Outline

- Current use of wind energy
- Advantages and disadvantages of wind
- Wind turbine components
- Calculation of wind power
 - Wind power coefficient, \(c_p \)
 - Power dependence on \(V^3 \)
 - Probability analysis of wind
- Economics and R&D tasks
- Organizations and companies

US Electric Net Summer Capacity (EIA Data)

U.S. Wind Power Capacity, Annual & Cumulative (MW)

US Wind Power Locations

http://www1.eere.energy.gov/windandhydro/pdfs/43025.pdf

http://www1.eere.energy.gov/windandhydro/pdfs/43025.pdf
Wind Power

World Wind Energy Association forecasts 160 GW by 2010
Currently generating over 1% of world electricity
http://www.wwindea.org/home/images/stories/totalcapacity2007_s.jpg

European data uses . instead of , as thousands separator

Wind Capacity (GW) 2008

<table>
<thead>
<tr>
<th>Country</th>
<th>Capacity (GW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>23.90</td>
</tr>
<tr>
<td>Spain</td>
<td>16.74</td>
</tr>
<tr>
<td>USA</td>
<td>25.17</td>
</tr>
<tr>
<td>India</td>
<td>9.59</td>
</tr>
<tr>
<td>Denmark</td>
<td>3.16</td>
</tr>
<tr>
<td>China</td>
<td>12.21</td>
</tr>
<tr>
<td>Italy</td>
<td>3.74</td>
</tr>
<tr>
<td>UK</td>
<td>3.29</td>
</tr>
<tr>
<td>Others</td>
<td>7.92</td>
</tr>
</tbody>
</table>

Countries in rank order for 2006

Contribution of Wind

<table>
<thead>
<tr>
<th>Country</th>
<th>Wind Penetration 2007</th>
<th>Wind Penetration 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>10.4%</td>
<td>16.6%</td>
</tr>
<tr>
<td>Spain</td>
<td>15.5%</td>
<td>17.7%</td>
</tr>
<tr>
<td>Portugal</td>
<td>6.9%</td>
<td>8.8%</td>
</tr>
<tr>
<td>Ireland</td>
<td>9.9%</td>
<td>11.7%</td>
</tr>
<tr>
<td>Germany</td>
<td>5.0%</td>
<td>6.0%</td>
</tr>
<tr>
<td>Greece</td>
<td>3.8%</td>
<td>4.8%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>3.9%</td>
<td>4.9%</td>
</tr>
<tr>
<td>Austria</td>
<td>3.8%</td>
<td>4.8%</td>
</tr>
<tr>
<td>India</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>UK</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Italy</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Sweden</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>U.S.</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>France</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Australia</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Canada</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Norway</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>China</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Japan</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>Brazil</td>
<td>2.8%</td>
<td>3.8%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Wind Advantages

- No atmospheric emissions that cause pollution or greenhouse gasses.
- No fuel costs
- One of the lowest-priced renewable energy technologies available today (4 to 6 cents per kilowatt-hour)
- Sites can coexist with on farms or ranches benefiting the economy in rural areas

Wind Disadvantages

- Requires a higher initial investment than fossil-fueled generators.
- Wind is intermittent
 - not always available when electricity is needed
 - cannot be stored (unless batteries are used)
 - not all winds can be harnessed to meet the timing of electricity demands.

Wind Disadvantages II

- Good sites are often far from cities where the electricity is needed.
- Other uses for the land may be more highly valued than electricity generation.
- Concern over the noise produced by the rotor blades, aesthetic (visual) impacts, and sometimes birds have been killed
 - Most problems greatly reduced by new technology or by better siting of wind plants.
NEG Micon 2 MW turbine
Hagesholm, Denmark
Commissioned August 1999
Rotor diameter = 72 m
Tower height = 68 m
Active stall control

Blades
- Turbine blades as airfoils
- "Lift" becomes force in direction of rotation

Wind Turbine Components
- Anemometer: Measures the wind speed for system control
- Brake: A disc brake to stop the rotor in emergencies
- Controller: starts up the machine at wind speed about 8 to 16 mph and shuts off the machine at about 65 mph to avoid system damage
Wind Turbine Components II

- **Gear box**: connects the low-speed (30-60 rpm) shaft to the high-speed (1200 to 1500 rpm) shaft required by generator
- **Generator**: produces 60-cycle AC electricity
- **Nacelle**: contains the gear box, low- and high-speed shafts, generator, controller, and brake

