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Vectors and Matrices 

Introduction 

These notes provide an introduction to the use of vectors and matrices in engineering analysis.  In addition, 
they provide a discussion of how the simple concept of a vector in mechanics leads to the concept of vector 
spaces for engineering analysis. 

Matrix notation is used to simplify the representation of linear algebraic equations.  In addition, the matrix 
representation of systems of equations provides important properties regarding the system of equations.  
The discussion here presents many results without proof.  You can refer to a general advanced 
engineering math text, like the one by Kreyszig or a text on linear algebra for such proofs. 

Parts of these notes have been prepared for use in a variety of courses to provide background information 
on the use of matrices in engineering problems.  Consequently, some of the material may not be used in 
this course and different sections from these notes may be assigned at different times in the course. 

Vectors, Linear Independence and Basis Sets 

A vector is a common concept in engineering mechanics that most students first saw in their high-school 
physics courses.  Vectors are usually described in introductory courses as a quantity that has a magnitude 
and a direction.  Force and velocity are common examples of vectors used in a basic mechanics course. 

In addition to representing a vector in terms of its 
magnitude and direction, we can also represent a 
vector in terms of its components.  This is illustrated in 
the figure at the right.  Here we have a force vector, f, 

with a magnitude, |f|, and a direction, , relative to the x 
axis.  (Note that the notation of the vector, f, and its 
magnitude, |f|, are different.  The vector is the full 
specification of a magnitude and direction; e.g., 2000 
pounds force at an angle of 30o from the x axis.  The 
magnitude |f| is 2000 pounds in this example.)  The 
components of the vector in the x and y directions are 
called fx and fy, respectively.  These are not vectors, but 
are scalars that are multiplied by the unit vectors in the x and y direction to give the vector forces in the 
coordinate directions.  The unit vectors in the x and y direction are usually given the symbols i and j, 
respectively.  In this case we would write the vector in terms of its components as f = fxi + fyj.  The vector 
components are called scalars to distinguish them from vectors.  (Formally a scalar is defined as a quantity 
which is invariant under a coordinate transformation.) 

The concept of writing a vector in terms of its components is an important one in engineering analysis.  
Instead of writing f = fxi + fyj, we can write f = [fx  fy], with the understanding that the first number is the x 
component of the vector and the second number is the y component of the vector.  Using this notation we 
can write the unit vectors in the x and y directions as i = [1  0] and j = [0  1].  This notation for unit vectors 
provides a link between representing a vector as a row or column matrix, as we will do below, and the 
conventional vector notation: f = fxi + fyj and f = [fx  fy].  If we substitute i = [1  0] and j = [0  1] in the equation 
f = fxi + fyj, we get the result that f = fx[1, 0] + fy[0, 1] = [fx  fy].  In place of the notation fx and fy for the x and y 
components, we can use numerical subscripts for the coordinate directions and components.  In this 
scheme we would call the x and y coordinate directions the x1 and x2 directions and the vector components 
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would be labeled as f1 and f2.  The numerical notation allows a generalization to systems with an arbitrary 
number of dimensions. 

From the diagram of the vector, f, and its components, we see that the magnitude of the vector, |f|, is given 

by Pythagoras’s theorem: 
2

2
2

1
22 ffff yx f .  We know that we can extend the two-

dimensional vector shown on the previous page to three dimensions.  In this case our vectors have three 
components, one in each coordinate direction.  We can write the unit vectors in the three coordinate 
directions as i = [1  0  0], j = [0  1  0], and k = [0  0  1].  We would then write our three-dimensional vector, 
using numerical subscripts in place of x, y, and z subscripts, as f = f1i + f2j + f3k or f = [f1   f2  f3].  If we 
substitute i = [1  0  0], j = [0  1  0], and k = [0, 0, 1] in the equation f = f1i + f2j + f3k, we get the result that f = 
f1[1  0  0] + f2[0  1  0] + f3[0  0  1] = [f1, f2, f3]. 

The dot product of two vectors, a and b is written as a•b.  The dot product is a scalar and its value is 

|a||b|cos(), where  is the angle between the two vectors.  The magnitude of the unit vectors, i, j, and k, is 
one.  Each unit vector is parallel to itself so if we evaluate i•i, j•j, or k•k, we get |1||1|cos(0) = 1 for the dot 
product.  Any two different unit vectors are perpendicular to each other so the angle between them is 90o; 
thus the dot product of any two different unit vectors is |1||1| cos(90o) = 0.  The dot product of two vectors, 
expressed in terms of their components can be written as follows.  a•b = (a1i + a2j +a3k)•(b1i + b2j +b3k) = 
a1b1i•i + a1b2i•j + a1b3i•k + a2b1j•i + a2b2j•j + a2b3j•k + a3b1k•i + a3b2k•j + a3b3k•k = a1b1 + a2b2 + a3b3.  This 
result – the dot product of two vectors is the sum of the products of the individual components – is the basis 
for the generalization of the dot product into the inner product as discussed below. 

The dot product represents the magnitude of the first component along the direction of the second 
component times the magnitude of the second component.  The most familiar application of the dot product 
is engineering mechanics is in the definition of work as dW = f•dx; this gives the product of the magnitude 
of the force component in the direction of the displacement times the magnitude of the displacement. 

The fact that the unit vectors are perpendicular to each other gives a particularly simple relationship for the 
dot product.  This is an important tool in later application of vectors.  We use the word orthogonal to define 
a set of vectors that are mutually perpendicular.  In addition, when we have a set of mutually perpendicular 
vectors, each of which has a magnitude of one, we call this set of vectors an orthonormal set. 

We can represent any three-dimensional vector in terms of the three unit vectors, i, j, and k.  Because of 
this we say that these three vectors are a basis set for representing any three real, three-dimensional 
vector.  In fact, we could use any three vectors in place of i, j, and k, to represent any three-dimensional 
vector so long as the set of three vectors is linearly independent. 

For example, we could use a new set, m = i + j + k, n = i + j – k and o = i + k.  This would be an 
inconvenient set to use, since the unit vectors are not orthogonal and the dot products would be hard to 
compute.  Nevertheless, we could represent any vector, a = a1m + a2n + a3o, instead of the equivalent 
vector (a1 + a2 + a3)i + (a1 + a2)j.+ (a1 - a2 + a3)k.  We can convert the vector B = b1i + b2j + b3k 
components into the m,n,o basis by solving the following set of equations: 

 

3321

221

1321

baaa

baa

baaa







 [1] 

You can verify that the general solution to this set of equations is the one shown below. 



Vectors and matrices L. S. Caretto, August 18, 2017 Page 3 

 

213

312

3211

5.05.0

5.05.0

bba

bba

bbba







 [2] 

The two sets of equations above allow us to convert between the two different representations.  However, 
consider the following set of vectors, m = i + j + k, n = i + j – k and o = i + j, where we have made only a 
slight change in o from its previous definition as i + k.  In this case we see that vector, A = a1m + a2n + a3o, 
is equal to (a1 + a2 + a3)i + (a1 + a2 + a3)j.+ (a1 - a2)k.  When can try to convert the vector B = b1i + b2j + b3k 
components into the m,n,o basis by solving the following set of equations: 
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 [3] 

However, we find that subtracting the first two equations gives the result that 0 = b1 – b2, instead of an 
equation that we can solve for a1 or a2.  Thus, we conclude that the set of equations has no solution and we 
cannot use the proposed set of vectors to represent any three-dimensional vector.  The reason for this is 
that the new proposed set does not have vectors that are linearly independent.  Instead, the three 
proposed vectors satisfy the following linear equation: m + n + 2o = 0.  That is, we can solve for one of 
these vectors in terms of the other two.  We will later see that any set of vectors that we want to use to 
represent any other vector in the space (such a set of vectors is called a basis set) must be linearly 
independent. 

We will extend these basic concepts of vectors, particularly the resolution of a vector into a set of 
components, the use of a linearly independent basis set to represent any vector in the particular analysis of 
interest, and the dot product of two vectors.  These ideas will be later used to define a generalized vector 
space that applies to sets of numbers or functions whose behavior is similar to the familiar physical vectors 
from engineering mechanics.  First, we will develop the general notation of matrices, which includes a 
representation of vectors in terms of their components. 

Matrices and their Operations 

A matrix (plural matrices) is represented as a two-dimensional array of elements, aij, where i is the row 
index and j is the column index.  The entire matrix is represented by the single symbol A.  In general, we 
speak of a matrix as having n rows and m columns.  Such a matrix is called an (n by m) or (n x m) matrix.  
Equation [4] shows the representation of a typical (n x m) matrix. 

In general, the number of rows may be different from the number of columns.  Sometimes the matrix is 
written as A(n x m) to show its size.  (Size is defined as the number of rows and the number of columns.)  A 
matrix that has the number of rows equal to the number of columns is called a square matrix. 

