Solar Collector Analysis and Design

Larry Caretto
Mechanical Engineering 483

Alternative Energy Engineering II

March 22-24, 2010
Northridge

Outline

- Midterm exam solutions
- Types of solar collectors
- Review Heat Transfer Basics
- Overview of solar collector analysis
- Analysis of losses from solar collectors
- Transfer of net heat gain to fluid tubes
- Increase in temperature of fluid
- Design equation for solar collectors Northridge

Midterm Problem One II

- Compute compressor and turbine

$$
\begin{aligned}
& T_{2}=T_{1}\left\{1+\frac{1}{\eta_{c}}\left[\left(\frac{P_{2}}{P_{1}}\right)^{\frac{k-1}{k}}-1\right]\right\}=290 \mathrm{~K}\left\{1+\frac{1}{0.87}\left[10^{\frac{1.4-1}{1.4}}-1\right]\right\}=600.2 \mathrm{~K} \\
& T_{4}=T_{3}\left\{1+\eta_{t}\left[\left(\frac{P_{4}}{P_{3}}\right)^{\frac{k-1}{k}}-1\right]\right\}=1473.15 \mathrm{~K}\left\{1+0.88\left[\left(\frac{110 \mathrm{kPa}}{970 \mathrm{kPa}}\right)^{\frac{1.334-1}{1.334}}-1\right]\right\}=901.7 \mathrm{~K} \\
& \mathrm{~W}_{c}= \\
& =\bar{C}_{p, \text { compressor }}\left(T_{1}-T_{2}\right)=\frac{1.004 \mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}(290 \mathrm{~K}-600.2 \mathrm{~K})=\frac{-311.5 \mathrm{~kJ}}{\mathrm{~kg}} \\
& \quad \begin{array}{l}
\text { Northridge }
\end{array}
\end{aligned}
$$

Midterm Problem One III
$\frac{w_{t}=\bar{c}_{p, t u r b i n e}\left(T_{3}-T_{4}\right)=\frac{1.148 \mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}(1450 \mathrm{~K}-901.7 \mathrm{~K})=\frac{629.5 \mathrm{~kJ}}{\mathrm{~kg}}}{\text { - Get fuel/air ratio from combustor }}$
$\frac{\dot{m}_{\text {fuel }}}{\dot{m}_{\text {air }}}=\frac{\bar{c}_{p, \text { combustor }}\left(T_{3}-T_{2}\right)}{Q_{c}}=\frac{\frac{1.076 \mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}(1450 \mathrm{~K}-600.2 \mathrm{~K})}{\frac{30,827 \mathrm{~kJ}}{\mathrm{~kg}}}=0.02966$
$\dot{W}_{\text {net }}=\left(\dot{m}_{\text {air }}+\dot{m}_{\text {fuel }}\right){w_{t}}+\dot{m}_{\text {air }} w_{c}=\dot{m}_{\text {air }}\left[\left(1+\frac{\dot{m}_{\text {fuel }}}{\dot{m}_{\text {air }}}\right){w_{t}}+w_{c}\right]$
$53,191 \mathrm{kWW} \frac{1 \mathrm{~kJ}}{\mathrm{~kW} \cdot \mathrm{~s}}=\dot{m}_{\text {air }}\left[(1+0.02966) \frac{629.5 \mathrm{~kJ}}{\mathrm{~kg}}+\frac{-311.5 \mathrm{~kJ}}{\mathrm{~kg}]}\right]$
Northridge

Midterm Problem One IV
 $$
\dot{m}_{\text {air }}=\frac{158.0 \mathrm{~kg}}{\mathrm{~s}} \quad \dot{m}_{\text {fuel }}=\frac{\text { fuel }}{\text { air }} \dot{m}_{\text {air }}=(0.02966) \frac{158.0 \mathrm{~kg}}{\mathrm{~s}}=\frac{4.686 \mathrm{~kg}}{\mathrm{~s}}
$$