Wind Turbine Components III

- **Pitch**: Blades are pitched (turned) out of the wind when winds too high or too low to produce electricity
- **Rotator**: The blades and the hub together are called the rotator
- **Tower**: Towers are made from tubular steel
- **Wind direction**: "Upwind" turbines operate facing into the wind

Wind Turbine Components IV

- **Wind direction**: "Downwind" turbines operate facing away from the wind
- **Wind vane**: Measures wind direction and directs yaw drive to orient the turbine with respect to the wind
- **Yaw drive**: Required on upwind turbines to keep them facing into wind
- **Yaw motor**: Powers the yaw drive

Wind Power

- Power in incoming air = \(\dot{m} = \dot{m}V^2/2 = (\rho V A)^2/2 = \rho AV^3/2 = P_0 \)
 - Air density, \(\rho \approx 1.2 \text{ kg/m}^3 \)
 - \(A = \) swept area of rotor = \(\pi (D_{rotor})^2/4 \)
 - \(V = \) wind velocity
- Simple model of rotors as a disk
 - Look at stream tube starting far upstream from rotor to far downstream from it
 - Apply Bernoulli equation for frictionless flow from far upstream to just before disk and just after disk to far downstream

- Use continuity equation for streamtube
- Use momentum balance equation to determine force delivered to rotor
- Power delivered to rotor = force times velocity
- Result for actual power, \(P = \rho A(V_1 + V_2)(V_1^2 - V_2^2)/4 \)
 - \(V_1 = \) upstream velocity (before turbine)
 - \(V_2 = \) downstream velocity

Power Coefficient

- \(c_p = P/P_0 = [\rho A(V_1 + V_2)(V_1^2 - V_2^2)/4] / [\rho AV^3/2] = (1 + V_2/V_1)(1 - 2V_2/V_1^2)/2 = (1 + r)(1 - r^2)/2 \) where \(r = V_2/V_1 \)
- Set \(dc_p/dr = 0 \) to get maximum power
- \(2dc_p/dr = (1 - r^2) - (1 + r)(-2r) = 0 \) when \(r = 1/3 \) giving \((c_p)_{\text{max}} = 16/27 = 0.593 \)
- This gives the maximum \(c_p \) called the Betz limit after the person who discovered this limit in 1919
Wind Turbine Power Coefficient

![Graph of Wind Turbine Power Coefficient](image)

Effect of V^3 Dependence

![Graph of Effect of V^3 Dependence](image)

Wind Classes (10 m)

<table>
<thead>
<tr>
<th>Class</th>
<th>power/area(W/m²)</th>
<th>Speed(m/s)/(mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>6</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>7</td>
<td>400</td>
<td>1000</td>
</tr>
</tbody>
</table>

Effect of Wind Variations

- Data for three locations below show same average wind speed (6.3m/s) but increasing power density (W/m²) resulting in increasing wind class
- Culebra, Puerto Rico 6.3 220 4
- Tiana Beach, New York 6.3 285 5
- San Gorgonio, California 6.3 365 6
- Consistent wind speeds provide more energy at same average speed

Wind Classes (50 m)

<table>
<thead>
<tr>
<th>Class</th>
<th>power/area(W/m²)</th>
<th>Speed(m/s)/(mph)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>max</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>600</td>
</tr>
<tr>
<td>6</td>
<td>600</td>
<td>800</td>
</tr>
<tr>
<td>7</td>
<td>800</td>
<td>2000</td>
</tr>
</tbody>
</table>
Wind Power Efficiency

- Incoming wind at 12 m/s has 3,046 kW
- Rotor with \(d = 60 \text{ m} \) and \(c_p = 0.44 \) produces 1,340 kW (1,297 kW to generator)
- Generator produces 1,252 kW of which 1,200 kW are delivered to transformer
 - Rated \(c_p = (1200 \text{ kW})/(3046 \text{ kW}) = 0.394 \)
 - 1,176 kW delivered to grid from transformer
- Usual grid loss is about 8%

Probability Distributions

- Applied to variation of wind over time
- Best known example of probability distribution is the normal distribution

 \[
 p(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \quad -\infty \leq x < \infty
 \]
- This is a two-parameter distribution
 - Mean = \(\mu \)
 - Variance = \(\sigma^2 \)

