Solar Collector Analysis and Design

Larry Caretto Mechanical Engineering 483 Alternative Energy Engineering II

March 22–24, 2010

Northridge

 $\begin{array}{l} \textbf{Midterm Exam} \\ \textbf{S} & \textbf{Gas turbine using landfill gas with 85% CH₄ (Q_c = 802,802 kJ/kMol) 15% CO₂, 5% N₂ \\ \textbf{P}_{comp.in} = 100 kPa; T_{comp.in} = 290 K; \eta_{s.comp} = 87\%; DP_{combustor} = 30 kPa; T_{in.turbine} = 1450 K; P_{out.turb} = 110 kPa; \eta_{s.turb} = 90\%; P = 50 MW, \eta_{generator} = 94\% \\ \textbf{Find: air and fuel mass flows and outlet %O₂ \\ \textbf{S} tart by finding heating value of landfill gas \\ \mathcal{Q}_{c} = \frac{\overline{\mathcal{Q}}_{c}}{M} = \frac{\sum_{\alpha \in \overline{\mathcal{Q}}_{c}}}{\sum_{\alpha \in \mathcal{M}_{c}}} = \frac{(0.8 \left(\frac{802,802 kJ}{kMol}\right) + (0.2) \left(\frac{28.01 kg}{kMol}\right)}{[0.8 \left(\frac{16.04 kg}{kMol}\right) + (0.15 \left(\frac{44.01 kg}{kMol}\right) + (0.05 \left(\frac{28.01 kg}{kMol}\right)\right)^{2}}{[0.83 (kMol]} \\ \textbf{Denominator is } M_{fuel} = 20.83 kg/kmol] \end{array}$

Midterm Problem One V
• $x = (0.8)(1) + (0.15)(1) + (0.05)(0) = 0.95$ • $y = (0.8)(4) + (0.15)(0) + (0.05)(0) = 3.20$ • $w = (0.8)(0) + (0.15)(2) + (0.05)(0) = 0.30$ • $y = (0.8)(0) + (0.15)(0) + (0.05)(2) = 0.10$
• $A = x + y/4 - w/2 = 0.95 + 3.20/4 - 0.30/2 = 1.6$ • Get λ from Air/Fuel ratio found previously - Air/Fuel = 1/(fuel/air) = 1/0.02966 = 31.71 $\frac{20.83 kg \ fuel}{20.83 kg \ fuel}$
$\frac{Air}{Fuel} = \frac{156.27AA}{M_{Fuel}} \implies \lambda = \frac{Air}{Fuel} \frac{M_{Fuel}}{138.27A} = \frac{51.718g}{kg} \frac{dir}{fuel} \frac{138.274}{\frac{138.274}{kg} air} \frac{1.65molO_2}{kmolO_2} = 3.175$
$\%_{O_2} = \frac{100(\lambda - 1)A}{x + \lambda A B_d - A + z + \frac{\nu}{2}} = \frac{100(3.175 - 1)1.6}{.95 + 2.175(1.6)(4.7742) - 1.6 + 0 + \frac{0.1}{2}}$
Northridge %02 = 14.71%

_	N	/lidterr	n Pi	robl	em T	[hre	e	
•	Give	n: Discre	te win	d spe	ed data	à		
Perc	ent of Wi	nd-Speed Data	Between	Lower an	nd Upper Ve	locity B	ounds (V	/ in m/s)
Lower	Upper	Percent	Lower	Upper	Percent	Lower	Upper	Percent
0	1	2.8747%	10	11	4.3213%	20	21	0.8028%
1	2	9.8109%	11	12	4.1559%	21	22	0.5310%
2	3	10.307%	12	13	4.1527%	22	23	0.3928%
3	4	9.4960%	13	14	3.9050%	23	24	0.2427%
4	5	8.0058%	14	15	4.0583%	24	25	0.1476%
5	6	6.0967%	15	16	3.4830%	25	26	0.1102%
6	7	5.1868%	16	17	3.0287%	26	27	0.0716%
7	8	4.6691%	17	18	2.1695%	27	28	0.0310%
8	9	4.6374%	18	19	1.6005%	28	29	0.0114%
9	10	4.3865%	19	20	1.2489%	29		0.0640%
Calif NC	ornia State Uni	hersity dge						9

Review Thermal Resistance

- Heat flow analogous to current
- Temperature difference analogous to potential difference
- Both follow Ohm's law with appropriate resistance term
- Current: $I = (V_1 V_2) / R$
- Heat Transfer: $Q = (T_1 T_2) / R_{thermal}$

21

California State University Northridge

Solar Efficiency Test Results								
Type of Collector	Intercept = F _R τα	Value at x = 0.1	Slope = F _R U _c					
1-cover, black	0.77	0.095	-6.75					
1-cover, selective	0.77	0.23	-5.4					
2-cover, black	0.74	0.30	-4.4					
2-cover, selective	0.74	0.41	-3.3					
California State University Northridge			63					