Matrices are used to represent physical quantities that have more than one number.  These are usually 
used for engineering systems such as structures or networks in which we represent a collection of 
numbers, such as the individual stiffness of the members of a structure, as a single symbol known as a 
stiffness matrix.  Networks of pipes, circuits, traffic streets, and the like may be represented by a 
connectivity matrix which indicates which pair of nodes in the matrix are directly joined to each other.  The 
use of matrix notation and formulae for matrices leads to important analytical results.  We will see that a 
matrix property knows as its eigenvalues represents the fundamental vibration frequencies in a mechanical 
system.  The structure of an (n x m) matrix is shown in the equation below. 
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Two matrices can be added or subtracted if both matrices have the same size.  If we define a matrix, C, as 
the sum (or difference) of two matrices, A and B, we can write this sum (or difference) in terms of the 
matrices as follows. 

 )( sizesamethehaveandifonlypossible BABAC   [5] 

The components of the C matrix are simply the sum (or difference) of the components of the two matrices 
being added (or subtracted).  Thus for the matrix sum (or difference) shown in equation [5], the 
components of C are given by the following equation. 

 ),1;,1( mjnibac ijijij  BAC  [6] 

The product of a matrix, A, with a single number, x, yields a second matrix whose size is the same as that 
of matrix A.  Each component of the new matrix is the component of the original matrix, aij, multiplied by the 
number x.  The number x in this case is usually called a scalar to distinguish it from a matrix or a matrix 
component. 

 ),1;,1( mjnixabifx ijij  AB  [7] 

We define two special matrices, the null matrix, 0, and the identity matrix, I.  The null matrix is an arbitrary 
shape (may or may not be square) matrix in which all the elements are zero.  The identity matrix is a 
square matrix in which all the diagonal terms are 1 and the off-diagonal terms are zero.  These matrices 
are sometimes written as 0(m x n) or In to specify a particular size for the null or identity matrix.  The null 
matrix and the identity matrix are shown below. 
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A matrix that has the same pattern as the identity matrix, but has terms other than ones on its principal 
diagonal is called a diagonal matrix.  The general term for such a matrix is diδij, where di is the diagonal 
term for row i and δij is the Kronecker delta; the latter is defined such that δij = 0 unless i = j, in which case 
δij = 1.  A diagonal matrix is sometimes represented in the following form: D = diag(d1, d2, d3,…,dn); this 
says that D is a diagonal matrix whose diagonal components are given by di. 
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We call the diagonal for which the row index is the same as the column index, the main or principal 
diagonal.  Algorithms in the numerical analysis of differential equations lead to matrices whose nonzero 
terms lie along diagonals.  For such a matrix, all the nonzero terms in a particular diagonal may be 
represented by symbols like ai,i-k or ai,i+k.  Diagonals with subscripts ai,i-k or ai,i+k are said to lie, respectively, 
below or above the main diagonal.  

If the n rows and m columns in a matrix, A, are interchanged, we will have a new matrix, B, with m rows 
and n columns.  The matrix B is said to be the transpose of A, written as AT. 

 ).]();(;,1;,1[ nxmismxnismjniabif jiij
T

BAAB   [10] 

An example of an original A matrix and its transpose is shown below. 
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The transpose of a product of matrices equals the product of the transposes of individual matrices, with the 
order reversed.  Two examples are shown below.  Can you complete the third? 

  TTTTTTTT
(ABCD)ABC(ABC)ABAB)(  [12] 

Matrices with only one row are called row matrices; matrices with only one column are called column 
matrices.1  Although we can write the elements of such matrices with two subscripts, the subscript of one 
for the single row or the single column is usually not included.  The examples below for the row matrix, r, 
and the column matrix, c, show two possible forms for the subscripts.  In each case, the first  row or column 
matrix has a double subscript, such as 1j for a component in the single-row of a row matrix or i1 for single 
column of a column matrix; the second form has the commonly used single subscript.  When row and 
column matrices are used in formulas, such as the formula for the multiplication of two matrices shown 
below in equation [19], that have two matrix subscripts, the first form of the matrices shown below are 
implicitly used to give the missing subscript (with a value of 1) for the equation. 

                                                      

1 Row and column matrices are called row vectors or column vectors when they are used to represent the components 
of a vector.  In these notes, we will use upper case boldface letters such as A and B to represent matrices with more 
than one row or more than one column; we will use lower case boldface letters such as a or b to represent matrices 

with only one row or only one column.  We will generally refer to these matrices as vectors. 
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The transpose of a column matrix is a row matrix; the transpose of a row matrix is a column matrix.  This is 
sometimes used to write a column matrix in the middle of text by saying, for example, that c = [1  3  -4  5]T. 

Matrix Multiplication 

The definition of matrix multiplication seems unusual when encountered for the first time.  However, it has 
its origins in the treatment of linear equation systems.  For a simple example, we consider three two-
dimensional coordinate systems.  The coordinates in the first system are x1 and x2.  The coordinates for the 
second system are y1 and y2.  The third system has coordinates z1 and z2.  Each coordinate system is 
related by a coordinate transformation given by the following relations. 
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We can obtain a relationship between the z-coordinate system and the x-coordinate system by combining 
the various components of equation [14] to eliminate the yi coordinates as follows. 

 
][][

][][
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We can rearrange these terms to obtain a set of equations similar to those in equation [14] that relates the 
z coordinate system to the x-coordinate system. 
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
 [16] 

We see that the coefficients cij, for the new transformation are related to the coefficients for the previous 
transformations as follows. 

 
][][

][][
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


 [17] 

There is a general form for each cij coefficient in equation [17].  Each is a sum of products of two terms.  
The first term from each product is a bik value whose first subscript (i) is the same as the first subscript of 
the cij coefficient being computed.  The second term in each product is an akj value whose second subscript 
(j) is the same as the second subscript of the c term being computed.  In each bikakj product, the second b 
subscript (k) is the same as the first a subscript.  From these observations, we can write a general equation 
for each of the four coefficients in equation [17] as follows. 
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The definition of matrix multiplication is a generalization of the simple example in equation [18] to any 
general sizes of matrices.  In this general case, we define the product, C = AB, of two matrices, A with n 
rows and p columns, and B with p rows and m columns by the following equation. 

 ),,1;,,1(
1

)()()( mjnibac
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
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There are two important items to consider in the formula for matrix multiplication.  The first is that order is 
important.  The product AB is different from the product BA.  In fact, one of the products may not be 
possible.  The second item is the need for compatibility between the first and second matrix in the AB 
product.2  In order to obtain the product AB the number of columns in A must equal the number of rows in 
B.  A simple example of matrix multiplication is shown below. 
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Matrix multiplication is simple to program.  The C++ code for multiplying two matrices is shown below.3  
This code assumes that all variables have been properly declared and initialized. The code uses the 
obvious notation to implement equation [19].  The array components are denoted as a[i][k]. b[k][j] and c[i][j].  
The product matrix, C, has the same number of rows, n, as in matrix A and the same number of columns, 
m, as in matrix B.  The number of columns in A is equal to p, which must also equal the number of rows in 
B. 

for (i = 1; i <= n; i++ ) 
   for ( j = 1; j <= m; j++ ) 
   { 
      c[i][j] = 0.0; 
      for ( k = 1; k <= p; k++ ) 
         c[i][j] += a[i][k] * b[k][j]; 
   } 

                                                      

2 The terms premultiply and postmultiply are commonly used to indicate the order of the matrices involved in matrix 
multiplication.  In the matrix product AB, we say that B is premultiplied by A or that A is postmultiplied by B.  
Alternatively, the terms left multiplied and right multiplied are used.  In the AB product, A is right multiplied by B and 
B is left multiplied by A. 

3 The basic code structure is the same in any language.  There are three nested loops.  The two outer loops cover all 
possible combinations of i and j to ensure that all the cij components are computed.  The inner loop code is the typical 
code for summing a number of items.  C++ programmers will note that the loop indices used in this code ignore the fact 
that the minimum index for a C++ array is zero.  This was done deliberately for all code examples in these notes to 
provide similar numbering for array indices in the notes and those in the code. 
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We now examine how the coordinate transformations that we used above to introduce matrix multiplication 
can be represented as matrix equations.  We can define matrices, A, B, and C to represent the coefficients 
that we used in our coordinate transformation equations. 
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The various coordinate pairs can be represented as column matrices as shown below. 
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With these matrix definitions, the two sets of simultaneous linear equations shown in equation [14] can be 
represented by the following pair of matrix equations: 

 ByzAxy  and  [23] 

You can verify that the equations above are correct by applying the general formula for matrix multiplication 
in equation [19] to the matrix equations in [23].  To do this, you should use the definitions of A, B, x, y, and 
z, provided in equations [21] and [22].  If we combine the matrix equations in [23] to eliminate the y matrix, 
we get the following result. 

 BACCxzBAxByz  withor  [24] 

Note the importance of the order of multiplication.  In general, BA; it is not equal to AB. 

There are two cases where the order is not important.  These are multiplication by a null matrix, which 
produces a null matrix, and multiplication by an identity matrix, which produces the original matrix. 

