Radiation Fundamentals

Larry Caretto
Mechanical Engineering 375

Heat Transfer

April 25, 2007

Northridge

Northridge

Outline

- Review last topic
- Basic ideas of heat exchangers
- · Overall heat transfer coefficient
- Log-mean temperature difference method
- Effectiveness –NTU method
- · Practical considerations

Northridge

Northridge

2

EM Radiation Properties

- Wavelength, λ, ranges from 10⁻⁹ to 10¹⁰ μm is distance between wave peaks
- EM waves travel at speed of light = 299,792,458 m/s (in a vacuum)
- Frequency, $v = c/\lambda$, units of Hz = s⁻¹
- Radian frequency $\omega = 2\pi v$, units s⁻¹
- For $v = 60 \text{ Hz} = 60 \text{ s}^{-1}$, $\lambda = (299,792,458 \text{ m/s}) / (60 \text{ s}^{-1}) \approx 5 \times 10^6 \text{ m} = 5 \times 10^{12} \text{ } \mu\text{m}$

Northridge

4

Black-body Radiation

Nonuniform

Real body

- Perfect emitter no surface can emit more radiation than a black body
- Diffuse emitter radiation is uniform in all directions
- Perfect absorber all radiation striking a black body is absorbed

Blackbody

Northridge

Black-Body Radiation II

- Basic black body equation: $E_b = \sigma T^4$
 - E_b is total black-body radiation energy flux W/m² or Btu/hr·ft²
 - σ is the Stefan-Boltzmann constant
 - $\sigma = 5.670 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4$
 - $\sigma = 0.1714x10^{-8} Btu/hr \cdot ft^2 \cdot R^4$
 - Must use absolute temperature
- Radiation flux varies with wavelength
 - $-E_{b\lambda}$ is flux at given wavelength, λ

Northridge

Stefan-Boltzmann Constant

- Found experimentally, but later analysis relates σ to other fundamental constants
 - $-\sigma = 2\pi^5 k^4/(15h^3c^2)$
 - $-k = Boltzmann's constant = 1.38065x10^{-23} J/K$ (molecular gas constant) = $R_u/N_{Avagadro}$
 - $-h = Planck's constant = 6.62607x10^{-34} J \cdot s$
 - · First notion of quantum mechanics that energy associated with a wave, $\varepsilon = hv = hc/\lambda$
 - -c = 299,792,458 m/s = speed of light in avacuum

Northridge

Spectral Black-body Energy

- $E_{b\lambda}d\lambda$ = black-body emissive power in a wavelength range $d\lambda$ about λ
 - Typical units for E_{bλ} are W/m²·μm or Btu/hr⋅ft²⋅μm

$$E_{b\lambda}d\lambda = \frac{C_1}{\lambda^5 \left(e^{C_2/\lambda T} - 1\right)}d\lambda$$

- $C_1 = 2\pi hc^2 = 3.74177 \text{ W} \cdot \mu \text{m}^4/\text{m}^2$
- $C_2 = hc/k = 14387.8 \mu m/K$
 - h = Planck's constant, c = speed of light in vacuum, k = Boltzmann's constant

Northridge

Integral Proof

• Show $\int E_{b\lambda} d\lambda = \sigma T^4$ on this and next chart

$$E_{b} = \int_{\lambda=0}^{\lambda=\infty} E_{b\lambda} d\lambda = \int_{\lambda=0}^{\lambda=\infty} \frac{C_{1}}{\lambda^{5} \left(e^{C_{2}/\lambda T} - 1\right)} d\lambda = T^{4} \int_{\lambda T=\infty}^{\lambda T=\infty} \frac{C_{1}}{(\lambda T)^{5} \left(e^{C_{2}/\lambda T} - 1\right)} d(\lambda T)$$

$$\frac{E_{b}}{T^{4}} = \int_{y=0}^{y=\infty} \frac{C_{1}}{y^{5} \left(e^{C_{2}/y} - 1\right)} \frac{C_{2}^{5}}{C_{2}} dy = \int_{C_{2}/y=\infty}^{C_{2}/y=0} \frac{C_{1}}{y^{5} \left(e^{C_{2}/y} - 1\right)} \frac{C_{2}^{5}}{C_{2}^{5}} dy$$