Cumulative Distribution

- Define \(F(b) = P(x \leq b) \)
- Use \(P(a \leq x \leq b) \) from previous slide

 \[
 P(a \leq x \leq b) = \int_a^b p(x)dx \Rightarrow F(b) = P(x \leq b) = \int_a^b p(x)dx
 \]
- With this definition we can write

 \[
 P(a \leq x \leq b) = \int_a^b p(x)dx = \int_a^b p(x)dx - \int_a^c p(x)dx = F(b) - F(a)
 \]
- Use equations or tables for \(F(b) \) to find \(P \)
Mean and Variance

- For any pdf we define the mean, μ, and the variance σ^2 as follows
 $$\mu = \int_{-\infty}^{\infty} x p(x) \, dx \quad \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) \, dx$$
- This general expression uses the limits of $-\infty$ and ∞ for random variable, x
 - Other upper and lower limits are substituted for specific distributions
- For wind speed pdfs lower limit is zero

More on Variance

- Computational formula for variance
 $$\sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 p(x) \, dx = \int_{-\infty}^{\infty} (x^2 - 2x\mu + \mu^2) p(x) \, dx$$
 $$\sigma^2 = \int_{-\infty}^{\infty} x^2 p(x) \, dx - 2\mu \int_{-\infty}^{\infty} xp(x) \, dx + \mu^2 \int_{-\infty}^{\infty} p(x) \, dx$$
 - Definition of mean
 - Integral over all x is 1

Average Value of $f(x)$

- Define \bar{f} as the mean value of some function, $f(x)$, of the random variable x
 $$\bar{f} = \int_{-\infty}^{\infty} f(x) p(x) \, dx$$
- For wind applications we are interested in the mean power which is the mean V^3
 - We will also be interested in how much power is within a certain range of wind velocities

Rayleigh Distribution

- Probability distribution of wind over time
- A one-parameter distribution using scale parameter, β
- Mean $= \beta (\pi/2)^{1/2}$
- Variance $= \beta^2 (4 - \pi)/2$
- Most probable V (pdf maximum): $V_{mp} = \beta$

Rayleigh Distribution Forms

- Can be written in various forms
 $$p(V) = \frac{Ve^{-V^2/2\beta^2}}{\beta^2} \quad 0 \leq V < \infty$$
 $$V_{mp} = \beta \frac{\sqrt{2}}{\sqrt{\pi}} \quad 2\beta^2 = \frac{\pi}{2}$$
 $$p(V) = \frac{2Ve^{-V^2/\beta^2}}{\sqrt{\pi}} \quad 0 \leq V < \infty$$
 $$p(V) = \frac{\pi Ve^{-V^2/4\beta^2}}{2\sqrt{\pi}} \quad 0 \leq V < \infty$$

Cumulative Distribution

- Find $F(V_0) = P(V \leq V_0)$
 - Variable transformation: $y = V^2/2\beta^2$ so that $V = \beta(2y)^{1/2}$ and $dV = \beta(2y)^{-1/2}dy$
 - $y = 0$ when $V = 0$; $y = V_0^2/2\beta^2$ when $V = V_0$
 $$F(V_0) = \int_{0}^{V_0} p(V) dV = \frac{1}{\beta^2} \int_{0}^{V_0^2} V e^{-V^2/2\beta^2} dV$$
 $$= \frac{1}{\beta^2} \int_{0}^{V_0^2} \beta(2y)^{1/2} e^{-y} \sqrt{\pi} \beta(2y)^{-1/2} dy$$
 $$= \beta \frac{\beta^2}{\sqrt{\pi}} \left[e^{-y} - e^{-V_0^2/2\beta^2} \right]$$
- As $V_0 \to \infty$, $F(V_0) \to 1$ as required
Typical Problem
• Given a Rayleigh wind distribution with $\beta = 5$ m/s find the fraction of time the wind velocity is between $V_1 = 3$ m/s and $V_2 = 7$ m/s

$$P(V_1 \leq V \leq V_2) = F(V_2) - F(V_1) = \left[1 - e^{-V_1^2/2\beta^2}\right] - \left[1 - e^{-V_2^2/2\beta^2}\right]$$

$$P(V_1 \leq V \leq V_2) = e^{-V_1^2/2\beta^2} - e^{-V_2^2/2\beta^2} = e^{-\frac{(3 m/s)^2}{2(5 m/s)^2}} - e^{-\frac{(8 m/s)^2}{2(5 m/s)^2}} = 0.8353 - 0.3753 = 0.4600$$

