylinder, no boundary condition is required at r = 0.  It is sufficient to require that u remain finite at r = 0 to get a Sturm-Liouville problem.  If we have a zero boundary condition in the radial direction, we can get a solution to the radial problem in terms of Bessel functions and the solutions in the z direction will be in terms of hyperbolic sines and cosines.  If we have homogenous boundary conditions in the z directions, we can obtain eigenfunction solutions in terms of sines and cosines in this direction and the radial solution will be in terms of modified Bessel functions.

As usual in solutions of Laplace’s equation, we can use superposition if we do not have a sufficient number of homogenous boundary conditions.

We start with a simple set of boundary conditions for a solid cylinder: u(R,z) = u(0,R) = 0 and u(r,H) = uN(H); this gives a Sturm Liouville problem in the radial direction so we will want to set the radial term equal to2; this requires us to set the z term to 2 to satisfy equation [64].   Doing this gives us two ordinary differential equations to solve.
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Here J0 and Y0, are the Bessel functions of the first and second kind with zero order.
  Thus, our general solution for u(x,t) = X(x)Z(z) becomes



[image: image72.wmf][

]

[

]

)

(

)

(

cosh

sinh

)

(

)

(

)

,

(

0

0

r

DY

r

CJ

z

B

z

A

r

P

z

Z

z

r

u

l

+

l

l

+

l

=

=


[67]

As r → 0, Y0(r) → -∞; to keep the solution finite, we require that C2 = 0.  To satisfy the condition that u(R,z) = 0, we must satisfy the following equation.
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[68]

Equation [68] defines a transcendental equation similar to that in equation [11] which required sin(λxmax) = 0.  That equation has a simple solution since we know that the sin(nπ) = 0 when n is an integer.  We do not have such a simple result for the equation that J0(λR) = 0.  However, the points at which J0 = 0 can be determined and are available in tables.  We use the symbol αmn to indicate the mth point where Jn is zero.  That is we define αmn by the following equation. 
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[69]

For example, the first five points at which J0 is zero are for α10 = 2.40483, α20 = 5.52008, α30 = 8.65373, α40 = 11.79153, and α50 = 14.93092.  There are an infinite number of such values such that J0(λmr), with λmR = αm0 provides a complete set of orthogonal eigenfunctions that can be used to represent any other function over 0 ≤ r ≤ R.  These mn values are called the zeros of Jn.
We can apply the boundary condition that u(r,0) = 0 to equation [67] (with D set equal to zero to eliminate the Y0 term) to obtain.
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This gives B = 0.  The general solution to the problem is the sum of all eigenvalue solutions, each multiplied by a different constant.
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[71]

We still have to satisfy the boundary condition that u(r,H) = uN(r).  We can do this by using an eigenfunction expansion.  Setting z = H in equation [71] gives the following equation for the boundary condition at y = H.
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[72]

The values of Cm are found from the general equation for orthogonal eigenfunction expansions which includes a weighting function.  Here the weighting function p(r) is equal to r.  For any initial condition, u0(r), we find the values of Cm from the following equation.  (In the second equation below, the integral in the denominator has been evaluated using integral tables and the fact that J0(mR) = 0.)
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[73]

If we consider the simple case where uN(r) is a constant equal to U. we have the following result for Cm.
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[74]

With this result for Cm our solution for u(r,t) shown in equation [71] with the constant boundary condition uN(r), is written as shown below, using the result from equation [71] that m = m0/R.


[image: image80.wmf]å

¥

=

÷

ø

ö

ç

è

æ

a

÷

ø

ö

ç

è

æ

a

÷

ø

ö

ç

è

æ

a

a

a

=

1

0

0

0

0

0

1

0

sinh

sinh

)

(

2

)

,

(

m

m

m

m

m

m

R

z

R

r

J

R

H

J

U

z

r

u


[75]