 AIAAI0A00A  and  [25] 

Although the order is not important here, the actual identity and null matrices used may be different.  We 
can rewrite equations [25] to explicitly show the rows and columns in each matrix. 

.  

)()()()()(

)()()()()()(

mxnmxnnxnmxmmxn

qxnqxmmxnmxpmxnnxp

AAIIA

00A0A0




 [26] 

By definition the identity matrix is a square matrix.  One size specification for the identity matrix, the number 
of rows or the number of columns, is set by the compatibility condition for matrix multiplication.  Once this is 
done, the other size is set by the requirement that I is square.  For the null matrices in equation [26], the 
size specifications, n or m, must match the sizes for the A matrix.  Although the size specifications p and q, 
for the null matrices in equation [26] are arbitrary, they are usually taken as p = m and q = n to give a 
square null matrix as the 0A product. 

Simultaneous Linear Algebraic Equations 

The coordinate transformation equations are simple examples of a more general case for simultaneous 
linear algebraic equations.  In the general case, we can have a set of simultaneous equations that is written 
as follows 
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 nibxa i

m

j

jij ,,1
1




 [27] 

We expect that a well-determined problem will have the number of equations, n, equal to the number of 
unknowns, m, but in the general case, shown above, these n may be different from m.  We see that this 
system of equations in equation [27] can be represented by matrices A(n x m), x(m x 1), and b(n x 1),  where A 
has the form shown in equation [4], x is the column matrix [x1, x2, x3, …xm]T and b is the column matrix [b1, 
b2, b3, …bn]T.  With these definitions, equation [27] is the same as the general equation for matrix 
multiplication shown in equation [19].  (Recall that we have omitted the second subscript, which is one, on 
the components of x and b.)  The system of equations shown in equation [27] is written, in matrix form, in 
equation [28], below. 

 Ax = b [28] 

These matrices are written out in detail below.  Here the column matrix, x, appears to have more rows than 
the coefficient matrix, A.  This is done to emphasize the notion that m may be different from n in general.  
Of course, m may be equal to or less than n rather than greater than n as implied in the matrices shown in 
the equation below. 

 















































































n

m

nmnnn

m

m

m

b

b

b

b

x

x

x

x

aaaa

aaaa

aaaa

aaaa























3

2

1

3

2

1

321

3333231

2232221

1131211

 [29] 

In order to solve a set of simultaneous linear equations we use a process that replaces equations in the set 
by equivalent equations.  We can replace any equation in the set by a linear combination of other equations 
without changing the solution of the system of equations.  For example, consider the simple set of two 
equations with two unknowns 

 
147

1353

21

21





xx

xx
 [30] 

You can confirm that x1 = 1 and x2 = 2 is a solution to this set of equations.  To solve this set of equations 
we can replace the second equation by a new equation, which is a linear combination of the two equations 
without changing the solution.  The particular combination we seek is one that will eliminate x1. We can do 
this by subtracting the first equation, multiplied by 7/3, from the second equation to obtain the following pair 
of equations, which is equivalent to the original set in equation [30]. 

 

3

94

3

47

1353

2

21





x

xx

 [31] 
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We can readily solve the second equation to find x2 = 2, and substitute this value of x2 into the first equation 
to find that x1 = [13 – 5(2)]/3 = 1.  The general process for solving the system of equations represented by 
equations [27], [28], or [29], known as Gauss elimination, is similar to the one just shown.  It requires a 
series of operations on the coefficients aij and bi to produce a set of equations with the form shown in 
equation [32], below, without changing the solution of the initial problem. 

 



























































































































n

n

n

n

nn

nn

n

n

n

nn

n

n

n

x

x

x

x

x

1

3

2

1

1

3

2

1

1

3

2

1

11

1333

122322

11131211

0000

000

00

0























 [32] 

The basic rule in the Gauss elimination process is that we can use a linear combination of two 
equations to replace one of those equations, without changing the solution to the problem.  This is 
the process that we used above in going from the set of equations in [30] to the set of equations in [31].  
Both sets of equations are equivalent in the sense that both sets of equations give the same answers for x1 
and x2.  However, the second set of equations can be directly solved for all the unknowns. 

The revised coefficient matrix in equation [32] is called an upper triangular matrix.  The only nonzero terms 
are on or above the principal diagonal.  The same operations that are used to obtain the revised coefficient 
matrix are used to obtain the revised right-hand-side matrix.   

The revised A and b matrices are obtained in a series of steps.  In the first step, the x1 coefficients are 
eliminated from all equations except the first one.  This is done by the following replacement operations on 

the coefficients in equations 2 to n.  The replacement notation () from computer programming is used 
here to indicate that an old value of aij is being replaced by the results of a calculation.  This avoids the 
need to use mathematical notation that would require separate symbols for the old value and the new value 
of aij. 

 nib
a

a
bbandnja

a

a
aa i

iij
i

ijij  ,2,1 1

11

1
1

11

1 







  [33] 

After equation [33] is applied to all rows below the first row, the only nonzero x1 coefficient is in the first 
equation (represented by the first row of the matrix.)  You can confirm that this will set ai1 = 0 for i > 1.  You 
can also apply the formulae in [33] to equation [30] to see that the result is equation [31].  The elimination 
process is next applied to make the x2 coefficients on all equations below the second equation zero. 

 nib
a

a
bbandnja

a

a
aa i

iij
i

ijij  ,3,2 2

22

2
2

22

2 







  [34] 

Equation [34] has the same form as equation [33]; only the starting points for the row and column 
operations are different.  The process described by equations [33] and [34] continues until the form shown 
in equation [32] is obtained.  From equation [32], the various values of x can be found by back substitution.  
We can simply find xn as βn/αnn.  The remaining values of x are found in reverse order by the following 
equation. 
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 1,,2,1
1











nni

x

x
ii

n

ij

jiji

i  [35] 

When we are solving for xi, all previous values of xj required in the summation are known. 

The C++ code below shows a simplified version4 of how the Gauss elimination method is applied to the 
solution of equations.  As in previous code examples, all data values are assumed to be properly declared 
and initialized.  The number of equations is equal to the number of unknowns, n.  The row that is 
subtracted from all rows below it is called the pivot row.  The main outer loop in the first part of the code 
uses the variable, pivot, to represent this row.  The code execution is simplified by augmenting the a matrix 
so that ai,n+1 = bi.  This allows the code to proceed without separate consideration of similar operations on 
the A and b matrix components. 

// augment a matrix with b values 

for ( row = 1; row <=n; row++) a[row][n+1] = b[row]; 

// get upper triangular array 

for (pivot = 1; pivot < n; pivot++ ) 
   for ( row = pivot+1; row <= n; row++ ) 
      for ( column = row+1; column <= n+1; column++) 
         a[row][column] -= a[row][pivot] * a[pivot] [column] 
                         / a[pivot][pivot]; 

// Upper triangular matrix complete; get x values 

for (row = n; row <= 1; row--) 
{ 
   x[row] = a[row][n+1]; 
   for ( column = n; column < row; column-- ) 
         x[row] -= a[row][column] * x[column]; 
   x[row] /= a[row][row]; 
} 

The process outlined above for the solution of a set of simultaneous equations is known as the Gaussian 
elimination procedure.  Alternative procedures such as the Gauss-Jordan method and LU decomposition, 
work in a similar manner.  They produce an upper triangular matrix or diagonal matrix that is then used to 
solve for the values of xi in reverse order. 

Matrix Rank Determines Existence and Uniqueness of Solutions 

If the solution process outlined above is used on certain matrices, it may not be possible to obtain a 
solution.  Consider the two sets of equations shown below. 

 
27106

1353

26106

1353

21

21

21

21









xx

xx
and

xx

xx
 [36] 

In the set of equations on the left, the second equation is simply twice the first equation.  If we multiply the 
first equation by two and subtract it from the second equation, we get the result that 0 = 0.  Thus, the 

                                                      

4 Actual code would have to account for the possibility that the system of equations might not have a solution.  It would 

also use different operations to reduce round-off error.  This example continues the practice used previously of starting 
the array subscripts at 1 and ending them at n to be consistent with the notation in equations in these notes.  Typical 
C++ code starts the array subscripts at 0. 
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second equation gives us no new information on the relationship between x1 and x2.  We say that this 
system of equations has an infinite number of solutions.  Any value of x2 = 2.6 – 0.6x1 will satisfy both 
equations.  The second set of equations has no solutions.  If we multiply the first equation by two and 
subtract it from the second equation, we have the result that 0 = 1!  Thus, this second set of equations is 
incompatible and does not have a solution.5 

This simple example can be generalized to discuss the existence and uniqueness of solutions for the 
general set of equations.  If we carry out the solution process outlined above to form an upper triangular 
matrix, we may have the result that one (or more) of the final rows in the coefficient matrix is all zero.  This 
means that we cannot obtain a unique solution.  Such a case is called a singular matrix.  The rank of a 
matrix is formally defined as the number of linearly independent rows in a matrix.  (This can be shown to be 
equal to the number of linearly independent columns.)  The practical determination of rank is based on the 
Gauss elimination process outlined above.  If in the final matrix in the elimination process is a matrix with n 
rows of which nzero rows contain all zeros, the rank of the matrix is n – nzero.  (This rank is the same for both 
the original matrix and the upper-triangular matrix because the Gauss elimination operations do not change 
the matrix rank.)  The A matrix for both sets of equations in equation [36] has only one linearly independent 
row, thus its rank is one.  The upper triangular form that results when a matrix is tested for rank is 
sometimes called the row-echelon form.  Sometimes in this form each row is divided by the diagonal 
element on that row so that all the diagonal elements are one. 