Gamma Function
• Used in probability integrals
• Defined as integral $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$
• For integers, $\Gamma(n) = (n - 1)!$
 - $\Gamma(1) = 1$, $\Gamma(2) = 1$, $\Gamma(3) = 2$, $\Gamma(4) = 6$
• For any argument, $\Gamma(x+1) = x\Gamma(x)$
 - $\Gamma(1/2) = (\pi)^{1/2}$
 - $\Gamma(3/2) = (1/2)\Gamma(1/2) = (\pi)^{1/2}/2$
• Tables/software for non-integer values

Mean Velocity
• Use same variable transformation
 - Define $y = V/2\beta$ so that $V = \beta(2y)^{1/2}$ and $dV = \beta(2y)^{-1/2}dy$
 - $y = 0$ when $V = 0$ and $y = \infty$ when $V = \infty$

$$\mu = \frac{1}{\beta^2} \int_0^\infty V^2 e^{-V^2/2\beta^2} dV = \frac{1}{\beta^2} \int_0^\infty (2y)^{1/2} e^{-2y} [\beta(2y)^{1/2} dy] = \frac{2^2}{\beta^2} \int_0^\infty (2y)^{1/2} e^{-2y} dy = \frac{\beta \Gamma(1/2)}{\sqrt{2} \Gamma(1/2)} = \beta \frac{1}{\sqrt{2}} = \beta \frac{\pi}{2}$$

Variance
• Use equations for σ^2 and y variable

$$\sigma^2 = \int_0^\infty V^2 p(V) dV - \mu^2 = \frac{1}{\beta^2} \int_0^\infty V^2 e^{-V^2/2\beta^2} dV - \mu^2 = \frac{1}{\beta^2} \left[\beta^2 (2y)^{3/2} e^{-2y} \beta(2y)^{1/2} dy\right] = \frac{2^3}{\beta^2} \int_0^\infty 2y e^{-2y} dy = 2\beta^2 \int_0^\infty y^{2-1} e^{-2y} dy = 2\beta^2 \Gamma(2) = 2\beta^2$$

$$\sigma^2 = \frac{1}{\beta^2} \int_0^\infty V^2 p(V) dV - \mu^2 = \frac{2\beta^2}{\beta^2} - \beta^2 \frac{\pi}{\sqrt{2}} = -\frac{2\beta^2 - \pi}{\sqrt{2}}$$
Wind Power

- Instantaneous wind power: \(P_0 = \rho V^3 A / 2 \)
- Average power: \(\bar{P}_0 = \frac{\rho A V^3}{2} = \frac{3 \rho A}{2} \sqrt{\frac{V^3}{2}} \int P(V) dV \)
- Using Rayleigh distribution for \(P(V) \)
 - \(\sqrt{V^3} P(V) dV = \frac{1}{\beta^3} \int (V^3 e^{-\beta V^2 / 2}) dV = \frac{1}{\beta^3} \int \beta^3 (2\beta y)^{3} e^{-\beta y} [\beta (2\beta y)^{3} dy] \)
 - \(\frac{\beta^3 \beta}{\beta^3} \int (2y)^3 e^{-\beta y} dy = \frac{2^3 \beta^3 \beta}{\beta^3} \int y^{3} e^{-\beta y} dy = \frac{2^3 \beta^3 \beta}{\beta^3} \frac{\sqrt{\pi}}{2} = \frac{3 \beta^3}{\sqrt{2}} \)
- \(\bar{P}_0 = \frac{\rho A V^3}{2} = \frac{3 \rho A \beta^3}{2} \sqrt{\frac{\pi}{2}} \approx \rho A \beta^3 \sqrt{\frac{9 \pi}{8}} \)