- Find: KO_{2} in exhaust
- Need to find fuel formula components, A and λ
- Get fuel formula as average over all componentds
$\% O_{2}=\frac{100(\lambda-1) A}{D}=\frac{100(\lambda-1) A}{x+\lambda A B_{d}-A+z+\frac{v}{2}}$

Northridge

Midterm Problem Three II

- (a) show: Relation for mean cubed velocity in one band between $\mathrm{V}=\mathrm{a}$ and $\mathrm{V}=\mathrm{b}$

$$
\begin{aligned}
& \overline{V^{3}} \text { band }=\int_{a}^{b} \frac{1}{b-a} V^{3} d V=\left.\frac{1}{b-a} \frac{V^{4}}{4}\right|_{a} ^{b}=\frac{\left(b^{4}-a^{4}\right)}{4(b-a)}= \\
& \frac{\left(b^{2}-a^{2}\right)\left(b^{2}+a^{2}\right)}{4(b-a)}=\frac{(b+a)(b-a)\left(b^{2}+a^{2}\right)}{4(b-a)}=\frac{(b+a)\left(b^{2}+a^{2}\right)}{4}
\end{aligned}
$$

- (b) Find: contribution of wind speeds between rated and cut-out speeds to the average operating power
- This is $P_{\text {max }}$ times fraction of speeds in this range
Northridge

Midterm Problem Three V

- (d) Find: capacity factor if sum in part (c) = 0.3007 MW
- Capacity factor = average operating power divided by maximum power
- Average operating power = sum of part (b) and part (c) components $=0.7480 \mathrm{MW}+$ $0.3007 \mathrm{MW}=1.0487 \mathrm{MW}$
- Capacity factor $=(1.0487 \mathrm{MW}) /(2.5 \mathrm{MW})=$ 41.9\%

Northridge

Review Fourier's Law

- Basic law for heat conduction
- Actually a vector equation $\dot{\mathrm{q}}=-\mathrm{k}$ grad T
- k is thermal conductivity
- Units of k are W/m•K or Btu/hr.ft•R
- For one dimensional heat transfer, $\dot{\mathrm{q}}_{x}$
$=-k d T / d x$; integration (constant \dot{q}_{x}) gives
$\dot{q}=\frac{k\left(T_{1}-T_{2}\right)}{L} \quad$ or $\quad \dot{Q}=\dot{q} A=\frac{k A\left(T_{1}-T_{2}\right)}{L}$
Northridge

Review Thermal Resistance

- Heat flow analogous to current
- Temperature difference analogous to potential difference
- Both follow Ohm's law with appropriate resistance term
- Current: $\mathrm{I}=\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) / \mathrm{R}$
- Heat Transfer: $\mathrm{Q}=\left(\mathrm{T}_{1}-T_{2}\right) / R_{\text {thermal }}$

Northridge
21
Northridge

Review Convection Types

- Free (natural) convection comes from buoyancy, forced convection has a driven flow
- Flows contained in pipes and ducts are internal flows; egg pictures show external flow

- Other considerations are laminar vs. turbulent flow and convection during boiling or condensation

Review Combined Modes II
$\dot{Q}=\frac{T_{\infty 1}-T_{\infty 2}}{R_{\text {total }}}=\frac{T_{\infty 1}-T_{\infty 2}}{R_{\text {conv, } 1}+R_{\text {wall }}+R_{\text {conv, }, 1}} \quad \begin{aligned} & \text { Series } \\ & \text { Resistance } \\ & \text { Formula } \end{aligned}$
$\dot{Q}=\frac{T_{\infty 1}-T_{\infty 2}}{\frac{1}{A h_{1}}+\frac{L}{k A}+\frac{1}{A h_{2}}} \Rightarrow \dot{q}=\frac{\dot{Q}}{A}=\frac{T_{\infty 1}-T_{\infty 2}}{\frac{1}{h_{1}}+\frac{L}{k}+\frac{1}{h_{2}}}$