The two matrices in equation [37] below have been placed in row-echelon form by using Gauss elimination 
on the original matrices.  Can you determine the rank of the original matrices before looking at the answers 
below? 

The matrix on the left of equation [37] has four rows that are not all zero; thus, its rank is four.  The one on 
the right has six rows that are not all zero, thus its rank is six.  This rank-six matrix has eight columns.  
Because the number of linearly independent columns and the number of linearly independent rows are 
both the same as the rank of six, we know that these eight columns will be related by two different linear 
equations. 

 


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
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
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
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


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










12

53

37

08

48

61

000000

060000

014000

530200

268710

000206

 [37] 

The existence and uniqueness of solutions are defined in terms of the rank of the augmented matrix, [A,b].  
This is the matrix in which the right-hand side column matrix, b, is added as an extra column in the A 
matrix.  This augmented matrix is shown below for the general case of n equations and m unknowns.  The 
n equations mean that there are n rows in the matrix.  The m unknowns give m + 1 columns to the 
augmented matrix. 

                                                      

5 This result has a geometric interpretation.  When we have two simultaneous linear algebraic equations, we can plot 

each equation in x1–x2 space.  The solution to the pair of equations is located at the point where both equations 

intersect.  If we did this for the left set of equations in [36], we would only have a single line. 
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
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


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3333231

2232221
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],[ bA  [38] 

The existence and uniqueness of solutions to Ax = b is stated below without proof. 

If the rank of the original matrix, A, equals the rank of the augmented matrix, [A,b], and 
equals the number of unknowns, m, there is a unique solution to the matrix equation, 
Ax = b. 

If the rank of the original matrix, A, equals the rank of the augmented matrix, [A,b], but is 
less than the number of unknowns, m, there are an infinite number of solutions to the 
matrix equation, Ax = b. 

If the rank of the original matrix, A, is not equal the rank of the augmented matrix, [A,b], 
there is no solution to the matrix equation, Ax = b. 

We can see that these statements are consistent with the examples in equation [36].  A formal proof of 
these statements is given in linear algebra texts. 

These guidelines for the existence and uniqueness of solutions to simultaneous linear equations are 
illustrated in the three sets of equations shown below.  Each equation set has three equations in three 
unknowns.  The original equation set, shown in the first column, is converted to an upper triangular form in 
the second column.  We see that the first set has a unique solution.  The second and third sets do not have 
a unique solution; however, there is a difference between these two.  The second set has an infinite 

number of solutions.  For any value,  that we pick for x3 we can determine a value of x1 and x2 that is 
consistent with the original set of equations.  However, for the third set of equations, the upper triangular 
form gives an inconsistent third equation.  Thus, this set of equations has no solution. 

 Original Equation Set Upper Triangular Form Solutions 

Set I 

13837

592

2264

321

32

321







xxx

xx

xxx

 

5.505.50

592

2264

3

32

321







x

xx

xxx

 

1

7

0

3

2

1







x

x

x

 

Set II 

961102

592

2264

321

32

321







xxx

xx

xxx

 

00

592

2264

32

321







xx

xxx

 













3

2

1

5.45.2

812

x

x

x

 

Set III 

861102

592

2264

321

32

321







xxx

xx

xxx

 

10

592

2264

32

321







xx

xxx

 
No 

Solution 

These three sets of equations are shown in terms of their A and augmented [A   b] matrices in the table 
below.  We see that the set of equations in the table above corresponds to the data in the augmented 
matrix.  The first set of equations has rank A = rank [A   b] = 3, the number of unknowns.  We have already 
seen that this provides the unique solution above.  The second set of equations has rank A = rank [A   b] = 
2, less than the number of unknowns.  This means that we have an infinite number of solutions.  Again, this 
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corresponds to the result above.  Finally, the third case below has rank A = 2, but rank [A   b] = 3.  This 
difference in rank shows that there are no solutions. 

 Original Matrices Row-Echelon Form Rank 

 
A [A  b] A [A  b] A [A 

b] 

Set 
I 















 

837
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




















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5

2

837
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













 

5.5000

920

2641

 





















5.50

5

2

5.5000

920

2641

 3 3 

Set 
II 





















61102

920

2641

 

























9

5

2
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













 
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241

 





















0

5

2
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920

2641

 2 2 

Set 
III 




















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920

2641

 

























8

5

2
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920

2641

 















 
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2641

 





















1

5

2

000

920

2641

 2 3 

There is one final case to consider; that is the case of homogenous equations, where the b matrix is all 
zeros.  If there are n equations and the rank of the coefficient matrix is n then the only solution to the set of 
equations is that all xi = 0.  (This is called the trivial solution.) However, if the rank is less than n, it is 
possible to have a solution in which all the xi are not zero.  However, such a solution is not unique. 

Consider the two sets of homogenous equations shown below.  Each set of equations has a right-hand 
side that is all zeros.  (The two equation sets are identical except for the coefficient of the x1 term in the first 
equation.) 
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06114

034

058

06114

034
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321

321

321

321

321


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

xxx

xxx
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xxx

xxx
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 [39] 

If we carry out the usual solution process to create an upper triangular matrix for these two sets of 
equations, we obtain the following results. 
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034

00
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321

32

321






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

x
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 [40] 

For the set of equations on the right, the rank of the coefficient matrix is the same as the number of 
equations.  Here we have a unique solution in which all of the xi = 0.  The rank of the coefficient matrix for 
the equations on the left is less than the number of equations.  In this case, we have an infinite number of 
solutions.  If we pick x3 = α, an arbitrary constant, we can satisfy all three equations if x2 = 2α/3 and x1 = 3α 

– 4(2α/3) = α/3.  One of the infinite solutions, with  = 0, is the trivial solution where all xi = 0.6 

                                                      

6 You should make sure that you can place the original sets of equations in [39] and the upper triangular forms in [40] 
into an A and an augmented [A   b] matrix and show that both sets of equations have rank A = rank [A   b].  Do both 
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Determinants 

A determinant is a single numerical value that can be computed for a square array.  The values of 
determinants play a theoretical role in matrix analysis and can be used for calculations on small matrices.  
For matrices whose rank is greater than 3x3 or 4x4, alternative calculation methods are used in place of 
determinants. 

Various notations are available for a determinant.  If A is a matrix, then Det A is the determinant for the 
coefficients in a matrix.  The determinant for an array of numbers that looks like a matrix can be written 
using the absolute value sign, | <array>|, instead of the brackets, [<array>], that we have been using for 
matrix coefficients.  The various notations are shown below for a 2x2 array.  For this array, the formula for 
the determinant, which is shown as the final part of equation [41], is particularly simple. 
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For a 3x3 array, the determinant is a bit more complex. 
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The general equation for computing a determinant is given in terms of minors (or cofactors) of a 
determinant.  The minor, Mij of a determinant is the smaller determinant that results if row i and column j 
are eliminated from the original determinant.  The cofactor, Cij, equals (-1)i+jMij. For example, if we start with 
a 3x3 determinant, such as the one shown in equation [42] we can define nine possible minors (and 
cofactors).  Four of these are shown below: 
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The determinant of a matrix can be written in terms of its minors or cofactors as follows. 
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Note that the sum is taken over any one row or over any one column.  In applying this formula, one seeks 
rows or columns with a large number of zeros to simplify the calculation of the determinant.  We can show 

                                                      

sets of equations produce A matrices with the same rank?  What are the ranks of the A and [A   b] matrices for the two 

sets of equations? 
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that this equation is consistent with the results given previously for the determinants of 2x2 and 3x3 arrays.  
Applying equation [44] to the third row of a 3x3 array gives the following result. 
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 [45] 

We could have applied equation [44] to any of the three rows or any of the three columns to compute the 
determinant.  I chose to use the third row since the necessary cofactors can be found in equation [43].  If 
we use equation [41] to expand the (2 x 2) cofactors in [43] and apply those results to equation [45], we 
obtain the following result. 
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The final result, after some rearrangement, is the same as the one in equation [42]. 

Two rules about determinants are apparent from equation [45]: 

• A determinant is zero if any row or any column contains all zeros. 

• If one row or one column of a determinant is multiplied by a constant, k, the value of the 
determinant is multiplied by the same constant.  Note the implication for matrices: if a matrix is 
multiplied by a constant, k, then each matrix element is multiplied by k.  If A is an n x n matrix, 
Det(kA) = knDet(A). 