Dividing this equation by U shows the important variables are u(r,t)/U, r/R, z/R, and H/R.  The solution to this equation for u(r,z)/U with H/R = 1 is shown below.
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Solution with a constant boundary condition at r = R – Different boundary conditions give rise to different solutions.  If we change the boundary condition at r = R to be a constant, uR instead of zero and leave all other boundary conditions the same
 we can solve the problem by introducing a change of variable v(r,z) = u(r,z) – uR.  The solution for v(r,t) proceeds exactly as above to give v(r,z) = mCmsinh(m0z/R)J0(m0r/R), but the equation for Cm is different in this case.
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The solution for u(r,z) in equation [71] is replaced by the solution shown below.
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[77]

Applying the same integration that was used to obtain equation [74] gives the final solution for uN(r) = U, a constant, as
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[78]

Dividing this equation by U – uR shows the important variables are (u(r,t) – uR)/(U – uR), r/R, z/R, and H/R.  The result would have the same left-hand side as equation [75]; the right-hand side would change from u(r,z)/U in equation [75] to [u(r,z) – U] / [U – uR] in the dimensionless form of equation [78].
Boundary conditions on the outer radius – The problem shown in equation [79], below, has homogenous boundary conditions in the z direction.  We would use the same separation of variables that led to equation [64] in solving this problem.  However, we want to select the separation constant in equation [64] so that the equation for the Z(z) term equals –2; this means that the constant for the P(r) term equals 2.  This will give the Strum-Liouville problem in the z direction where we have the homogenous boundary conditions.  Doing this leads to equations [80] and [81].
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[81]

The functions I0 and K0 are known as the modified Bessel functions of the first and second kind, respectively.
  Since K0 approaches –∞ as r approaches zero we must set D = 0.  Satisfying the boundary conditions that u(r,0) = u(r,H) = 0 leads to the same result that we found in the analysis of a rectangular region.  We must have B = 0 and  = n/H, where n is a positive, nonzero integer.  These boundary conditions lead to a solution for u that is a sum of all the eigenfunction solutions.
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[82]

The usual eigenfunction expansion gives the boundary condition that u(R,z) = uR(z).  Solving this eigenfunction expansion for Cm gives.
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[83]

The solutions in equations [71] and [82] (along with the corresponding equations for Cm in equations [73] and [83]) can be used along with the principle of superposition to obtain solutions to Laplace’s equation in a solid cylinder for more complex boundary conditions.
Hollow cylinder with boundary condition at outer radius – If we replace the problem in equation [79] that we just solved for a solid cylinder with a similar problem for the hollow cylinder, we have to include a boundary condition at the inner radius.  This gives the problem shown below.
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[84]

The solution to this equation proceeds in exactly the same way as the solution to the equation [79] problem.  However, we can not eliminate the K0 term in this case.  With the eigenfunction solutions in the z direction, a typical two dimensional solution could be written as follows.
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[85]

Applying the inner-radius boundary condition that u(Ri,z) = 0 to equation [85] gives the following relationship between Cm and Dm.
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[86]

With this definition we can write our radial solution from equation [85], for one eigenfunction, Pm, as follows.
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[87]

Substituting this result into equation [85] and summing over all values of m gives the general solution for u(r,z).


[image: image94.wmf]H

m

r

P

z

C

z

r

u

m

m

m

m

m

p

=

l

l

=

å

¥

=

1

)

(

)

sin(

)

,

(


[88]

We can fit the boundary condition that u(R0,z) = uo(z) by an eigenfunction expansion of this boundary condition.  In the same way that equation [83] was derived, we can write
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[89]

Using the definition of the radial solution from equation [87] gives the solution to the problem in equation [84] as follows.
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[90]

As an exercise you can find the solution to a modification of the problem in equation [84] where the radial boundary conditions are modified to have u(Ro,z) = 0 and u(Ri,z) = ui(z).
Hollow cylinder with nonzero boundary condition on top – In the previous problem of a hollow cylinder we had an eigenfunction expansion in the z direction.  The following problem will use an eigenfunction expansion in the radial direction.
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[91]

The solution to this problem proceeds in the same way as the solution of the initial radial geometry problem that lead to equation [67] copied below.
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[67]

Although the boundary condition that u(r,0) = 0 gives B = 0, we can no longer drop the Y0 term because our present solution domain does not include r = 0.  Thus the boundary conditions that u(Ri,z) = u(Ro,z) = 0 require that the radial solution, P(r) vanish at the inner and outer radius.  This gives us the following pair of equations.
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[92]