Basic Solar Collector Analysis

- Overall heat balance
- Incoming solar radiation
- Heat loss from collector to environment
- Useful energy gain = Incoming Solar Radiation - Environmental Heat Loss
- Environmental heat loss proportional to $\Delta T=T_{\text {collector }}-T_{\text {ambient }}$
- Applications that require high collector temperatures will have more heat loss

Northridge

Can analyze each step individually, but heat transfer is the same for all series steps

$$
\begin{aligned}
& \text { Northridge } \\
& \hline
\end{aligned}
$$

28

Useful Heat Transfer

- Heat is added to a collector fluid
- Typically collector fluid is water or water and anti-freeze solution
- Air is also used as collector fluid for home heating
- Energy added from simple first law for open system with consant pressure heat addition

$$
\dot{Q}_{u}=\dot{m} c_{p}\left(T_{f, \text { out }}-T_{f, \text { in }}\right)
$$

Northridge

Solar to Useful Energy

- Solar transmission through glass covers provides absorbed radiation, H_{a}
- Consider three losses
- Conduction through bottom of solar collector box
- Conduction through edge of box
- Loss through top
- Convection between absorber plate and glass covers with conduction through glass
- Convection from top glass cover to ambient

Solar to Useful Energy II

- Absorbed radiation minus losses different for different areas of collector
- Fluid temperature increases from inlet to outlet
- What is fluid temperature increase from absorbed radiation minus losses?
- Reference: Solar Energy Engineering by Jui Hsieh, Prentice-Hall 1986

Loss Through Top

- In steady state the following heat rates will be the same
- Between absorber plate and bottom glass
- From bottom glass to top glass
- Consider two-plate collector
- From top glass to ambient
- Look at exchange between absorber plate at temperature T_{P} and bottom glass at temperature $\mathrm{T}_{\mathrm{g} 2}$
- Have convection plus radiation

Northridge 33

Loss Through Top II

$$
Q_{\text {top }}=h_{p-g 2} A_{c}\left(T_{P}-T_{g 2}\right)+\frac{A_{c} \sigma\left(T_{P}^{4}-T_{g 2}^{4}\right)}{\frac{1}{\varepsilon_{P}}+\frac{1}{\varepsilon_{g 2}}-1}
$$

- Equation for convection plus radiation between two parallel plates
- $\mathrm{A}_{\mathrm{c}}=$ Collector Area
$-h_{p-g 2}=$ convection coefficient for air gap
$-\varepsilon_{\mathrm{p}}, \varepsilon_{\mathrm{g} 2}=$ emissivities of plate and glass
$-\mathrm{T}_{\mathrm{p}}, \mathrm{T}_{\mathrm{g} 2}=$ temperatures of plate and glass

Loss Through Top IV

- Have similar equation for heat transfer between top and bottom glass plate

$$
\begin{gathered}
Q_{\text {top }}=\left(h_{g 2-g 1}+h_{r, g 2-g 1}\right) A_{c}\left(T_{g 2}-T_{g 1}\right)=\frac{T_{g 2}-T_{g 1}}{R_{g 2-g 1}} \\
h_{r, g 2-g 1}=\frac{A_{c} \sigma\left(T_{g 1}^{2}+T_{g 2}^{2}\right)\left(T_{g 1}+T_{g 2}\right)}{\frac{1}{\varepsilon_{g 1}}+\frac{1}{\varepsilon_{g 2}}-1}
\end{gathered}
$$

$-\mathrm{T}_{\mathrm{g} 1}, \varepsilon_{\mathrm{g} 1}=$ Temperature, Emissivity of top glass
$-\mathrm{h}_{\mathrm{g} 2-\mathrm{g1}}=$ convection coefficient for g_{1} to g_{2}
Northridge

