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Today’s Class
• Review last class
• Modeling general fuels
• Air/fuel ratio and λ = relative ratio
• Products for complete combustion
• Combustion efficiency
• Time value of money

– Present and future worth
– Series of payments

The material in the lectures for tonight will be a review for students who have 
completed a course in engineering economic analysis such as the MSE 304, 
Engineering Economy, course required of all engineering majors at CSUN. 
The material covered in this lecture will summarize the important points of 
this material and provide equations that can be used for simple 
computations.
The key concept is the time value of money.  Money that could be used to 
purchase advanced energy technology to provide future savings on fuel 
costs could also be invested at some interest rate.  A purely economic 
decision to purchase the new energy technology is based on a comparison 
of the savings from that technology with the return from some alternative 
investment for the purchase price. 
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Basic Combustion Analysis
• General fuel formula: CxHySzOwNv

• x, y, z, w, and v from ultimate analysis 
or analysis of gas mixtures

• Mineral matter included in ultimate 
analysis represented as %Ash or %MM

• Mfuel = 12.0107x + 1.00794y + 32.065z 
+ 15.9994w + 14.0067v

• mfuel = Mfuel / (1 – %MM)

For ultimate analysis x = wt%C/12.0107, y = wt%H/1.00794, z = t%S/32.065,    
w = wt%O/16.0004, v = wt%N/14.0067
For mixture of gases where species k has mole fraction ωk, xk, C atoms, yk H 
atoms, etc. compute x and y for fuel formula as follows.  (Similar formulas 
apply for other atoms in fuel “molecule”.) 

When an ultimate analysis is used to compute x, y, z, w,  and v, the value of 
Mfuel is 100 mass units.  When a gas analysis is used to compute x, y, z, w,  
and v for the mixture, Mfuel, will be the mean molar mass of the mixture.
Mfuel represents the combustible part of the fuel.  The actual fuel mass is 
given by mfuel.

∑=
species

kk xx ω ∑=
species

kk yy ω
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Combustion Air
• A = x + y/4 + z – w/2 = stoichiometric 

moles O2/mole fuel
• Actual O2/Stoichiometric O2 = λ
• Air/fuel ratio = mair/mfuel =138.28λA/mfuel
• CxHySzOwNv + λA(O2 + 3.77 N2) →

xCO2 + (y/2)H2O + zSO2 + (λ – 1)AO2 + 
3.77λA + v/2)N2

• Can relate λ to fraction of O2 in dry 
exhaust (see notes page)

The stoichiometric O2 requirement is the minimum amount of O2 for 
complete combustion: x moles of O2 are required to convert Cx to xCO2; y/4 
moles of O2 are required to convert Cy to (y/2)H2O; z moles of O2 are 
required to convert Sz to zSO2; the Ow in the fuel supplies w/2 moles of O2
needed for combustion.
Combustion processes usually have more oxygen than the stoichiometric 
requirement.  The ratio, λ, is known as the relative air/fuel ratio.
Exhaust gas measurements remove the water in the exhaust to avoid 
contamination in the sampling system and analyzers.  The resulting exhaust 
is called dry exhaust.  Measurements are typically made in terms of this dry 
exhaust stream.  The equations that relate λ to the (dry) exhaust oxygen 
concentration are copied below:
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Emission Rates
• Often stated as pollutant mass per unit 

