Radiation Exchange

Outline

- Basics of radiation interchange
- Limit considerations to diffuse surfaces
- Definition of view factor
- Finding view factors
- Use of view factor in radiation exchange
- Exchange among several diffuse surfaces

View Factor Equations

- Example for aligned parallel rectangles ($\bar{X}=$ $X / L, \bar{Y}=Y / L)$
- Because $A_{i}=A_{j}, F_{i j}=F_{i j}$

$$
F_{i j}=\frac{2}{\pi \bar{X} \bar{Y}}\left\{\frac{1}{2} \ln \left[\frac{\left(1+\bar{X}^{2}\right)\left(1+\bar{Y}^{2}\right)}{\left(1+\bar{X}^{2}+\bar{Y}^{2}\right)}\right]+\bar{X}\left(1+\bar{Y}^{2}\right)^{1 / 2} \tan ^{-1} \frac{\bar{X}}{\left(1+\bar{Y}^{2}\right)^{1 / 2}}\right.
$$

$$
+\bar{Y}\left(1+\bar{X}^{2}\right)^{1 / 2} \tan ^{-1} \frac{\bar{Y}}{\left(1+\bar{X}^{2}\right)^{1 / 2}}-\bar{X} \tan ^{-1} \bar{X}-\bar{Y} \tan ^{-1} \bar{Y}
$$

Northridge Figure from Table 13-1 from Çengel, Heat and Mass Transfer ${ }^{9}$

Working with View Factors

- Equations in Tables 13-1 and 13-2
- Can program into your calculators
- Charts in Figures 13-5 to 13-8 of text
- Reciprocity relation $\mathrm{F}_{\mathrm{ji}}=$ $\mathrm{A}_{\mathrm{i}} \mathrm{F}_{\mathrm{ij}} / \mathrm{A}_{\mathrm{j}}$
- Summation rule for each surface in an enclosure

View-Factor Problem

- Find all view factors for the cylindrical enclosure with $\mathrm{H}=\mathrm{r}_{0}=1 \mathrm{~m}$
- From chart for $r_{1} / L=r_{2} / L=$ $1, F_{12}=F_{21}=0.38$
- $\mathrm{F}_{11}=\mathrm{F}_{22}=0$
- Summation of view factors in enclosure: $F_{11}+F_{12}+$ $\mathrm{F}_{13}=1$, so $\mathrm{F}_{13}=1-0.38$ $-0=0.62$
Northridge

View-Factor Problem II

- Now have $\mathrm{F}_{12}=\mathrm{F}_{21}=$ $0.38, F_{11}=F_{22}=0$, and $\mathrm{F}_{13}=0.62$
- Reciprocal: $\mathrm{A}_{3} \mathrm{~F}_{31}=\mathrm{A}_{1} \mathrm{~F}_{13}$ $-\mathrm{A}_{1}=\pi(1 \mathrm{~m}) 2=\pi \mathrm{m}^{2}$
$-\mathrm{A}_{3}=2 \pi(1 \mathrm{~m})(1 \mathrm{~m})=2 \pi \mathrm{~m}^{2}$ $-F_{31}=A_{1} F_{13} / A_{3}=0.31$
- Symmetry $\mathrm{F}_{32}=\mathrm{F}_{31}=0.31$
- $F_{33}=1-F_{31}-F_{32}=0.38$ Northridge

Black Enclosures

- In an enclosure all heat leaving a surface strikes one of the other surfaces
- Net heat from surface i to surface j from previous slide is $A_{i} F_{i j} \sigma\left(T_{i}^{4}-T_{j}^{4}\right)$
- Net heat from surface i to all other surfaces is sum of terms like this

$$
\dot{Q}_{i}=\sum_{j=1}^{N} \dot{Q}_{i \rightarrow j}=\sum_{j=1}^{N} A_{i} F_{i j} \sigma\left(T_{i}^{4}-T_{j}^{4}\right)
$$