Wind Power Distribution

- Wind power in a differential range, dV about a velocity V is \(\rho V^3 A / 2 p(V) dV \)
- Fraction of total power in a velocity range between \(V_1 \) and \(V_2 \) is found below
 - New limits: \(y_1 = V_1^2 / (2 \beta^2) \) and \(y_2 = V_2^2 / (2 \beta^2) \)
 - \(\int_{V_1}^{V_2} \rho V^3 A / 2 p(V) dV = \frac{1}{3 \beta^3} \sqrt{\frac{2 \pi}{\beta}} \int_{y_1}^{y_2} y^{3} e^{-\beta y} \left[\beta (2\beta y)^{3} dy \right] \)
 - \(\frac{\beta^3 \beta}{\beta^3} \int (2\beta y)^3 e^{-\beta y} dy = \frac{2^3 \beta^3 \beta}{\beta^3} \frac{\sqrt{\pi}}{2} \int y^{3} e^{-\beta y} dy = \frac{16 \sqrt{\pi}}{16 \beta^3} \int y^{3} e^{-\beta y} dy = \frac{16 \sqrt{\pi}}{16 \beta^3} \frac{\sqrt{\pi}}{2} \)

Weibull Distribution

- A two-parameter distribution with shape parameter, \(k \), and scale parameter, \(c \)
- Rayleigh distribution is Weibull distribution with \(k = 2 \) and \(\beta^2 = 2c^2 \)
- Mean = \(c \Gamma(1 + k^{-1}) \)
- Variance = \(c^2 \left[\Gamma(1 + 2k^{-1}) - \Gamma^2(1 + k^{-1}) \right] \)
- \(p(V) = \frac{k V^{k-1}}{c^k} e^{-\left(V / c\right)^k} \quad 0 \leq V < \infty \)

Wind Turbine Size

- General trends for wind turbines
 - Power is proportional to blade area or rotor diameter squared
 - Volume, weight and material cost is proportional to rotor diameter cubed
 - There should be some optimum size above which increases in power will cost more than for smaller machines
 - Power continues to increase, however, due to improvements in materials and design

Turbine Size History

Commercial Wind 2000

 - Data shown on slide after this not available in later reports
- **NEG/64**: NEG Micron Unipower 64 NM 1500C/64; rotor diameter = 64 m; rated power output = 1.5 MW.
- **Ve/V66**: Vestas/V66; rotor diameter = 66 m; rated power output = 1.65 MW.

Commercial Wind Turbines

<table>
<thead>
<tr>
<th>Mfg./Model</th>
<th>Area (m²)</th>
<th>Power (kW) at 11.6 m/s</th>
<th>Power/Area at 11.6 m/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEG/64</td>
<td>3,217</td>
<td>1,168 1,564</td>
<td>363 486</td>
</tr>
<tr>
<td>Ve/V66</td>
<td>3,421</td>
<td>1,161 1,650</td>
<td>339 482</td>
</tr>
<tr>
<td>NEG/48</td>
<td>1,824</td>
<td>610 745</td>
<td>334 408</td>
</tr>
<tr>
<td>Ve/V47</td>
<td>1,735</td>
<td>569 660</td>
<td>328 380</td>
</tr>
<tr>
<td>Zo/Z48</td>
<td>1,810</td>
<td>750 750</td>
<td>414 414</td>
</tr>
</tbody>
</table>

Wind Farm Data 2000

- Chart after next shows data on actual wind farm and wind farm designs.
 - MW column shows the total capacity
 - kW column is the maximum power output of the individual wind turbines
 - Hub height is the elevation of the center of the rotor
 - CF is the capacity factor.

Wind Farm Data 2000 II

- area represents the swept area of the rotors in square meters.
- **Loc column shows locations**
 - Loc A is in Denmark. Data shown are averages over different operational periods. The capacity of the farm varied from 27.6 to 28.8 MW, hub heights from 40 to 70 m and swept areas from 1,452 to 2,810 m²
 - Locs C and D are hypothetical wind farm models based on 1997 DOE projections