heat input from fuel
• Equation used:
• Compute ρi,d = yi,dMiPstd/RuTstd

• Fd is dry exhaust volume/heat input
– Use default values of compute by equation
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Some values of Fd from http://www.epa.gov/ttn/emc/promgate/m-19.pdf 
(accessed February 6, 2007) are shown below
Fuel dscm/J dscf/MMBtu
Bituminous Coal 2.63x10-7 9,780
Lignite 2.65x10-7 9,860
Oil 3 2.47x10-7 9,190 
Natural Gas 2.34x10-7 8,710
Constants for computing Fd from ultimate analysis (note that 84%C is 
entered as 84 not .84.
The units for the higher heating value (Qc) are Btu/lbm or kJ/kg.
K = Conversion factor, 10-3 (kJ/J)/(%) [106 Btu/million Btu].
KC = (9.57 scm/kg)/% [(1.53 scf/lb)/%].
KH = (22.7 scm/kg)/% [(3.64 scf/lb)/%].
KN = (0.86 scm/kg)/% [(0.14 scf/lb)/%].
KO = (2.85 scm/kg)/% [(0.46 scf/lb)/%].
KS = (3.54 scm/kg)/% [(0.57 scf/lb)/%].
Pstd = 101.325 kPa = 14.696 psia, Ru = 8.31447 kPa▪m3/kgmol▪K = 10.7316 
psia▪ft3/lbmol▪R, Tstd = 288.15 K = 518.67 R,
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Other Equations
• Pollutant mass per unit heat input
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In the equation for combustion efficiency, 
Air/fuel is the air to fuel (mass) ratio
Cp,air = 0.24 Btu/lbm▪R = 1.005 kJ/kg▪K
f = molar exhaust ratio CO/(CO + CO2)
x = carbon atoms in fuel formula, CxHy…
Qc = heat of combustion (Btu/lbm or kJ/kg)
ΔhCO 282,990 kJ/kgmol = 121,665 Btu/lbmol

Mfuel is combustible fuel molar mass lbm/lbmol or kg/kmol
The heat of combustion can be taken as either the higher or lower heating 
values.  Use of the higher heating value will result in a lower combustion 
efficiency.
If cp,air is assumed constant the integral can be simply replaced by cp.air(Tout
– Tin).  Note that if Tout = Tin and x = 0 the combustion efficiency is 100% by 
this formula.
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Energy Economics
• How much should one pay now for a 

more efficient product compared to 
future energy savings?
– Payoff period analysis payoff period = 

(initial cost) / (future savings)
– Better analysis considers time value of 

money
• Easy comparison is increased home mortgage 

payment for energy efficient construction 
versus energy savings over same time period

The straightforward way to analyze economic decision on energy technology 
is called the payoff period.  For example, assume you are comparing two 
similar refrigerators, one of which costs $400 more than the other and the 
label says that the more efficient refrigerator will use 500 kWh per year less 
than the less efficient.  If your electricity cost is 10 cents per kWh, this will be 
a savings of $50/year.  So an initial cost increment of $400 would be 
recouped in ($400) / ($50/year) = 8 years.  You could make a decision on 
which refrigerator to by depending on whether or not you would be happy 
with this time period.
This payback analysis does not account for the time value of money.  If you 
were to borrow money for the purchase you could compare the difference in 
your monthly payments for each refrigerator to the expected cost savings of 
($50/year) / (12 months/year) = $4.17 / month.  If difference in the monthly 
payment for the more efficient (and more expensive) refrigerator was more 
than this, it would not pay to buy it.  Here you are accounting for the time 
value of money since you are comparing two payments at the same point in 
time.
In analyzing the time value of money one has to also consider the effects of 
inflation.  Although your electricity now costs 10 cents per kWh, future 
inflation may increase the cost.  If you were considering purchasing a hybrid 
car, what would you assume for the future cost of gasoline that you would 
use to determine your fuel savings.
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Time Value of Money
• Money can be invested to earn more
• Simplest idea is interest on a loan with a 

single payment at the end of the loan
– F = future value = amount to repaid
– P = present value = amount of loa
– t = time period for the loan
– i = annual interest rate on the loan
– F = P + itP = (1 + it)P

• Typically assume that t = 1 time period and i is 
interest rate per period giving F = P(1 + i)

The key component of engineering economic analysis is recognizing the 
time value of money.  Most of use are familiar with this through the interest 
charged on loans or credit cards.  In investment, companies look for a 
desired rate of return, which is similar to an interest rate.
Interest rates are usually expressed as a percentage per unit time period.  
For example, many credit cards have an interest rate of 1.5% per month.  
Home loans are usually expressed as a percent per year.
Typically formulas for interest are expressed  If the time period is one month, 
then the interest rate must be in units of 1/month.  If t = 1 period the time is 
not explicitly shown in the equation and we write F = P(1 + i). This is the 
form used in almost all economic analyses.  However, it depends on having 
the correct time units for interest rate that correspond to one time period.
If the money is used for more than one time period of the loan, and during 
the second time period additional interest is paid not only on the original 
amount but also on the original interest payment, the loan is said to be 
compounded.  Most analysis of the time value of money consider the effects 
of compounding which we will consider next.
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Compounding
• Loan is made for several years
• Interest iP on initial principal at end of 

year increases principal P + iP = (1 + i)P
– In second year interest payment is i(1+i)P 

increasing principal to (1 + i)P + i(1 + i)P = 
(1 + i)(1 + i)P = (1 + i)2P

– We can infer the formula for the future 
amount, F, after the last interest payment at 
the end of year n