Additional rules for and properties of determinants are stated below without proof. 

• If one row (or one column) of a determinant is replaced by a linear combination of that row (or 
column) with another row (or column), the value of the determinant is not changed.  This means 
that the operations of the Gauss elimination process do not change the determinant of a matrix. 

• If two rows (or two columns) of a determinant are linearly dependent the value of the determinant is 
zero. 

• The determinant of the product of two matrices, A and B is the product of the determinants of the 
individual matrices: Det(AB) = Det(A) Det(B). 

• The determinant of transposed matrix is the same as the determinant of the original matrix: Det(AT) 
= Det(A). 

If we apply the column expansion of equation [45] to an upper triangular matrix, A, we find that Det A = 
a11A11, since the a11 term is the only term in the first column.  We can apply equation [45] repeatedly to the 
cofactors.  Each application shows that the determinant is simply the new term in the upper left of the array 
times its cofactor.  Continuing in this fashion we see that the determinant of an upper triangular matrix is 
simply the product of the diagonal terms.  We can combine this result with the fact noted above that the 
operations of the Gauss elimination process do not change the determinant of a matrix to develop a 
practical for computing determinants of any matrix.  Apply Gauss elimination to get the matrix in upper 
triangular form then the determinant (of both the original matrix and the one in upper triangular form) is 
simply the product of the diagonal elements. 
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As an example, consider the matrices from “Set 1” in the table on page 14.  The original matrix was 















 

837

920

2641

; its upper triangular form was 















 

5.5000

920

2641

.  We can readily compute the 

determinant as the product (1)(2)(50.5) = 101.  You can show that the same value is obtained by the 
conventional formula for the evaluation of the original 3 x 3 determinant. 

Determinants are not used in normal numerical calculations.  However, if you need to find the numerical 
value for a large determinant, the process outlined above is the most direct numerical approach. 

Cramer’s rule gives the solution to a system of linear equations in terms of determinants.  This approach is 
never used except for very small numbers of equations, typically two or three.  According to Cramer’s rule 
the solution for a particular unknown xi is the ratio of two determinants.  The determinant in the 
denominator uses all the usual matrix coefficients, aij.  The determinant in the numerator consists of the aij 
coefficients except in one column.  When we are solving for xj we replace column i in the aij coefficients by 
the right-hand-side matrix coefficients, bi.  For a set of three equations in three unknowns, Cramer’s rule 
would give the solutions shown in equation [47]. 

Cramer’s rule allows us to find an analytical expression for the solution of a set of equations, and it is 
sometimes used to solve small sets of equations (2 x 2 or 3 x 3).  However, it is never used for numerical 
calculations of larger systems because it is extremely time consuming. 
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Determinants are also related to rank.  An array in which the rows are not linearly independent will have a 
zero determinant.  As an example of this consider the left-hand set of equations from equation [39].  Recall 
that the coefficients for that set of three equations had a rank of two because the equations were not 
linearly independent.  When we evaluate the determinant for this array below, using equation [42] for the 
determinant of a (3x3) array, we find that the determinant is zero. 
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 [48] 

This gives us another approach to determining when a set of equations with all zeros on the right-hand side 
has a solution other than the simple one that all xi are zero.  This condition is that the determinant of the 
coefficient matrix is zero.  If Det(A) = 0 then a solution to Ax = b, where b contains all zeros, that does not 
have all xi = 0 is possible.  There are actually an infinite number of such solutions.  These solutions differ by 
an arbitrary multiplier.  We will use this idea below when considering matrix eigenvalues. 
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Inverse of a Matrix 

We have defined operations for adding, subtracting and multiplying matrices.  Matrix inversion is the matrix 
analog of division.  For a square matrix, A, we define a matrix inverse, A-1, by the following equation. 

 IAAAA   11
 [49] 

If we have a matrix equation, Ax = b, we can, in principle, solve this equation by premultiplying both sides 
of the equation by A-1.  This gives the following result. 

 bAxbAIxbAAAbAx
11   11, xIf  [50] 

The various steps in equation [50] use the definition, in equation [49], that the product of a matrix and its 
inverse is the identity matrix and the definition, in equation [25] that the product of any matrix with the 
identity matrix is the original matrix.  Although the result that x = A-1b may be written as the solution to the 
original equation, the actual solution of matrix equations like Ax = b is done by methods other than the 
direct calculation of the inverse.  It is not always possible to find the inverse.  A square matrix that has no 
inverse is called a singular matrix. 

It is usually not necessary to find the inverse of a matrix.  If necessary, you can find a numerical value of 
the inverse by the same process used to solve simultaneous linear algebraic equations.  To understand 
how this is done, we define a second matrix, B, as A-1.  Then, by the definition of inverse we have the 
following equation. 

 IABAB   ,1If  [51] 

Equation [52] shows the matrices involved in this equation. 

 











































































1000

0100

0010

0001

321

3333231

2232221

1131211

321

3333231

2232221

1131211





































nnnnn

n

n

n

nnnnn

n

n

n

bbbb

bbbb

bbbb

bbbb

aaaa

aaaa

aaaa

aaaa

[52] 

We have a form similar to the usual problem of solving a set of equations.  The coefficient matrix, A, is the 
same, but we have n right-hand side columns of known values.  Each of these columns of known values 
corresponds to one column of unknowns in the B matrix that is A-1.  If we use our usual process for solving 
Ax = b, with, for example, b = [1 0 0 0 …0]T, we will obtain the first column of B = A-1.  Repeating the 
process for similar b columns, which are all zeros except for a 1 in row k gives us column k of the inverse.  
For example, equation [53] shows the solution for the second column of B = A-1. 



Vectors and matrices L. S. Caretto, August 18, 2017 Page 19 

 











































































0

0

1

0

2

32

22

12

321

3333231

2232221

1131211





















nnnnnn

n

n

n

b

b

b

b

aaaa

aaaa

aaaa

aaaa

 [53] 

Because the operations for solving a set of simultaneous linear equations are based on the A matrix only, 
the solution for the inverse is actually done simultaneously for all columns. 

An analytical expression for the inverse can be obtained in terms of the cofactors discussed in the section 
on determinants.  We continue to define B = A-1; the components of the inverse, bij, are then given in terms 
of the minors or cofactors, Cij, of the original A matrix and its determinant. 
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The simplest application of this equation is to a 2x2 matrix.  For such a matrix, the coefficients of B = A-1 
are given by the following equations. 
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[55] 

Combining the results of equation [55] with equation [41] for a 2x2 determinant, gives the following result 
for the inverse of a 2x2 matrix. 
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You can easily show that this is correct by multiplying the original matrix by its inverse.  You will obtain a 
unit matrix by either multiplication: AA-1 or A-1A.  The same process can be used to find the inverse of a 
(3x3) matrix; the result is shown below: 
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Equations [56] and [57] show the value of determinants in providing analytical solutions to inverses.  
Although determinants are valuable in such cases any use of determinants should be avoided in numerical 
work. 

The general rule for the inverse of a matrix product and the inverses of the individual matrices is similar to 
the same equation for the transpose of a matrix product and the product of the transposes of the individual 
matrices.  This relation is shown below. 

   11111111
(ABCD)ABC(ABC)ABAB)(  [58] 

Matrix Eigenvalues and Eigenvectors 

If a square matrix can premultiply a column vector and return the original column vector multiplied by a 
scalar, the scalar is said to be an eigenvalue of the matrix and the column vector is called an eigenvector.  
In the following equation, the scalar, λ, is an eigenvalue of the matrix A, and x is an eigenvector. 

 )1()1()( xnxnnxn xxA   [59] 

We can use the identity matrix to rewrite this equation as follows. 

 )1()1()()( ][ xnxnnxnnxn 0xIA   [60] 
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As discussed above in the sections on simultaneous linear equations and determinants, equation [61] has 
the solution that all values of xi are zero.  It may have a nonzero solution if the determinant of the coefficient 
matrix is zero.  That is,  
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From the general expression for a determinant, we see that one component of the final expression for a 
determinant of any size is the product of all elements on the principal diagonal.  In equation [62] this term 

will give an nth order polynomial in  (for our n x n matrix).  This nth order polynomial is known as the 

characteristic equation of the matrix.  This characteristic equation can be solved for n values of , not all 
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of which may be distinct.   For a two-by-two matrix, setting Det[A – Iλ]=0 gives the following quadratic 
equation. 
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We can solve the quadratic equation in [63] to get two roots that give us the two possible eigenvalues: 

 
 

2

4)()( 22111221
2

22112211 aaaaaaaa 
  [64] 

Each eigenvalue will have its own eigenvector.  Each eigenvector is found by the solution of equation [57].  
If we denote the eigenvectors as x(1) and x(2), the components of eigenvector j may be written as x(j)1 and 

x(j)2.  Accordingly, we have to solve the set of equations shown below two times once for 1 and once for 2. 
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Again, the solution is not unique.  Any set of x values, multiplied by an arbitrary constant, will satisfy this set 
of equations.  For simplicity we pick x(j)1 = α.  We have two possible results for the eigenvector component, 
x(j)2 depending on which equation we use. 
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There appear to be two different solutions for x(j)2, depending on the use of the first or second equation to 
get this eigenvector component.  However, equating these two values for x(j)2, will eliminate the arbitrary 
constant, α, and obtain equation [63] that we solved for λ.  Thus the two possible expressions for x(j)2

  in 
equation [66] will result in the same value. 