Radiation Exchange

- First consider black surfaces then extend to gray diffuse surfaces
- Heat transfer from surface 1 reaching surface 2 is $A_{1} F_{12} \sigma T_{1}{ }^{4}$
- Heat transfer from surface 2 reaching surface 1 is $A_{2} F_{21} \sigma T_{2}^{4}=A_{1} F_{12} \sigma T_{2}^{4}$
- Net heat transfer from surface 1 is $\mathrm{A}_{1} \mathrm{~F}_{12} \sigma\left(\mathrm{~T}_{1}{ }^{4}-\mathrm{T}_{2}{ }^{4}\right)$
- Negative value indicates heat into surface 1 Northridge

Gray Diffuse Opaque Enclosures

- For a gray, diffusive surface Kirchoff's law applies to the total hemispherical quantities: $\alpha=\varepsilon$
- For opaque surfaces $\tau=0$ so $\alpha+\rho=1$
- For gray, diffusive, opaque surfaces then $\rho=1-\alpha=1-\varepsilon$
- For nonblack surfaces have to consider emitted and reflected radiation

Circuit Analogs

- Equation A on previous slide can be viewed as circuit
$-E_{b i}$ and J_{i} are potentials
- Heat transfer from surface i is flow
- Resistance is (1 $\varepsilon_{i} / / A_{i} \varepsilon_{i}$

Northridge

Radiation Exchange

- Net heat transfer from surface ito surface j is radiation leaving i that strikes $\mathrm{j}\left(\mathrm{A}_{\mathrm{i}} \mathrm{F}_{\mathrm{ij}} \mathrm{J}_{\mathrm{i}}\right)$ minus radiation leaving j that strikes $i\left(A_{j} F_{j i} \mathrm{~J}_{\mathrm{j}}=\mathrm{A}_{\mathrm{i}} \mathrm{F}_{\mathrm{ij}} \mathrm{J}_{\mathrm{j}}\right)$
$\dot{Q}_{i \leftrightarrow j}=\dot{Q}_{i j}=A_{i} F_{i j} J_{i}-A_{j} F_{j i} J_{j}=A_{i} F_{i j} J_{i}-A_{i} F_{i j} J_{j}=A_{i} F_{i j}\left(J_{i}-J_{j}\right)$
- Net heat transfer from surface i to all other surfaces is sum of all these terms
$\dot{Q}_{i}=\sum_{j=1}^{N} \dot{Q}_{i j}=\sum_{j=1}^{N} A_{i} F_{i j}\left(J_{i}-J_{j}\right)$ B 20

Another Circuit Analogy

$\dot{Q}_{i \leftrightarrow j}=\dot{Q}_{i j}=A_{i} F_{i j}\left(J_{i}-J_{j}\right)=\frac{J_{i}-J_{j}}{R_{i j}}$

- Next step in circuit analog is flow betwe radiosity J_{i} and J_{j}
- Here $\mathrm{R}_{\mathrm{ij}}=1 / \mathrm{A}_{\mathrm{i}} \mathrm{F}_{\mathrm{ij}}$
- With previous resistance between E and J have a comple circuit

Northridge

One More Circuit Analogy

- Extend previous example with two surfaces to multiple surfaces $\dot{Q}_{i \leftrightarrow j}=\dot{Q}_{i j}=A_{i} F_{i j}\left(J_{i}-J_{j}\right)=\frac{J_{i}-J_{j}}{R_{i j}}$ $R_{i j}=\frac{1}{A_{i} F_{i j}}$

- Each surface will have similar resistance between surface (at potential E_{bi}) and corresponding radiosity, J_{i} Northridge

Using Circuit Analogy

- Look at simple enclosure with only two surfaces
- Apply circuit analogy with total resistance

$$
\dot{Q}_{12}=\frac{E_{b 1}-E_{b 2}}{R_{\text {Toal }}}=\frac{E_{b 1}-E_{b 2}}{\frac{1-\varepsilon_{1}}{A_{1} \varepsilon_{1}}+\frac{1}{A_{1} F_{12}}+\frac{1-\varepsilon_{2}}{A_{2} \varepsilon_{2}}}
$$

Northridge

Three-Surface Circuit

	- Multiple surfaces done more easily by looking at system of equations
	Northridge

