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February 21 Homework Solutions

2-39C
It is claimed that the temperature profile in a medium must be perpendicular to an insulated surface.  Is this a valid claim? Explain.  (This problem was listed on the web site, but not in the course outline.)

Yes.  At an insulated surface the heat flux is zero.  (Note that this is a typical definition of “insulated” in the mathematics of heat transfer.  In reality, an insulated surface will have a small, but finite, heat transfer.).  For a zero heat transfer, Fourier’s law tells us that 
[image: image1.wmf]q
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= –k(T/(n = 0, where n is the direction normal to the surface.  A line of zero gradient normal to surface means that the line is perpendicular to the surface, so the claim is correct.
3-19
Consider a 1.2-m-high and 2-m-wide glass window whose thickness is 6 mm and thermal conductivity is k = 0.78 W/m·oC.  Determine the steady rate of heat transfer through this glass window and the temperature of its inner surface for a day during which the room is maintained at 24oC while the temperature of the outdoors is –5oC.  Take the convection heat transfer coefficients on the inner and outer surfaces of the window to be h1 = 10 W/m2·oC and h2 = 25 W/m2·oC, and disregard any heat transfer by radiation
We can solve this by an equivalent thermal circuit with three resistances: one for the inside convection, one for conduction through the window and one for outside convection.  
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[image: image2]
The convection resistances are 1/hA and the conduction resistance is L/kA.  The combined resistance is the sum of the three individual resistances and the heat transfer is the ratio of the temperature difference to this combined resistance.
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The inner surface temperature is simply found from the heat flow, which is constant, and the initial convection resistance.
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3-20
Consider a 1.2-m-high and 2-m-wide double-pane window consisting of two 3-mm-thick layers of glass (k = 0.78 W/m·oC) separated by a 12-mm-wide stagnant air space (k = 0.026 W/m·oC). Determine the steady rate of heat transfer through this double-pane window and the temperature of its inner surface for a day during which the room is maintained at 24oC while the temperature of the outdoors is –5 oC. T  ake the convection heat transfer coefficients on the inner and outer surfaces of the window to be h1 = 10 W/m2·oC and h2 = 25 W/m2·oC, and disregard any heat transfer by radiation
There are five separate resistances in the equivalent thermal circuit for this problem: two convection resistances, one on each side of the double pane window, and three conduction resistances in the two glass panes plus the air gap.  A diagram of the double-pane window and the equivalent thermal circuit are shown below.
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[image: image5.emf]
The overall heat transfer coefficient is given by the following equation.
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Using the data given we can find the resistances as follows.
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We can now find the overall heat transfer.
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114 W
Comparing this answer with that of problem 3-19 we see that the double pane window has decreased the transfer by 76% from 471 W to 114 W.  This means that we have increased the overall resistance since the temperature difference in the same.  Computing the total resistance for each problem shows that the resistance increased from 0.06155oC/W in problem 3-19 to 0.2539oC/W here.  About 76% of the new total resistance comes from the air gap.
The temperature of the inner surface is computed from the convection resistance between the inside air and the inside wall.
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[image: image27.emf]3-29E
A wall is constructed of two layers of 0.7-in-thick sheetrock (k= 0.10 Btu/h·ft·oF), which is a plasterboard made of two layers of heavy paper separated by a layer of gypsum, placed 7 in apart. The space between the sheetrocks is filled with fiberglass insulation (k = 0.020 Btu/h·ft·oF). Determine (a) the thermal resistance of the wall and (b) its R-value of insulation in English units.
There are three separate thermal resistances in the equivalent thermal circuit for this problem.  A real wall would have convection, but we are only considering th4e equivalent resistance of the insulation.  No area is given so we will compute the resistance for a unit area (A = 1 ft2.):  The thickness of the sheetrock layers and their thermal conductivities are the same so we have
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The total resistance is 30.34 ft2·h·oF/Btu, which corresponds to R-30 insulation.
3-36
The wall of a refrigerator is constructed of fiberglass insulation (k = 0.035 W/m·oC) sandwiched between two layers of 1-mm-thic[image: image28.emf]k sheet metal (k = 15.1 W/m·oC).  The refrigerated space is maintained at 3oC, and the average heat transfer coefficients at the inner and outer surfaces of the wall are 4 W/m2·oC and 9 W/m2·oC, respectively.  The kitchen temperature averages 25oC.  It is observed that condensation occurs on the outer surfaces of the refrigerator when the temperature of the outer surface drops to 20oC. Determine the minimum thickness of fiberglass insulation that needs to be used in the wall in order to avoid condensation on the outer surfaces.
This problem is similar to problem 3-20 in that there are five thermal resistances: three for conduction through the three materials in the refrigerator wall and two convection resistances, one on each side of the wall.  Unlike problem 3-20, however, we are not given all the data we need to compute each resistance.  The conduction resistance for the insulation, L/kA, will contain the unknown length, L, that we are trying to find.  If we try to find the heat transfer, we will get a result that depends on L.  However, we can find the heat transfer, 
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 from the equation for convection to the outer wall, 
[image: image13.wmf]q
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=houter(T(,outer – Twall,outer), where we know all the other terms in the equation.  This will give us an equation that we can solve for L. (Twall,outer is the temperature of 20oC that we want to achieve to avoid condensation; note that this temperature is shown in the diagram as 10oC as opposed to the problem statement where it is given as 20oC.)  Since we are not given the area of the wall we will use heat flux in our calculations to give the convection heat transfer, which is the same as the heat transfer through all layers.
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We can now use this value in the overall heat transfer equation below.  Note that when this equation is written for heat flux, the area terms are not included in the thermal resistance..
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Using the data given we can find the resistances as follows.
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Substituting these resistances into the overall heat flux equation gives an equation that we can solve for L.
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L = 0.45 m