• F = (1 + i)nP

– F = future value = amount to repaid

In engineering economic analysis one recognizes the time value of money 
and compounding.  The basic argument is that a company can invest its 
money in the company to produce future profits or it could make other 
investments that might return more income. For investments, companies 
look for a desired rate of return, which is similar to an interest rate.
A key component of interest is compounding.  Even if there is only a single 
payment at the end of the loan, the interest is quoted as an annual interest.  
In addition, the interest is applied each year (or more frequently).  Future 
interest is based on the original loan amount plus the already incurred 
interest.  For example, a loan of $10,000 with a 10% per year interest rate 
would have the following interest accumulations each year:
Year 0: $10,000
Year 1: $10,000 + 10%($10,000) = $11,000
Year 2: $11,000 + 10%($11,000) = $12,100
Year 3: $12,100 + 10%($12,100) = $13,310
Without compounding the interest of 10% per year for three years would be 
$3,000; with compounding, the total interest is $3,310.  Note that the formula 
shown above predicts this result: $10,000(1 + 0.1)3 = $10,000(1.331) = 
$13,310.
Note also that interest rates in percentages must be converted to decimal 
fractions before being used in interest formulas.
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Interest Rate
• Can be compounded at greater 

frequency than annual
– However, interest rate is still quoted as an 

annual rate
• If interest is compounded k time a year the 

interest rate for each period is i/k
• Value at the end of the year (1 + i/k)k times the 

value at the start of the year
• As k → ∞, (1 + i/k)k → ei(1)

• For multiple (or partial) years, t, F = Peit

Loans can be compounded at a frequency greater than an annual frequency.  
Home mortgages and credit card debt are compounded monthly.  The
ultimate compounding rate is instantaneous.  In the limit as the number of 
compounding periods approaches infinity, the formula for the future worth 
becomes exponential: F = Peit.  

Consider an interest rate of 6% per year.  If there is no compounding during 
the year the value at the end of the year is 1.06 times the value at the 
start.  If there is semi annual compounding, the value at the end of the 
year is (1 + .06/2)2 = 1.0609 times the value at the start of the year.  
Continuing the progression we have the following results for the end/start 
ratio as a function of compounding periods:

3 1.06121 10 1.06146
4 1.06136 20 1.061741
6 1.06152 100 1.061817
We see that even with 10 compounding periods we are quickly approaching 

the instantaneous value of ei(1) = e0.06 = 1.061837
When compounding is used we speak of the nominal annual rate (here 6%) 

and the effective annual rate, which depends on the number of 
compounding periods.  The table above shows, for example, that 
quarterly compounding gives an effective annual rate of 6.136%. 
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Annualized Cost
• This is like the payments on a loan over 

the lifetime of the object purchased
– Typical engineering economic analysis looks 

at cash flows at the end of a year
– Equivalent annual cash flow for present 

worth, P, at interest rate i, lifetime n

– E.g.: i = 10%, n = 30, A/P = .1/[1 – (1 + .1)-30]
( ) ni

i
P

A
−+−

=
11

A/P = .106079

The ratio A/P can be found in tables in textbooks on engineering economics 
and is present on many calculators and in the Excel function pmt(interest
rate, number of periods, present value).  To compute the A/P ratio a value of 
-1 must be entered for the present value; the pmt function has additional 
arguments that can be ignored for the purposes of the A/P formula.
This formula allows one to compute the annual costs of an operation such as 
an electric power plant, including the annual operating and maintenance 
costs and fuel costs, plus the annualized cost of the initial plant construction.
This formula is sometimes called the capital recovery factor.  In applications 
of the inverse of this formula, finding the present worth of a series of future 
payments, the interest rate is sometimes called the discount rate.  This 
meaning is that an individual or company would “discount” future cash flows 
to compute their present value.
The analysis of projects with an initial cost and recurring costs must consider 
the time value of money.  This can be done by computing the present worth, 
P, of the annual recurring costs, A, by the formula:  P = A[1 – (1 + i)-n]/i.  
This value is then added to the initial cost to obtain the total cost at present 
value.
An alternative approach is to convert the initial cost to an equivalent set of 
annual costs and add the annual cost to the recurring cost to get the total 
cost for each year over the life of the project.
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A/P Formula Use
• Can be used for any time period as long 