Radiation Exchange Equations

- Equation A $\quad \dot{Q}_{i}=\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{i}}\left(E_{b i}-J_{i}\right)$
- Equation B $\quad \dot{Q}_{i}=\sum_{j=1}^{N} A_{i} F_{i j}\left(J_{i}-J_{j}\right)$

$$
\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{j}}\left(E_{b i}-J_{i}\right)=\sum_{j=1}^{N} A_{i} F_{i j}\left(J_{i}-J_{j}\right)
$$

Northridge

Radiation Exchange Solution

- Two possible surface conditions: (1) known temperature, (2) known \dot{Q}_{i}
$\dot{Q}_{i}=\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{i}}\left(E_{b_{i}}-J_{i}\right)=\sum_{j=1}^{N} A_{i} F_{i j}\left(J_{i}-J_{j}\right) \quad i=1, \ldots, N$
(1) $J_{i}\left(1+\frac{1-\varepsilon_{i}}{\varepsilon_{i}} \sum_{j=1, j \neq i}^{N_{T}} F_{i j}\right)-\frac{1-\varepsilon_{i}}{\varepsilon_{i}} \sum_{j=1, j \neq i}^{N_{T}} F_{i j} J_{j}=E_{b_{i}}=\sigma T_{i}^{4}$ Solve this set
(2) $\left(\sum_{j=N_{T}+1, j \neq i}^{N} A_{i} F_{i j}\right) J_{i}-\sum_{j=N_{T}+1, j \neq i}^{N} A_{i} F_{i j} J_{j}=\dot{Q}_{i}$ of N
simultaneous equations for N values of J_{i}

Radiation Exchange Equations II

- Eliminate Q_{i} from equations A and B

$$
\dot{Q}_{i}=\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{i}}\left(E_{b_{i}}-J_{i}\right)=\sum_{j=1}^{N} A_{i} F_{i j}\left(J_{i}-J_{j}\right) \quad i=1, \ldots, N
$$

- This gives N simultaneous equations to solve for N values of J_{i}
- We first find the areas, A_{i}, and view factors, F_{ij}, and emissivities, ε_{i}
- Know $E_{b i}=\sigma T_{i}^{4}$

Northridge

Radiation Exchange Solution II

- Once all J_{i} values are known we can compute unknown values of T_{i} and \dot{Q}_{i}
- For known T_{i}

$$
\dot{Q}_{i}=\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{i}}\left(E_{b_{i}}-J_{i}\right)=\frac{A_{i} \varepsilon_{i}}{1-\varepsilon_{i}}\left(\sigma T_{i}^{4}-J_{i}\right)
$$

- For known \dot{Q}_{i}
$E_{b_{i}}=J_{i}+\frac{1-\varepsilon_{i}}{A_{i} \varepsilon_{i}} \dot{Q}_{i} \Rightarrow T_{i}=\frac{1}{\sigma} \sqrt[4]{J_{i}+\frac{1-\varepsilon_{i}}{A_{i} \varepsilon_{i}} \dot{Q}_{i}}$
Northridge

Three Surface Enclosure II

- General equation and third equation
$J_{i}\left(1+\frac{1-\varepsilon_{i}}{\varepsilon_{i}} \sum_{j=1, j \neq i}^{N} F_{i j}\right)-\frac{1-\varepsilon_{i}}{\varepsilon_{i}} \sum_{j=1, j \neq i}^{N} F_{i j} J_{j}=E_{b_{i}}=\sigma T_{i}^{4}$
$-\frac{1-\varepsilon_{3}}{\varepsilon_{3}} F_{31} J_{1}-\frac{1-\varepsilon_{3}}{\varepsilon_{3}} F_{32} J_{2}+\left[1+\frac{1-\varepsilon_{3}}{\varepsilon_{3}}\left(F_{31}+F_{32}\right)\right] J_{3}=\sigma T_{3}^{4}$
- Find coefficients and use linear equation solver to find $\mathrm{J}_{1}, \mathrm{~J}_{2}$, and J_{3}