Wind Farm Capacity Factors

<table>
<thead>
<tr>
<th>Loc</th>
<th>MW</th>
<th>Model</th>
<th>kW</th>
<th>H_hub</th>
<th>Area</th>
<th>CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>28</td>
<td>Micon</td>
<td>600</td>
<td>55</td>
<td>1631</td>
<td>28.5%</td>
</tr>
<tr>
<td>B</td>
<td>19</td>
<td>Vestas</td>
<td>500</td>
<td>40</td>
<td>1408</td>
<td>28.2%</td>
</tr>
<tr>
<td>C</td>
<td>25</td>
<td>DOE97</td>
<td>500</td>
<td>40</td>
<td>1134</td>
<td>26.2%</td>
</tr>
<tr>
<td>D</td>
<td>25</td>
<td>DOE97</td>
<td>500</td>
<td>40</td>
<td>1134</td>
<td>35.5%</td>
</tr>
<tr>
<td>E</td>
<td>80</td>
<td>Zond</td>
<td>750</td>
<td>63</td>
<td>1963</td>
<td>32%</td>
</tr>
<tr>
<td>F</td>
<td>107</td>
<td>Zond</td>
<td>750</td>
<td>51</td>
<td>1810</td>
<td>28%</td>
</tr>
</tbody>
</table>
Wind Energy R&D

• Variable speed generators improve generation over a range of wind speeds
• Gearless turbines that reduce the turbine operating costs
• Lighter tower structures
 – allowed because new turbines and generators reduce or better distribute stresses and strains

Wind Energy R&D II

• Smart controls and power electronics
 – enable remote operation and monitoring of wind turbines
 – enable remote corrective action in response to system operational problems.
• Turbine designs where power electronics are needed to maintain power quality also have benefited from a reduction in component costs

AWEA Economics

• 50 MW wind farm with class 4 winds
• Capital cost: $65 million
• Annual power: 153 GWh (35% capacity)
• Annual gross: $6.13 million (@ 4¢/kWh)
• Annual expenses: $8.30 million
 – Expense for debt service (60% debt finance) at 9.5% for 15 years = $4.98 million/year (60% of total expenses)
 – Distribution costs: $1.83 million/year

AWEA Economics II

– O&M costs: $0.664 million/year
– Land costs: $0.415 million/year
– Administration: $0.415/year
• Annual Loss: $2.17 million
• Producer tax credit (1.8¢/kWh): $2.76 million
• Income after PTC: $0.588 million
• Annual return on equity investment 11.2% for 15 years

Residential Wind Turbines

• Installed in rural areas and outer suburban properties greater than 1 acre
• Installed cost $6,000 to $22,000
 – Rule of thumb: average wind speed ≥ 10 mph and electricity cost ≥ 10¢/kWh
 – Payback period 6 to 15 years
• 80 to 120 ft tower required
• “Quieter than a washing machine”

Organizations

• American Wind Energy Association
 – http://www.awea.org/
• World Wind Energy Association
 – http://www.wwindea.org/
• National Renewable Energy Laboratory
 – http://www.nrel.gov/wind/
• DOE wind and hydro programs
 – http://www1.eere.energy.gov/windandhydro/
• Global Wind Energy Council
 – http://www.gwec.net/
Companies and Sizes

Sample Companies

- Vestas (includes former NEG Micon)
 - Headquarters in Denmark
 - http://www.vestas.com/
 - March 12, 2009 website claims installation of 38,000 wind turbines in 62 countries for 23% market share
 - US office in Portland, OR
 - Range of products from 850 kW to 3.0 MW
 - Previously had 4.5 MW turbine

Sample Companies II

- General Electric
 - A natural fit for a company that works in both energy systems and turbomachinery
 - http://www.ge.com/ecoreport/
 - Purchased company initially founded as Zond energy from Enron after the financial collapse of Enron
 - 2005 installations 1.93 GW (16.9%)
 - 1.5 MW, 2.5 MW and 3.6 MW turbines for onshore and offshore applications

Sample Companies III

- Siemens
 - Locations worldwide
 - http://www.powergeneration.siemens.com/
 - 2.3 MW and 3.6 MW turbines for onshore and offshore applications
 - Total installed capacity on web site on March 12, 2009 is 7,793 turbines with a total of 8.8 GW capacity

Sample Companies IV

- Clipper
 - 6305 Carpenteria Avenue, Santa Barbara
 - Founded in 2001 by James Dehlsen who founded Zond in 1980
 - Main product is Liberty Wind Turbine
 - 2.5 MW with rotor diameters between 89 m and 99 m depending on wind class
 - Three blades, variable speed drive (9.6-15.5 rpm)
 - http://www.clipperwind.com/
Current Technology

- Turbines power range from just under 1 MW to 3-5 MW
- Larger rotor diameters used for larger peak power machines
- Typical rotor diameters on modern machines range from 60 to 90 m