as i is the interest rate per period
– Used for home mortgage calculations with 

monthly interest rate
– Easy to compute A and P

• n =  – ln(1 – iP/A) / ln(1 + i)
• No exact formula for i

– Some calculators have financial functions
– Excel spreadsheet formulas shown below

Computations with the A/P formula can be done in Excel using the following 
functions.  Note that all these formulas assume that A and P have opposite 
signs.  If P represents money you receive it is positive and the value of A will 
be negative.  If P represents money you loan, it will be negative, and the 
value of A will be positive.
The function PMT(i, N, P) computes the value of A.  To obtain a positive 
value for the result A of the PMT function, a minus sign is placed before the 
present value P in the function.
The function NPER(i, A, P) computes the value of N  (Remember to use 
opposite signs for A and P.)
The function RATE(N, A, P) computes the periodic interest rate, i, 
(Remember to use opposite signs for A and P.)
For a non-uniform series of payments at uniform time intervals the Excel 
function NPV(i, values) computes the present value of the payments.  In this 
formula i is the interest rate and values is a range of cells that contains the 
set of different payments.  The present value is computed at one time period 
before the first payment in the values cells.
See Excel documentation for using the following functions: IRR computes 
the internal rate of return on a series of payments at uniform time intervals, 
but different amounts; XIRR and XNPV are similar to the IRR and NPV 
functions except that they consider non-uniform time intervals.
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Example Problem
• You have been offered to purchase a 

photovoltaic solar collector for your 
house.  The collector costs $35,730, but 
LADWP will give you a credit of $14,573 
and you can get a Federal tax credit of 
$10,719.  The expected electricity 
savings is $720 per year over a lifetime 
of 25 years.  What is the effective 
interest rate on this solar collector?

We can use the formula for the A/P ratio, where P is the initial cost and A is 
the annual savings.  For n = 25 years and i as the annual interest rate the 
formula gives:

Solve by trial and error or calculator/spreadsheet that computes interest rate.  
Find “interest rate” is 4.66%.
What if there were no rebates or tax credits, what would the effective interest 
rate be?

Again using a trial-and-error solution or having a formula in a 
calculator/spreadsheet gives an interest rate of -4.7015%.
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Considering Inflation
• What is i in equation F = P(1 + i)n?

– Real interest rate accounts for inflation
– Market interest rate, im, paid by banks or 

charged by lenders, includes inflation
– Inflation rate, f

• If i is real interest rate, F is in terms of 
constant dollars at time of investment

• If we use im, the market rate, F is in terms 
of then-current dollars

We are all aware that inflation reduces the purchasing power of money over 
time.  One thousand dollars in year zero has a purchasing power of 
$1000/(1.03) = $970.87after one year; after two years it is = $970.87/1.03 = 
$1000/(1.03)2 = $942.60, etc.  In general the purchasing power of a year 
zero dollar is 1/(1 + f)n of the original dollar.
The actual price that we pay includes the effect of inflation; this approach is 
said to use current dollars.  When we use this accounting we want to 
consider the market interest rate that includes the effects of inflation.
The real interest rate, which does not consider the effect of inflation is used 
for internal economic analyses.  In this case we say that we are using 
constant dollars (as opposed to currency that loses its value due to 
inflation.).. It is useful for comparing options, but it will not give results that 
match future marketplace prices that change due to inflation.
The decision of which analysis to use (a) market interest rate and current 
dollars or (b) real interest rate and constant dollars, is a matter of choice, 
convention, or specifications determined by some government agency or 
standard-setting body.
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Considering Inflation II
• For the market rate, im, the future worth 

in then-current dollars, F = P(1 + im)n

• The future worth in constant dollars, F’, 
will be less than F due to inflation:

• F’ = F/(1 + f)n = P(1 + im)n/(1 + f)n

• The future worth in constant dollars is 
found by using the real interest rate, i
– F’ = P(1 + i)n = P(1 + im)n/(1 + f)n