Note that the resistances of the metal sheets are very small and we would get the same answer (to two significant figures) if we ignored them.  Thin meal sheets, with both a small thickness and a high thermal conductivity usually pose a negligible resistance in problems where there are a series of thermal resistances.

[image: image29.emf]3-47
Six identical power transistors with aluminum casing are attached on one side of a 1.2-cm-thick 20-cm by 30-cm copper plate (k = 386 W/m·oC) by screws that exert an average pressure of 10 MPa. The base area of each transistor is 9 cm2, and each transistor is placed at the center of a 10-cm by 10-cm section of the plate. The interface roughness is estimated to be about 1.4 mm. All transistors are covered by a thick Plexiglas layer, which is a poor conductor of heat, and thus all the heat generated at the junction of the transistor must be dissipated to the ambient at 23oC through the back surface of the copper plate. The combined convection/radiation heat transfer coefficient at the back surface can be taken to be 30 W/m2·oC. If the case temperature of the transistor is not to exceed 75oC, determine the maximum power each transistor can dissipate safely, and the temperature jump at the case-plate interface.

[image: image30.emf]In this problem we really should do a two-dimensional analysis since the heat supplied by the transistors is localized.  However, we can assume that the copper plate, with its high thermal conductivity will quickly even out differences in temperature in the cross sectional area, and, to a first approximation we can consider this a one-dimensional problem.  Since the Plexiglas is an insulator, we can start the analysis with the transistors.  The data about the interface roughness and contact pressure suggest that we should consider the contact resistance.  Thus we will have a thermal circuit that has three components between the transistors and the air: (1) the contact resistance, (2) the conduction resistance through the copper, and (3) the convection resistance from the copper to the air, as shown at the left.
We find the contact resistance as the inverse of the contact conductance which is given in Table 3-2 on page 145.  That table has data for copper-aluminum contact resistance with roughness levels of 1.17 to 1.4 m, which is the level in this problem at pressure of 5 and 15 MPa.  Interpolating between these two pressures gives the approximate contact conductance at the pressure of 10 MPa specified here as 49,000 W/m2·oC.  We use this contact conductance with the contact area between the plate and transistors of 6 X (9 cm2) = 54x10-4 m2. The plate conduction and convection resistances use the full area of 100 cm2 = 0.01 m2.  Applying the value for contact conductance, the areas just stated, and the other data given in the problem in the expression for series heat transfer, along with the usual equations for conductive and convective resistances gives the following result.
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[image: image31.emf]3-133E
A row of 3-ft-long and 1-in-diameter used uranium fuel rods that are still radioactive are buried in the ground parallel to each other with a center-to-center distance of 8 in at a depth 15 ft from the ground surface at a location where the thermal conductivity of the soil is 0.6 Btu/h·ft·oF. If the surface temperature of the rods and the ground are 350oF and 60oF, respectively, determine the rate of heat transfer from the fuel rods to the atmosphere through the soil.

[image: image32.emf]This problem is analyzed using the shape factor analysis where
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)

2

1

T

T

Sk

Q

-

=

&

.  Shape factors for various geometries are found in Table 3-7.  For the system of buried cylinders considered here, this table gives the equation shown at the right for S per cylinder where L and D are the length and diameter of the cylinders, w is the distance between cylinders and z is the perpendicular distance from the ground to the center of each cylinder.  This formula is valid L >> D, z, and w > 1.5 D.  All these constraints appear to be satisfied except the one that L >> D, z.  I assumed that this means that L >> D and L >> z.  However we have L < z!!!  Ignoring these constraints and applying the equation we get the total S, by multiplying the per-cylinder S by 4.
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With this value we can compute the heat transfer.
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