Loss Through Top V

- Similar equation for heat transfer between top glass plate and ambient
$Q_{\text {top }}=\left(h_{g 1-a}+h_{r, g 1-a}\right) A_{c}\left(T_{g 1}-T_{a}\right)=\frac{T_{g 1}-T_{a}}{R_{g 2-g 1}}$
$h_{r, g 1-a}=\frac{A_{c} \sigma\left(T_{g 1}^{2}+T_{s k y}^{2}\right)\left(T_{g 1}+T_{s k y}\right)}{\frac{1}{\varepsilon_{g 1}}+\frac{1}{\varepsilon_{g 2}}-1} \frac{T_{g 1}-T_{s l y}}{T_{g 1}-T_{a}}$
- Radiation h different here because $\Delta \mathrm{T}$ for radiation uses $\mathrm{T}_{\text {sky }}$, not T_{a}
$-\mathrm{h}_{\mathrm{g} 1-\mathrm{a}}=$ convection coefficient for g_{1} to ambient Northridge

Total Loss

- $\mathrm{Q}_{\text {sides }}=\mathrm{U}_{\text {side }}^{\prime} \mathrm{A}_{\text {side }}\left(\mathrm{T}_{\mathrm{P}}-\mathrm{T}_{\mathrm{a}}\right)$
- Can estimate $U_{\text {side }}=0.5 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$
- Use $U_{\text {side }} A_{c}=U_{\text {side }}^{\prime} A_{\text {side }}$ for common area
$-Q_{\text {sides }}=U_{\text {side }} A_{c}\left(T_{P}-T_{a}\right)=\left(T_{P}-T_{a}\right) / A_{\text {side }}$
- Total is sum of individual losses
- $Q_{\text {loss }}=U_{c} A_{c}\left(T_{P}-T_{a}\right)=\left(T_{P}-T_{a}\right) / R_{c}$
- Overall conductance and resistance
- $\mathrm{U}_{\mathrm{c}}=\mathrm{U}_{\text {top }}+\mathrm{U}_{\text {bottom }}+\mathrm{U}_{\text {sides }}$

Northridge $\quad \frac{1}{R_{c}}=\frac{1}{R_{\text {top }}}+\frac{1}{R_{\text {botom }}}+\frac{1}{R_{\text {side }}}$

Loss Through Top/Bottom

- Combine three resistances in series to get $R_{\text {top }}=R_{P-g 2}+R_{g 2-\mathrm{g} 1}+R_{g 1-a}$
$-Q_{\text {top }}=\left(T_{P}-T_{a}\right) / R_{\text {top }}=U_{\text {top }} A_{c}\left(T_{P}-T_{a}\right)$
- Loss through bottom is conduction through insulation ($\mathrm{k}_{\text {ins }}, \Delta \mathrm{x}_{\text {ins }}$) in series with convection to ambient with $\mathrm{h}_{\mathrm{b}-\mathrm{a}}$
$Q_{\text {botom }}=\frac{T_{P}-T_{a}}{R_{\text {ins }}+R_{\text {conv }}}=\frac{T_{P}-T_{a}}{\frac{k_{\text {ins }}}{\Delta x_{\text {ins }} A_{c}}+\frac{1}{h_{b-a} A_{c}}}=U_{\text {botom }} A_{c}\left(T_{P}-T_{a}\right)$
Northridge 38