As a numerical example, consider the determination of the eigenvalues and eigenvectors for the matrix,
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
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20

51
A .  You can find the answer using equations [65] and [66].  However, we will outline the entire 

solution process as an example of finding eigenvalues and eigenvectors for larger systems.  Solving the 

equation Det[A – I] for this matrix gives the following result.  
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IADet .  The roots to this equation are 1 = 2 and 2 

= 1.  (Here we have used the numbering convention that the highest eigenvalues has the lowest index.)  

We now substitute each eigenvalues into the equation (A – I)x(1) = 0, and solve for the components of 
each eigenvector.  For the first eigenvector we obtain. 
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We see that the last equation results in 0 = 0, which gives us no useful information.  Since we know that the 

homogenous equation set has an infinite number of solutions, we pick an arbitrary value, , for x(1)2.  With 
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this value, the first equation gives us the result that x(1)1 = 5.  Thus our first eigenvector, x(1) = [5   ]T.  
We can apply the same procedure to find the second eigenvector. 

 
0)12(0

05)11(

2)2(1)2(

2)2(1)2(


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xx

xx
 [68] 

Here both equations tell us that x(2)2 must be zero.  However, there is no information about x(2)1.  We 

conclude that this must be an arbitrary quantity that we will call .  This gives our second eigenvector, x(2) = 

[   0]T.  We can verify our solution for eigenvalues and eigenvectors by showing that they satisfy the 

defining equation, Ax = x. 
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The calculations above show that the definition of eigenvalues and eigenvectors is satisfied regardless of 

our choices for  and .  This is a general result.  We are always free to choose one component of the 
eigenvector.  However, the remaining components will be set.  Typically the eigenvector components are 
chosen to give a simple expression for the eigenvector (i.e, one in which all the components are integers or 
simple fractions) or a unit vector.7   

In the example of the two-by-two matrix used above, we could express the eigenvectors we found in any of 
the ways shown immediately below.  The last expression shown for each eigenvector is a unit vector.  Note 
that the two eigenvectors are not orthogonal in this example. 
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Matrix Transformations Using Eigenvectors 

It is possible to use the eigenvalues and eigenvectors to transform the original A matrix into a diagonal 
matrix.  To do this we define a matrix, X, whose columns are the different eigenvectors.  That is X = [x(j), 
x(2), x(3),… x(n)].  We also define a diagonal matrix, Λ, whose elements are the eigenvectors; i.e., Λ = [λiδij].  
The matrix product, AX can be viewed as the product of A with each eigenvector.  That is AX = [Ax(1), 
Ax(2), Ax(3),… Ax(n)] =  [λ1x(1), λ2x(2), λ3x(3),… λnx(n)].  We can use this result to show that AX = X Λ.  To do 
this, we examine the matrix product XΛ below, where we regard the subscript that identifies the particular 
eigenvector as a column index. 

                                                      

7 A unit vector, u, is one for which the two norm, ||u||2 =  2

iu = 1.  If we have a vector, v, that is not a unit vector we 

can convert it into a unit vector by dividing each component by ||v||2.  This would give the components of the new unit 

vector by the following equation: 


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u  



Vectors and matrices L. S. Caretto, August 18, 2017 Page 23 

 





























































nnnnnn

n

n

n

xxxx

xxxx

xxxx

xxxx

























000

000

000

000

3

2

1

)()3()2()1(

3)(3)3(3)2(3)1(

2)(2)3(2)2(2)1(

1)(1)3(1)2(1)1(

XΛ [72] 

Carrying out the indicated matrix multiplication gives the following result. 
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 [73] 

Equation [73] gives the desired result that XΛ = AX; we can premultiply this equation by X-1 to obtain the 
following result. 

 AXXΛ
1  [74] 

That is, we can use the matrix created by using the eigenvectors as matrix columns to produce a diagonal 
matrix from the square matrix, A.  The nonzero components of the diagonal matrix are the eigenvalues of 
the A matrix.  This type of transformation is important in many advanced applications of matrix theory.  An 
example of this, the use of matrix eigenvalues in the solution of a system of ordinary differential equations, 
is shown in the next section. 

In the example started on page 21, we found the eigenvalues, 1 = 2 and 2 = 1, and the eigenvectors x(1) = 
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Substituting X-1, A, and X into equation [74] gives the following result. 
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This X-1AX produce produces the expected result: a diagonal matrix with the eigenvalues of A on the 
diagonal.  We also see that the result does not depend on the arbitrary multiplicative constant used in each 
eigenvector. 

Similarity transformations 

An important concept in the computation of matrix eigenvalues is that of a similarity transformation.  For a 
square matrix, A, the transformation, B = P-1AP, where P is any invertable square matrix, produces a new 
matrix, B that has the same eigenvalues as A.  We can prove this by starting with the eigenvalue equation 

for B, Bx = x, and substituting the transformation B = P-1AP. 

 Bx = P-1APx = x [76] 

If we premultiply each side of the last equation by P, we can manipulate the result as follows. 

 PP-1APx = IAPx = APx = Px [77] 

Since  is a scalar, we can write Px = Px, so that the last equation in [77] becomes an eigenvalue 
equation for A. 

 A(Px) = (Px) [78] 

Equation [78] tells us that we can multiply the vector, Px, by the matrix, A, and obtain the same vector, 

multiplied by .  This is an eigenvalue/eigenvector equation where the eigenvalue for the A matrix is the 
same as the eigenvalue for the B matrix.  The eigenvectors of the A and B matrices, related by a similarity 
transformation, B = P-1AP, satisfy the following relationships: xA = PxB or, equivalently, xB = B = P-1xA. 

Application of Matrix Eigenvalues and Eigenvectors to a System of Differential 
Equations 

This transform may be used in the solution of simultaneous differential equations.  A general system of 
linear, first-order differential equations for variables, yi(t), can be written as follows: 

 Nitrya
dt

dy
i

N

j

jij
i ,1)(

1




 [79] 

In this equation, the values of aij are constant.  If we define y and r as column matrices, we can rewrite this 
system of differential equations as a matrix equation:* 

                                                      

* If y is a matrix, with components yij, then the derivative dy/dx is a matrix whose components are dyij/dx. 
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 rAy
y


dt

d
 [80] 

We can use the matrix, X, whose columns are eigenvectors of the A matrix to define a new set of 
dependent variables, si(t) whose components define the column matrix, s, by the following equation. 

 yXsXsy
1 or  [81] 

With this definition, the original matrix differential equation [80] can be written as a differential equation in s. 

 rAXs
s

XrAXs
Xs


dt

d

dt

d
 [82] 

The second equation is possible because we have assumed that all the values of aij are constant; i.e., they 
do not depend on time.  This means that the eigenvectors in the X matrix will be constants as well.  If we 
premultiply the second equation in [82] by X-1, we obtain the following result, using equation [74] to replace 
X-1AX by the eigenvalue matrix, Λ. 

 rXΛs
s

IrXAXsX
s

XX
1111  

dt

d

dt

d
 [83] 

If we define a new right-hand side column matrix, p(t) = X-1r(t) our system of differential equations can be 
written as follows. 

 )(t
dt

d
pΛs

s
  [84] 

Since Λ is a diagonal matrix, the differential equation for each component, si(t) depends only on si and pi.  It 
does not depend on other components of the s array.  Thus, we have a set of independent scalar 
differential equation to solve. 

 )(tps
dt

ds
iii

i   [85] 

This differential equation has the form of the general first-order differential equation, 

 )()( 21 tfxtf
dt

dx
  [86] 

The solution to this general equation is shown below. 
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Cdtfeex
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2
11

 [87] 

The constant, C, is found from the initial condition on the dependent variable. Equation [85] can be placed 
in the general form of equation [86] if we define f1 = λi and f2 = pi(t).  Since λi is not a function of time, we 
can write the solution to equation [85], replacing x by si as the dependent variable, as follows. 
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Here we have defined qi(t), which depends on the problem-specific value for p = X-1r. 
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If pi is a constant, we have the following result for qi. 
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In this case, the solution for yi becomes 

 

i

it
ii

p
eCy i





 [91] 

If we know the initial values of yi at t = 0, denoted as yi(0), we could find the corresponding initial values of 
si from the definition of s in equation [81].  If we denote the initial values of si as si(0), we would find these 
from the initial y values as follows. 