– im = i + f + if

The formulas on this chart are based on using discrete formulas. Starting 
with an initial present worth, P, the market interest rate, im (the actual rate 
you would get from a bank or pay to a lender), would product a future worth, 
F = P(1 + im)n, in then current dollars.  This is how many dollars it would 
produce, but what is the purchasing power of these future dollars compared 
to the purchasing power they would have if they existed at the time the 
process started?
The future F dollars would only be worth F’ dollars using a constant dollar 
measure.  The relation between F and F’ is given by the inflation rate, f.  If 
we had F’ dollars at the start of the investment (when we really had P 
dollars) the inflation rate would produce F = F’(1 + f)n dollars (called constant 
or non-inflated dollars.
Combining these results gives F’ = F/(1 + f)n = P(1 + im)n/(1 + f)n.  The real 
interest rate, i, produces these same F’ dollars by the usual formula for 
future worth: F’ = P(1 + i)n.  Comparing the two equations for F’ gives:
F’ = P(1 + i)n = P(1 + im)n/(1 + f)n

P(1 + i)n (1 + f)n = P[(1 + i) (1 + f)]n = P[1 + i + f + if]n = P(1 + im)n

Comparing the last two equations above shows that the market interest rate 
is the following combination of the actual interest rate and the inflation rate.
im = i + f + if
This is often approximated by ignoring the last term, which is a reasonable 
approximation if both i and f are small..  
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Other Factors
• Choice of index to account for inflation
• Taxes and depreciation may be 

considered
• Rate depends on source of funds

– Borrowed money is tax deductible
– Equity funding depends on desired rate of 

return on capital (not tax deductible)
• “Year zero” initial construction costs 

actually spread over several years

Current year dollars account for inflation, typically using the consumer price 
index.  See http://www.bls.gov/cpi/ (last accessed February 7, 2007) for the 
consumer price index.   This is a general index.  Other possible inflation 
indices are available for specific items.  For example, the inflation rate for 
fuel costs may be different from that for the general consumer price index.
The application of the previous formula for A/P and adding in a constant 
annual cost for maintenance, operations, and supplies is equivalent to doing 
the analysis in constant dollars.  (Assuming a constant annual cost for these 
items ignores inflation.)  In this case the correct interest rate to use in the 
real interest rate.
Advanced considerations include sources of cash and the tax implications of 
those sources.  Analyses that consider tax also consider the impact of 
depreciation on the project accounting.
The example on pages 216-217 (with details on page 245 and 246) shows 
the application of inflation to the cost analysis of a power plant.  (In that 
analysis the factor of 100 converts dollars to cents and the factor of 8766 is 
the average hours per year for a four year period.  The last two homework 
problems ask you to apply this analysis to a combined-cycle gas turbine 
power plant and a solar photovoltaic collector.  You can compare your 
results to those in the text for a nuclear power plant (light-water reactor).
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Payback Period
• Defined as initial cost in dollars divided 

by annual savings (or income) in dollars 
per year

• Simplified analysis of fixed cost versus 
annual savings

• Engineering economics texts 
recommend not using this measure

• But – it is easier to understand than the 
discount rate

If you are choosing between two possibilities in the purchase of a new 
appliance, with a cost difference D, between the two and an estimated 
annual savings S for the more expensive appliance.  It is easy to compute 
the payback period D/S and then make a decision if the savings to you are 
worth it. 
In a formal engineering economic analysis you would have to decide what a 
reasonable discount (or interest) rate, i, you would want to earn on the extra 
initial cost, D.  You would also have to estimate how long you would own the 
appliance.  You could then compute the present worth of the savings, P, 
from the reciprocal of the A/P formula:

For example if you were to keep the appliance for ten years and you wanted 
a discount rate of 3% the value of P/A would be 8.53 so the initial cost 
difference, D, would have to be less than 8.53 times the annual savings S.  If 
the initial cost difference were exactly this figure (D = 8.53S) then the 
payback period, D/S, would be 8.53 years.  If you wanted a 6% discount 
rate, your cost difference, D, would have to be less than 6.14 times the 
savings.  If you kept the appliance for only three years your would want D < 
2.8S for a 3% discount rate and D < 2.58S for a 10% rate.
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