Approximate U_{C} Equation	
$\begin{aligned} U_{c}= & \frac{1}{\frac{A^{\prime}}{T_{p}}\left(\frac{T_{p}-T_{a}}{N+B}\right)^{0.33}+\frac{1}{h_{w}}} \\ & \sigma\left(T_{p}+T_{a}\right)\left(T_{p}^{2}+T_{a}^{2}\right) \end{aligned}$	$\begin{aligned} & N=\text { number of glass covers } \\ & A^{\prime}=250[1-0.0044(\mathrm{~s}-90)] \\ & \mathrm{S}=\text { tilt angle (degrees) } \\ & \mathrm{B}=\left(1-0.04 \mathrm{~h}_{\mathrm{w}}+\right. \\ & \left.0.0005 \mathrm{~h}_{\mathrm{w}}{ }^{2}\right)(1+0.091 \mathrm{~N}) \\ & \mathrm{h}_{\mathrm{w}}=\text { heat transfer coeffi- } \end{aligned}$
$\frac{1}{\varepsilon_{p}+0.05 N\left(1-\varepsilon_{p}\right)}+\left(\frac{2 N+B-1}{\varepsilon_{g}}\right)$	${ }^{N} \begin{aligned} & \text { cient from top to ambient } \\ & \text { prer symbols have } \\ & \text { prevous definitions }\end{aligned}$
Equation uses SI units: U_{c} and h in $\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}, \mathrm{~T}$ in K, σ $=5.670 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}^{4}, \varepsilon_{\mathrm{g}}$ is same for all glass covers	
Northridge	40

Absorber Plate Analysis V

- For $\mathrm{d} \theta / \mathrm{d} x=0$ at $\mathrm{x}=0$
$0=\frac{d \theta}{d x}=A m \cosh m 0+B m \sinh m 0=A m \quad \Rightarrow \quad A=0$
- For $\theta=\mathrm{T}_{\mathrm{b}}-\mathrm{T}_{\mathrm{a}}-\mathrm{H}_{\mathrm{a}} / \mathrm{U}_{\mathrm{c}}$ at $\mathrm{x}=\mathrm{L}$ $T_{b}-T_{P}-\frac{H_{a}}{U_{c}}=B \cosh m L \quad B=\frac{T_{b}-T_{a}-\frac{H_{a}}{U_{c}}}{\cosh m L}$ $\theta=B \cosh m x=\frac{T_{b}-T_{a}-\frac{H_{a}}{U_{c}}}{\cosh m L} \cosh m x$ Northridge 45

Absorber Plate Analysis IV

- Boundary conditions are $\mathrm{T}=\mathrm{T}_{\mathrm{b}}$ at $\mathrm{x}=\mathrm{L}$ and $d T / d x=0$ at $x=0$
- Define $\theta=T-T_{a}-H_{a} / U_{c}$ so $d T / d x=d \theta / d x$
- $d \theta / d x=0$ at $x=0$ and $\theta=T-T_{a}-H_{a} / U_{c}$ at $x=L$ and the differential equation is

$$
\begin{aligned}
& \frac{d^{2} T}{d x^{2}}=\frac{U_{c}}{t k}\left(T-T_{a}-\frac{H_{a}}{U_{c}}\right) \Rightarrow \frac{d^{2} \theta}{d x^{2}}=\theta_{t}^{i U_{c}}=m^{2} \theta \\
& \theta=A \sinh m x+B \cosh m x \quad \frac{d \theta}{d x}=A m \cosh m x+B m \sinh m x
\end{aligned}
$$

Absorber Plate Analysis VI

$$
\frac{\theta}{T_{b}-T_{P}-\frac{H_{a}}{U_{c}}}=\frac{T-T_{a}-\frac{H_{a}}{U_{c}}}{T_{b}-T_{a}-\frac{H_{a}}{U_{c}}}=\frac{\cosh m x}{\cosh m L}
$$