        0000 1
XsyyXs  

 [92] 

With this definition of s(0), with components, si(0), we can solve for the constant, Ci, in equation [88] as 
follows. 
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 [93] 

With this value for Ci, the solution to our differential equation becomes: 
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For the special case where all the pi are constant we have qi = pi/I, and since qi is not a function of time in 

this case, qi(0) = pi/I. 
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We can rewrite equation [94] as a matrix equation if we define the matrix E as the following diagonal matrix. 
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In order to rewrite equation [94] (or equation [95]) as a matrix equation, we have to rearrange the order of 
the exponential terms to give the correct results from matrix multiplication.   

     )()0()0()()0()0( tqqsetqeqss iii

t

i

t

iii
ii 
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 [97] 

         tt qqsEs  00  [98] 

If we substitute the definitions of s from equation [81] and the definition of s(0) from equation [92] we obtain 
a matrix equation for the original y variable. 

                ttt qqyXEqqsEyXs   0000 11
 [99] 

Multiplying this equation by X gives the solution for y(t) as follows. 

         tt qqyXXEy   001
 [100] 

Equation [95] gives the solution for constant pi.  This equation contains the term pi/i which can be written 
as the product of two matrices as shown below.  This equation uses the result that the inverse of a diagonal 

matrix [aiij] is the diagonal matrix [km/ak].8 
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Using this result and the steps that led to equation [99], we can rewrite equation [95] as shown below. 

       pEIEsppEEss
111 00    [102] 

If we substitute the definitions of s from equation [81] and the definition of s(0) from equation [92] we obtain 
a matrix equation for the original y variable. 

     pEIXEXyXy
111 0    [103] 

In the simplest case where all the right-hand-side terms ri(t) in the original equation [79] are zero, we will 
have p = 0 and the solution becomes. 

  01
EXyXy

  [104] 

This equation tells us that the behavior of the solution depends on exponential terms whose time 
coefficients are the eigenvalues of the matrix from the original set of differential equations. 

                                                      

8 The usual formula for the product of two matrices, cim = kaikbkm gives the following result for the product of the 

original matrix and the proposed inverse: cim = kaiikkm/am = im.  Here we use the fact that the product ikkm is zero 
unless i = k and m = k.  The result cim = dim is the required unit matrix for the product of a matrix and its inverse. 
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Special matrices and quadratic forms 

A set of column matrices, e(i), is said to be orthogonal if scalar product of a given matrix with any other 
matrix, except itself, is zero.  We can write the definition of an orthogonal set of matrices as follows: 

   iji
jTii diforthogonalissetThe )()()(

eee  [105] 

If all the values of di are one, the set of matrices is orthonormal.  Any set of orthogonal matrices may be 

converted to an orthonormal set by dividing each matrix, e(i) by di . 

An orthogonal matrix is one for which the inverse of the matrix equals its transpose.  That is, the matrix, 
A, is orthogonal if A-1 = AT.  One consequence of this definition is that the rows (and columns) of an 
orthogonal matrix form an orthogonal set of row (or column) matrices. 

Matrix elements may be complex numbers as well as real numbers.  We have already defined the 
transpose, B = AT, of a matrix, A, as one for which bij = aji.  For complex matrices (i.e., matrices with 
complex components, we define the adjoint matrix, A†, as the transpose of its complex conjugate. 

     *
jiij

T
ab  **T†

AAAB  [106] 

We have used the notation that a* is the complex conjugate of a; some texts use the notation ā to denote 
the complex conjugate9 of a.  The matrix, A*, is obtained from the matrix A, by replacing each component, 
aij, by its transpose complex conjugate, aij*.  Matrix notation varies among sources; some authors use the 
notation A* or AH for an adjoint matrix.  These authors then use the notation, Ā, for the complex conjugate 
of matrix A. 

A unitary matrix is a generalization of the orthogonal matrix for complex-valued matrices.  A unitary matrix, 
U, is one for which the adjoint, U†, equals the inverse, U-1. 

A self-adjoint matrix is one for which A = A†.  Such a matrix is also called a Hermitian matrix.  A real 
symmetric matrix is a self-adjoint or Hermitian matrix. 

A normal matrix is defined as one for which the product of a matrix with its adjoint does not depend on the 
order of the multiplication.  This means that AA† = A†A, if A is a normal matrix.  Both Hermitian matrices 
and real symmetric matrices are normal.  The important feature of normal matrices is that their 
eigenvectors form a complete orthogonal set.  This means that the X matrix, described before equation 
[72] and defined implicitly in that equation, will have an inverse.  In addition, it is simple to determine the 
inverse of the eigenvector matrix, because it must be an orthogonal matrix.  From the definition of 
orthogonal matrices this means that X-1 = XT.  Many engineering applications yield symmetric matrices, 
which are guaranteed to provide an orthogonal eigenvector matrix. 

                                                      

9 If z is a complex number whose real part is x and whose imaginary part is y, we write z = x + iy where i = -1 .  We 
can also write z = reiθ, where r2 = x2 + y2, and θ = tan-1(y/x).  The complex conjugate, z̄ = z* = x – iy = re-iθ  The product 
of a complex number with its complex conjugate equals the magnitude of the complex number: |z|2 = zz̄ = z*z = r2 = x2 
+ y2. 
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To illustrate this important result for normal matrices, consider the following problem that determines the 

eigenvectors used in the transformation X-1AX for the following real symmetric matrix: 
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

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









131

302

121

A .  

We first obtain the eigenvalues by solving the equation that Det(A – I) = 0.  This equation gives 
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 [107] 

Doing the indicated algebra gives the following cubic equation for . 
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 [108] 

The goal seek tool of Excel was used to find the eigenvalues of this equation.  The three eigenvalues are 1 

= 4.71319670582861, 2 = -2.78926346205648, and 3 = 0.0760667562278632.  You can verify that these 
values are the solutions to the eigenvalue equation. 

The eigenvectors are found by solving the matrix equation (A – I)x = 0.  For the first eigenvalue, we have to 
solve the following matrix equation. 
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Applying Gauss elimination to this system of equations gives the following result. 
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As we expected, our eigenvector equation has infinite solutions.  If we pick a value of one for x(1)3, we obtain 
x(1)2 = [0 – 3,538619(1)]/(-3.635958) = 0.973229 and x(1)1 = [0 – (1)(1) – (2)(0.973229)] /(-3.7131967) = 
0.79350979.  The norm of this eigenvector is the square root of the following sum: (1)2 + (0.973229)2 + 
(0.79350979)2 = 2.5768232.  Thus the norm of this first eigenvector, ||x(1)||2 = (2.5768232)1/2 = 1.605252.  If 
we divide each component by this norm, we will obtain the following normalized eigenvector x(1) = [0.494321  
0.606278  0.622955]T.  You should be able to verify that the two norm of this eigenvector is one and that it 

satisfies the equation that (A – I)x = 0.  We can repeat this process for the other two eigenvectors and then 
we can obtain the X matrix in which each column is one of the eigenvectors.  The inverse of this matrix is 
also shown below.  This was found using the MINVERSE function of Excel. 
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We see that the inverse matrix in this case is the same as the transpose of the X matrix.  This confirms that 
the set of eigenvectors is orthogonal.  (You should also be able to show that any pair of eigenvectors has dot 
product (inner product) that is zero.)  This example illustrates the fact that a symmetric matrix produces an 
orthogonal set of eigenvectors.  This greatly simplifies the X-1AX transformation process since X-1 = XT for an 
orthogonal matrix.  

A positive definite matrix is a Hermitian matrix that satisfies the following relationship for any column matrix 
(column vector) that is not 0.  (You should keep in mind that a Hermitian matrix whose components are real 
is simply a symmetric matrix.) 

 0: † AxxADefinitePositive  [112] 

If all the components of x are real, x† is simply xT.  A positive semi-definite matrix is one for which the 
greater-than sign is replaced by a greater than or equal to sign. 

 0: † xx AAteSemidefiniPositive  [113] 

The product x†Ax is illustrated below. 

  



















































nnnnnn

n

n

n

n

x

x

x

x

aaaa

aaaa

aaaa

aaaa

xxxx

















 3

2

1

321

3333231

2232221

1131211

**
3

*
2

*
1

†
Axx [114] 

Taking the Ax product gives the following intermediate result. 
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The final product of a row matrix times a column matrix yields a (1 by 1) matrix, which is essentially a 
scalar.  This scalar is given by the following matrix multiplication. 
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We can express the result of this matrix multiplication by a single scalar, using summation notation. 
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We see that the right hand side is a sum of pure quadratic terms, xi
*xi and mixed quadratic terms, xi

*xj.  
Each pure quadric term, xi

2, occurs only once and it is multiplied aii.  As usual, the product of a number, xi 
with its complex conjugate xi

* gives a real number that is the magnitude of the original complex number.  
Also, for a Hermitian matrix, where aij

* = aji, the elements on the principal diagonal, aii, must be real 
numbers for the general definition of a Hermitian matrix to apply. 