This is a pair of homogenous algebraic equations that has the matrix equation shown below.
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[93]

This pair of equations will have a trivial solution C = D = 0 unless the determinant of the coefficients vanishes.
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[94]

Equation [94] is a transcendental equation that can be solved for the eigenvalues for this problem.  If we define  = Ro, we can rewrite equation [94] as follows.
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[95]

Thus, the eigenvalues in this problem depend on the ratio of the inner radius to the outer radius.  A plot of equation [95] for three different radius ratios is shown in Figure 2.
Figure 2.  Plot of Equation [95] as a Function of  =Ro


[image: image103]
Because the determinant in the equation for C and D is zero, there are an infinite number of solutions for these variables, but all solutions have the same ratio of C to D.  We can find this ratio from the second row of the matrix equation [94].
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[96]

With this equation, we can write our radial solution in equation [67] as follows.
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[97]

The two new terms, E and P0(r) in this equation are defined in equation [98].
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[98]

We can replace the radial solution in equation [67] with EP0(r) and set B = 0 in that equation to satisfy the boundary condition that u(r,0) = 0 to obtain.



[image: image107.wmf](

)

(

)

r

EP

z

A

z

r

u

l

l

=

0

sinh

)

,

(


[99]

As usual, the general solution for u(r,z) is the sum of all the eigenfunction solutions as shown in equation [99].  In the general solution we can combine the constant product AE into a single constant Cm, which will be different for each eigenfunction.
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[100]

The boundary condition that u(r,H) = uN(r) can be found from an eigenfunction expansion.  The normalization integral
 in this expansion is given below.
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[101]

Using this result, the solution for Cm is
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[102]

The case of a constant boundary potential at the top of the cylinder, u(r,H) = U, gives the following integral.7
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[103]

Substituting this result into equation [102] gives.
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[104]

Substituting this expression for Cm into equation [100] gives the following solution to the problem in equation [91], where u(r,H) = uN(r) = U, a constant; the values of m = m/Ro are found from equation [95].
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[105]
Using the roots of the eigenvalue equation, m = mR, allows us to rewrite this equation as follows.
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[105b]
Using the definition of P0 from equation [98], with  replaced by /R, gives the full solution as follows.
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[105c]
This equation shows the solution as a relation between the dimensionless potential ratio, u(r,z)/U, as a function of dimensionless spatial coordinates z/Ro and r/Ro.  That solution also depends on two dimensionless geometric property ratios, H/Ro, and Ri/Ro.
Gradient boundary conditions

This section presents an overview of handling gradient boundary conditions to guide you in their use.  You should be able to supply the details of the results provided here based on previous material in these notes and detailed examples of problems with gradient boundary conditions in the notes on solutions of the diffusion equation.

Consider the simple modification to the problem in equation [1] where the boundary conditions that u(0,y) = u(L,y) = 0 is replaced by the condition that the gradient of u is zero at both boundaries.
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We can still apply the separation of variables approach that led to equation [8], however the zero gradient boundary conditions give the eigenfunctions as cosines so that the solution to equation [106] has the following form in place of the solution in equation [13].
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In this solution, unlike the solution with sine eigenfunctions, the n = 0 eigenvalue corresponds to a nonzero solution, cos(0) = 1.  We have separated out the n = 0 eigenfunction in this solution, because it has a different form.  This different form arises from the basic separation of variables solution in equation [5].  When we have n = 0, the separation constant  = 0 and the ordinary differential equations that result from the separation of variables have the following form in place of equation [5].
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The solutions in this case are 



[image: image119.wmf]D

Cy

y

Y

B

Ax

x

X

+

=

+

=

)

(

)

(

0

0


[109]

The condition that (u/(x = 0 at x = 0 and x = L requires dX0(x)/dx = 0.  This is satisfied if A = 0.  The condition that u = 0 at y = 0 requires Y0(0) = 0 which gives D = 0.  Thus the solution for the n = 0 eigenvalue is
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With this solution for u0, the general solution for u(x,y) in equation [107] becomes
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[111]

We have the usual eigenfunction expansion for finding the initial conditions, but in this case we have a separate normalization integral for the n = 0 eigenfunction, cos(0) = 1.  Thus our general equation for the constants Cn is
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[112]

This difference in the prefactors 1/L in the n = 0 case and 2/L for the n ≥ 1 coefficients is the same as the difference for the cosine terms in Fourier series.