- Heat flow from plate to tube $=-t k d T /\left.d x\right|_{x=L}$

$$
\begin{aligned}
& \left.\frac{d T}{d x}\right|_{x=L}=\left.\left(T_{b}-T_{a}-\frac{H_{a}}{U_{c}}\right) \frac{m \sinh m x}{\cosh m L}\right|_{x=L}=\left(T_{b}-T_{a}-\frac{H_{a}}{U_{c}}\right) \frac{m \sinh m L}{\cosh m L} \\
& q=-\left.t k \frac{d T}{d x}\right|_{x=L}=-t k m\left(T_{b}-T_{a}-\frac{H_{a}}{U_{c}}\right) \tanh m L \quad t k m=\frac{U_{c}}{m^{2}} m=\frac{U_{c}}{m} \\
& \begin{array}{c}
q=-\frac{U_{c}}{\substack{q}}\left(T_{b}-T_{a}-\frac{H_{a}}{U_{c}}\right) \tanh m L=\frac{1}{m}\left[H_{a}-U_{c}\left(T_{b}-T_{a}\right)\right] \tanh m L \\
\text { Northridge }
\end{array}
\end{aligned}
$$

Absorber Plate Analysis VII

- Account for heat flows into tube from two sides and define $F=\tanh (\mathrm{mL}) /(\mathrm{mL})$
$q_{\text {plate }}=\frac{2}{m}\left[H_{a}-U_{c}\left(T_{b}-T_{a}\right)\right] \tanh m L=2 L F\left[H_{a}-U_{c}\left(T_{b}-T_{a}\right)\right]$
- Solar energy/heat loss above tube, $D\left[H_{a}-\right.$ $\left.U_{c}\left(T_{b}-T_{a}\right)\right]$ is added to plate heat transfer
- The total is the useful heat transfer to the fluid in the solar collector tubes

$$
q_{\text {total }}=(2 L F+D)\left[H_{a}-U_{c}\left(T_{b}-T_{a}\right)\right]=q_{u}^{\prime}
$$

Northridge

Absorber Tube Analysis

- Relationship between $q_{u}^{\prime} \quad q_{u}=$ (useful heat per unit length),,$\frac{T_{b}-T_{f}}{\begin{array}{l}\text { fluid temperature, } \mathrm{T}_{\mathrm{f}} \text {, and } \\ \text { bond temperature } \mathrm{T}_{\mathrm{b}}\end{array}} \frac{1}{C_{B}}+\frac{1}{h_{c, i} \pi D_{i}}$
$-\mathrm{C}_{\mathrm{B}}=$ bond conductance $>35 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$
- $\mathrm{C}_{\mathrm{B}}=\mathrm{k}_{\mathrm{B}} \mathrm{w}_{\mathrm{B}} / \mathrm{t}_{\mathrm{B}}$ where $\mathrm{k}_{\mathrm{B}}, \mathrm{w}_{\mathrm{B}}$, and t_{B} are bond thermal conductivity, width and thickness
$-h_{c, i}=$ Heat transfer coefficient inside tube
$-D_{i}=$ inside tube diameter

Northridge

Absorber Tube Analysis II

- Can eliminate bond temperature between two equations for q_{u}^{\prime}

$$
\begin{aligned}
& q_{u}^{\prime}=\frac{T_{b}-T_{f}}{\frac{1}{C_{B}}+\frac{1}{h_{c, i} \pi D_{i}}} \Rightarrow T_{b}=T_{f}+q_{u}^{\prime}\left(\frac{1}{C_{B}}+\frac{1}{h_{c, i} \pi D_{i}}\right) \\
& q_{u}^{\prime}=(2 L F+D)\left[H_{a}-U_{c}\left(T_{b}-T_{a}\right)\right] \\
& q_{u}^{\prime}=(2 L F+D)\left[H_{a}-U_{c}\left(T_{f}+q_{u}^{\prime}\left(\frac{1}{C_{B}}+\frac{1}{h_{c, i} T D_{i}}\right)-T_{a}\right)\right]
\end{aligned}
$$

Absorber Tube Analysis III $q_{u}^{\prime}\left[1+(2 L F+D) U_{c}\left(\frac{1}{C_{B}}+\frac{1}{h_{c ; i} \pi D_{i}}\right)\right]=(2 L F+D)\left[H_{a}-U_{c}\left(T_{f}-T_{a}\right)\right]$