A given mixed quadratic term occurs twice: in the form xi* aij xj, and once in the form xj* aji xi.  The addition 
of these two terms can be simplified by the use of the basic relationship for a Hermitian matrix that aij

* = aji.  
As shown below, these two terms lead to the sum of two times the real value of the each individual term.10 

   )Re(2 *********
jiijjiijjiijijijjiijijjijiij xxaxxaxxaxxaxxaxxaxxa  [118] 

Using this relationship we can reduce the number of terms in the final summation of equation [117] by 
summing only over values of j that are greater than i. 

                                                      

10 This is based on the result that the sum of a complex number, z = x + iy, and its complex conjugate, z* = x – iy, 
equals 2x, two times the real component.  Similarly, z – z* = 2iy, 2i times the imaginary component. 
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If the matrices A and x are real we can write equation [119] as follows. 
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If A is positive definite, we are assured that any general quadratic form like the ones in equations [119] or 
[120] will be positive.  (If A is positive semi-definite we know that the sums will be greater than or equal to 
zero.)  We can show that a matrix is positive definite or semi-definite by finding all its eigenvalues.  A 
Hermitian matrix is positive definite if all its eigenvalues are positive; it is positive semi-definite if all its 
eigenvalues are zero or positive. 

Vector spaces, norms, and inner products 

Several concepts that we introduced with vectors can be generalized to other areas of engineering 
analysis.  This general picture is called an abstract vector space.  The name “abstract” is used because the 
things that we represent in such spaces may not be the same as the traditional vectors we are used to in 
mechanics.  (However, traditional vectors are one item that is represented in a vector space.) 

We recognize that vectors are usually represented by two or three components in a two- or three-
dimensional space.  We define a dot product for vectors and we define the magnitude of the vector as the 
sum of the squares of its components.  We know that we cannot represent a three-dimensional vector in a 
two-dimensional space, and we know that we can represent a vector in more than one way by using a 
different coordinate system.  When we represent a vector, we like to use an orthogonal coordinate system 
as the basic way to represent the vector.  In this case, we know that the dot products of unit vectors in 
different coordinate directions are zero.  All the ideas in this paragraph should be familiar to you for vectors 
representing force, velocity, acceleration and the like that you have encountered in your engineering and 
physics courses.  We want to generalize these ideas to systems that can have any number of components, 
not just two or three.  In addition, we want to consider functions as well as numbers as the components. 

We also want to consider the possibility that the elements that we represent may have complex values.  
That is a quantity, z, may be represented as the sum of a real part, x, and an imaginary part, y; we write 

this as z = x + iy, where i = 1 .  We define the complement of this complex number (with the notation z* 

or z ) as x – iy.  That is, we change the sign of the imaginary part and use an asterisk or a line over the 
complex variable to denote the complex conjugate.  A system of definitions that is developed for complex 
variables can be readily applied to real variables by setting the complex part equal to zero.  Furthermore, 

the complex conjugate of a real number is just that number.  If we set y = 0 in the definition, z* = z = x – iy, 
we get z*|y=0 = x.  A vector that consists of complex components, z, will have a complex conjugate, z*, 
whose components are the complex conjugates of the components of the original vector, z. 

The basic definition of a (linear) vector space simply states that vectors must satisfy certain simple 
properties.  These are listed below. 

1. If x and y are vectors in the space then x + y is also a vector in the space.11 

                                                      

11 Sometimes the symbol  is used to emphasize that the “addition” operation for vectors may be different 
from the usual operation we expect of adding each component the vector, a, to the corresponding 
component of the vector b to get the components of the vector sum a + b.  We will not be considering such 
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2. The addition operation in the previous statement is commutative and associative.  That is, x + y = y + x 
and x + y + z = (x + y) + z = x + (y + z). 

3. The space contains a null element, 0, such that x + 0 = 0 + x  = x. 

4. For each vector, x, in the space there is another vector, -x, such that x + (-x) = 0. 

5. Vectors can be multiplied by scalars.  If x and y are vectors in the space and  and  are scalars, all 
the following relationships hold: 

 i) x, x, y, and y are all vectors in the space 

 ii) (x = x + x 

 iii) (x = x + x 

 iv) x = (x = (x) 

 v) (xy = x + y 

 vi) 1x = x 

6. The norm of a vector, x, expressed as ||x||, is a measure of the size of the vector.  This is a 

generalization of the usual definition of the length of a vector, |x| = 
2

3

2

2

2

1 xxx  .  There are many 

possible norms.  Any definition of a norm must satisfy the following relationships: 

 i) ||x|| = || ||x||    for complex  

 ii) ||x|| > 0 if x  0 

 iii) ||x|| = 0 if x = 0 

 iii) ||x + y||  ||x|| + ||y|| 

7. A common definition of the norm has the form   qq

ix
1

x .  This is called the “q norm” and is 

usually written as ||x||q.  In this notation, the usual definition of a vector length is the “two norm”, ||x||2 .  
Other common norms are the one norm, which is simply the sum of absolute values and the “infinity 
norm” which is the element which has the maximum absolute value. 

8. The vector dot product is generalized for abstract vector spaces using the notation (x,y).  (Sometimes 
the notation <x,y> is used.)  These inner products satisfy the following relationships. 

 i) (xy = (yx 

 ii) (x + yz = (xz(yz 

 iii) (xx = 0 if and only if x = 0 

                                                      

abstract operations here.  In a similar sense the symbol  is used to represent a general operation of 
multiplication which may be different from normal multiplication of two numbers. 
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 iv) (xx > 0 unless x = 0 

 v) (x y = (yx = [(yx [(yx(yx(xy 

9. We can form linear combinations of any number, k, vectors in the space.  The linear combination is 

defined in terms of a set of k scalars, 1, 2, …, k, such that our linear combination is given by the 

equation 


k

i

ii

1

)(x  

10. A set of vectors is said to be linearly dependent if 0x 


k

i

ii

1

)( , where at least one of the ai is not 

equal to zero. 

11. A linearly independent set of vectors is one that is not linearly dependent. 

12. The vector space is said to be n-dimensional if a set of n linearly independent vectors exists in the 
space, but no set of n+1 linearly independent vectors exists in that space. 

13. Any vector in an n-dimensional space can be represented by a linearly independent combination of n 
vectors.  Such a set of vectors is called a basis set and is said to span the space. 

14. Two vectors whose inner product equals zero are said to be orthogonal.  That is, x and y are 
orthogonal if (x, y) = 0. 

15. A set of n vectors, e(1), e(2), … , e(n), are said to be orthogonal if the inner product of any unlike pair of 

vectors vanishes.  That is if (e(i), e(j)) = 0 for any i and j such that i  j, the set of vectors is orthogonal. 

16. A set of n vectors, e(1), e(2), … , e(n), are said to be orthonormal if the inner product of any unlike pair of 
vectors vanishes and the inner product of like vectors equals one.  For an orthonormal set, then, (e(i), 

e(j)) = ij. 

17. We can convert any orthogonal set of vectors into an orthonormal set by dividing each component of 
the orthogonal vector with index i, by the inner product for that vector with itself, (e(i), e(i)). 

The statements above summarize several definitions about abstract vector spaces, norms and inner 
products.  A major idea that is used throughout engineering analysis courses is the idea that we can 
represent a “vector” in terms of a basis set, which is a linearly independent set of vectors that span the 
space.  This means that any “vector” in the space can be expressed as a linear combination of the basis 
set. 

We know that this is true for our conventional vectors where we use the basis set i, j, and k.  The possible 
dot products of this basis set can be seen to form an orthonormal set.  As noted earlier, these possible dot 
products are i•i = j•j = k•k = 1 and i•j = i•k = j•i = j•k = k•i = k•j = 0. In a more general notation we can 

represent this basis set as e(1) = i, e(2), = j, and e(3) = k.  This basis set is orthonormal since (e(i), e(j)) = ij. 

We will extend the notation of inner products and orthogonality to functions.  For functions, the inner 

product is defined in terms of an integral.  If we have a set of functions, f i(x) defined on an interval a  x  b, 
we define the inner product for these functions as follows. 

    
b

a

jiji dxxxfxfff )()()(, *
 [121] 
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In this definition, the function x) is called the weighting function.  In many cases, (x) =1 and is not 
considered in the definition of the inner product of functions.  The functions fi(x) are orthogonal if the 
following relationship holds. 

   iji

b

a

jiji adxxxfxfff   )()()(, *
 [122] 

We can define a set of orthonormal functions by the following equation. 

   ij
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jiji dxxxfxfff   )()()(, *
 [123] 

Any set of orthogonal functions gi(x) can be converted to a set of orthonormal functions fi(x) by dividing by 
the square root of the inner product, (gi,gi). 
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We can show that the functions fi(x) form an orthonormal set by constructing the inner product (fi, fi). 
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Note that the inner product (gi,gi) is a constant so that we can bring it outside the inner product calculation 
for (fi,fi).  We see that the inner product of fi with itself is equal to one.  The inner product (fi, fj) is 
proportional to (gi, gj) which is zero.  Thus the functions fi form an orthonormal set. 