If the boundary conditions in problem [106] are changed to have u(0,y) = 0 instead of having a gradient boundary at x = 0, while retaining the gradient boundary condition at x = L, the solution becomes
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Alternatively, if the boundary conditions in problem [106] are changed to have u(L,y) = 0 instead of having a gradient boundary at x = L, while retaining the gradient boundary condition at x = 0, the solution becomes
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Problems with gradients in the y-direction will have similar results to those shown above with the sine or cosine terms in the y direction and the sinh term in the x direction.

Gradient problems in cylindrical coordinates.  Consider the following problem, which is the same as the problem first solved for equation [61], except that the condition that u(R,z) = 0 is replaced by a zero gradient condition at r = R.
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[115]
Solution by separation of variables gives the same result shown in equation [67].  The Y0 term in the radial solution is dropped out to allow the solution to remain finite as r approaches zero.  This leaves the radial solution as P(r) = J0(r).  The gradient boundary condition at r = R requires the radial solution derivative, dP(r)/dr = 0 at r = R.  This radial boundary condition requires
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In this problem, the eigenvalues, m = m1/R, where m1 are the zeros of the Bessel function J1.  Except for the difference in the definition of the eigenfunction, the solution to the problem is the same as the solution given for the problem where u(R,z) = 0 shown in equation [71].
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The equation for Cm with these eigenvalues is shown below.
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The only difference between this equation and the Cm equation in [73] is the appearance of J0 instead of J1 in the denominator of the second term.  This comes about because the normalization integral has the following result.
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In the problem solved here the eigenvalues were given by the equation J1(mR) = 0; in the Cm equation in [73], the eigenvalues were given by the equation J0(mR) = 0.

Problems of more that one nonzero gradient boundary can be handled by superposition.  In such cases it is necessary to use a combination of solutions where one solution has a zero gradient boundary and the other solution has the desired value for the gradient.
� EMBED Equation.3  ���











� The choice of –2 for the constant as opposed to just plain  comes from experience.  Choosing the constant to have this form now gives a more convenient result later.  If we chose the constant to be simply , we would obtain the same result, but the expression of the constant would be awkward.  In solutions to Laplace’s equation in rectangular geometries we will select the constant as –2 to give us an ordinary differential equation whose solutions results in sines and cosines in the direction for which we have a Sturm-Liouville problem (with homogenous boundary conditions).


� As usual, you can confirm that this solution satisfies the differential equation by substituting the solution into the differential equation.


� Using a standard integral table, and the fact that the sine of zero and the sine of an integral multiple of  is zero, we find the following result:


� EMBED Equation.3  ���


� Bessel functions, like sines and cosines, are solutions to differential equations.  Although Bessel functions occur less frequently than sines and cosines, they are functions that can be found in tables or in computer function calculations.  The general form of Bessel’s equation used for obtaining series solutions is � EMBED Equation.3  ���.  This equation can be transformed into � EMBED Equation.3  ���whose solution is AJ(kz) + BY(kz).  We see that this second equation has the same form as � EMBED Equation.3  ���, provided that we set  = 0.  This gives the result above that the solutions are J0 and Y0.  The factor of r in the λ2rP(r) term is a weighting factor that must be included in the definition for the inner product of solutions to the radial portion of the diffusion equation.


� With this change, the full set of boundary conditions in this case is u(R,z) = uR, u(r,0) = 0, u(r,H) = uN(r), and u remains finite at r = 0.


� These modified Bessel functions may be regarded as functions to be found in tables or from software.  They are the solution to a modified Bessel equation in which the final term has a negative instead of a positive sign.  From this equation one can show that I(z) = i-J(iz).  This definition means that I is real valued if z is real valued.


� Carslaw and Jaeger, Conduction of Heat in Solids, Oxford University Press, 1958.


� The derivative of J0 is an application of the general equation for Bessel function derivatives combined with the result that J-m(x) = (-1)mJm(x):


� EMBED Equation.3  ���
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