- Divide by $\mathrm{U}_{\mathrm{c}}(2 \mathrm{LF}+\mathrm{D})$ and solve for q_{u} $q_{u}^{\prime}\left[\frac{1}{(2 L F+D) U_{c}}+\left(\frac{1}{C_{B}}+\frac{1}{h_{c, i} \pi D_{i}}\right)\right]=\frac{1}{U_{c}}\left[H_{a}-U_{c}\left(T_{f}-T_{a}\right)\right]$
 Northridge

Absorber Tube Analysis IV

- $\mathrm{F}^{\prime}=$ Collector efficiency factor
- w = Distance between tube centerlines
$F^{\prime}=\frac{\text { Thermal Resistance Between Plate and Ambient }}{\text { Thermal Resistance Between Fluidand Ambient }}$

- Now find fluid temperature increase from inlet to exit
Northridge

Absorber Tube Analysis V

- Energy balance over differential $\delta \mathrm{y}$ in one of n tubes where added heat is $q_{u}^{\prime} \delta y$ and \dot{m} is total mass flow rate

Absorber Tube Analysis VII

$$
\frac{T_{f, \text { out }}-T_{a}-H_{a} / U_{c}}{T_{f, \text { in }}-T_{a}-H_{a} / U_{c}}=e^{-\frac{A_{F} F U_{c}}{\dot{m} c_{p}}}
$$

- Introduce $\mathrm{F}_{\mathrm{R}}=$ (Actual heat transfer) / (Heat transfer is entire plate is at $\mathrm{T}_{\text {fi, }}$

$$
\begin{aligned}
F_{R}= & \frac{\dot{m} c_{p}\left(T_{f . \text {.out }}-T_{f . \text { in }}\right)}{A_{c}\left[H_{a}-U_{c}\left(T_{f . \text {.in }}-T_{a}\right)\right]}=\frac{\dot{m} c_{p}}{U_{c} A_{c}} \frac{\left(T_{f . \text { out }}-T_{f . \text { in }}\right)}{\left(H_{a} / U_{c}-T_{f . \text { in }}+T_{a}\right)} \\
F_{R}= & \frac{\dot{m} c_{p}}{U_{c} A_{c}} \frac{\left(T_{\text {f.out }}-T_{a}-H_{a} / U_{c}\right)-\left(T_{f . \text { in }}-T_{a}-H_{a} / U_{c}\right)}{-\left(T_{f . \text { in }}-T_{a}-H_{a} / U_{c}\right)} \\
& \text { Northridge }
\end{aligned}
$$

> Absorber Tube Analysis VIII
> $F_{R}=\frac{\dot{m} c_{p}}{U_{c} A_{c}}\left[1-\frac{\left(T_{\text {f.out }}-T_{a}-H_{a} / U_{c}\right)}{\left(T_{\text {f.in }}-T_{a}-H_{a} / U_{c}\right)}\right]=\frac{\dot{m} c_{p}}{U_{c} A_{c}}\left(1-e^{-\frac{A F U_{c}}{m c_{p}}}\right)$
> $\begin{aligned} & \text { - Last step uses } \\ & \text { previous result }\end{aligned} \frac{T_{f, \text { out }}-T_{a}-H_{a} / U_{c}}{T_{f, \text { in }}-T_{a}-H_{a} / U_{c}}=e^{-\frac{A F U_{c}}{\operatorname{mic}_{c}}}$
> - Definition: $F_{R}=\frac{\dot{m} c_{p}\left(T_{\text {toun }}-T_{t, f i n}\right)}{A_{c}\left[H_{a}-U_{c}\left(T_{t, n}-T_{a}\right)\right]}=\frac{\dot{Q}_{u}}{A_{c}\left[H_{a}-U_{c}\left(T_{t, n}-T_{a}\right)\right]}$

- Result called Hottel-Whillier-Bliss Equation

$$
\dot{Q}_{u}=F_{R} A_{c}\left[H_{a}-U_{c}\left(T_{f ., n}-T_{a}\right)\right]
$$

Northridge

Solar Input

- H_{a} used previously is solar energy absorbed by the collector
- H_{i} is the solar radiation incident on the collector
- Two sources of solar radiation
- Direct radiation from the sun
- Diffuse radiation from atmosphere and ground reflection
- Direction affects amounts transmitted and absorbed
Northridge 57

Collector Efficiency

- Instantaneous collector efficiency, η_{c}

$$
\eta_{c}=\frac{Q_{u}}{A_{c} H_{i}}
$$

- Average collector efficiency over a time period, $\tau, \bar{\eta}_{c}$

$$
\bar{\eta}_{c}=\frac{\int_{0}^{2} Q_{u} d t}{A_{c}^{x} \int_{0}^{\tau} H_{i} d t}
$$

Northridge

Summary of Results

- $\mathrm{Q}_{\mathrm{u}}=$ useful heat transfer to working fluid
$F^{\prime}=\frac{1}{\frac{w}{U_{c}}\left[\frac{1}{U_{c}(2 L F+D)}+\frac{1}{C_{B}}+\frac{1}{\pi D_{i} h_{i}}\right]}$

$$
F_{R}=\frac{\dot{m} c_{p}}{U_{c} A}\left[1-e^{-\frac{U_{c} A F^{\prime}}{\dot{m} c_{p}}}\right]
$$

$Q_{u}=A F_{R}\left[H_{a}-U_{c}\left(T_{f, \text { in }}-T_{a}\right)\right] \quad T_{f, \text { out }}=T_{f, \text { in }}+\frac{Q_{u}}{\dot{m} c_{p}}$
Northridge
56

Transmission and Absorption

- Radiation entering top glass cover can be transmitted, absorbed and reflected
- Amount transmitted to second glass cover can also be transmitted, absorbed, and reflected
- Want overall proportion of incident radiation that is absorbed by collector
- This is given by $H_{a}=H_{i} \tau \alpha$, where $\tau \alpha$ is the mean of the transmissivity times the absorptivity for the total process
Northridge

Solar Efficiency Testing

- Start with Hottel-Whillier-Bliss Equation

$$
Q_{u}=F_{R} A_{c}\left[H_{a}-U_{c}\left(T_{f . \text { in }}-T_{a}\right)\right\rfloor
$$

- Replace H_{a} by $\mathrm{H}_{\mathrm{i}} \tau \alpha$

$$
Q_{u}=F_{R} A_{c}\left[H_{i} \tau \alpha-U_{c}\left(T_{f . i n}-T_{a}\right)\right\rfloor
$$

- Substitute into efficiency equation

Solar Efficiency Testing II

- Last equation shows how to determine collector parameters in testing

$$
\eta_{c}=\frac{Q_{u}}{A_{c} H_{i}}=F_{R} \tau \alpha-\frac{F_{R} U_{c}\left(T_{f . i n}-T_{a}\right)}{H_{i}}
$$

- Measure and plot collector efficiency, η_{c}, as a function of $\left(\mathrm{T}_{\mathrm{f}, \mathrm{in}}-\mathrm{T}_{\mathrm{a}}\right) / \mathrm{H}_{\mathrm{i}}$
- Measure $Q_{u}=\dot{m} c_{p}\left(T_{f, \text { out }}-T_{f, \text { in }}\right)$
- Intercept is $F_{R} \tau \alpha$
- Slope is $-\mathrm{F}_{\mathrm{R}} \mathrm{U}_{\mathrm{c}}$

One Final Word

- Efficiency tests are usually done with the collector normal to the sun's rays
- This measures a particular $\tau \alpha$ product, called the normal $\tau \alpha$ product, $(\tau \alpha)_{n}$
- For actual collector operation the $\tau \alpha$ product can vary over the year with the position of the sun
- Adjustments can be made to account for this variation to the $\tau \alpha$ product

Northridge