• Define $z = C_2/y$ and get dy in terms of dz

$$z = \frac{C_2}{y} \implies dz = -\frac{C_2}{y^2} dy = -\frac{C_2}{(C_2/z)^2} dy \implies dy = -\frac{C_2}{z^2} dz$$
California State University
North prindige

Integral Proof II

· Get single variable z and integrate

$$\begin{split} & \frac{E_b}{T^4} = \int\limits_{C_2/y=\infty}^{C_2/y=0} \frac{C_1}{y^5 \left(e^{C_2/y} - 1\right)} \frac{C_2^5}{C_2^5} dy = \int\limits_{z=\infty}^{z=0} \frac{C_1 z^5}{\left(e^z - 1\right)} \frac{1}{C_2^5} dy \\ & = -\int\limits_{z=\infty}^{z=0} \frac{C_1 z^5}{\left(e^z - 1\right)} \frac{1}{C_2^5} \frac{C_2}{z^2} dz = \frac{C_1}{C_2^4} \int\limits_{z=0}^{z=\infty} \frac{z^3}{\left(e^z - 1\right)} dz = \frac{C_1}{C_2^4} \frac{\pi^4}{15} \end{split}$$

- Standard integral found from Matlab command int('z^3/(exp(z)-1)',0,inf)

$$E_b = \frac{C_1}{C_2^4} \frac{\pi^4}{15} T^4 = \frac{2\pi h c^2}{\left(hc/k\right)^4} \frac{\pi^4}{15} T^4 = \frac{2\pi^5 k^4}{15 h^3 c^2} T^4 = \sigma T^4$$
California State Linkevity
Northridge

ME 375 - Heat Transfer

Radiation Tables Can show that f_λ is function of λT $f_{\lambda} = \frac{1}{\sigma T^4} \int_{0}^{\lambda} E_{b\lambda} d\lambda = \frac{1}{\sigma T^4} \int_{0}^{\lambda} \frac{C_1}{\lambda^5 \left(e^{C_2/\lambda T} - 1\right)} d\lambda = \frac{1}{\sigma} \int_{0}^{\lambda T} \frac{C_1}{(\lambda T)^5 \left(e^{C_2/\lambda T} - 1\right)} d\lambda$ Radiation tables λ*T*, μm · K give f_{λ} versus λT 0.000000 - See table 12-2, 400 0.000000 0.000000 600 page 672 in text 0.000016 1000 0.000321 - Extract from this 0.002134 table shown at right 1400 0.007790 0.019718 Northridge 0.039341

Sample Problem

- A conventional light bulb has a filament temperature of 4000°F. Find the fraction of visible radiation from this filament, if it is a black body.
- **Given:** T = 4000°F and visible region
- Find: Fraction of total radiation in region
- **Missing information:** Visible region is between 0.4 μm and 0.76 μm
- Conversion: 4000°F = 4460 R = 2478 K
 California State Univestry
 Northridge

Sample Problem Solution

- Compute λT at λ₁ and λ₂ and find corresponding f_λ values in Table 12.2
 - $\lambda_1 T = (0.4 \mu m)(2478 \text{ K}) = 991 \mu m \cdot \text{K}$
 - $-\lambda_1 T = (0.79 \mu m)(2478 K) = 1883 \mu m \cdot K$
 - $f(\lambda_1 T) = 0.000289$ (interpolation in table)
 - $f(\lambda_2 T) = 0.04980$ (interpolation in table)
- Fraction in visible range = 0.04980 0.000289 = 0.0495 or about 5% in visible range for conventional lighting

Northridge

Radiation Exchange

- In general, radiation leaving a surface can vary in direction
 - Ideal of diffuse radiation is uniform in all directions
 - Need coordinate system for radiation leaving a surface
 - Look at hemisphere on top of surface and use spherical coordinate system
 - $I(\theta,\!\varphi)$ is radiation intensity in direction $(\theta,\!\varphi)$
 - See chart after next for diagram

California State University
Northridge

Emissive Power

 Radiation flux for emitted radiation (energy per unit area of surface)

$$dE = \frac{dQ_e}{dA\cos\theta d\omega} = I_e(\theta, \phi)\cos\theta\sin\theta d\phi$$

$$E = \int_{\substack{hemi-\\ sphere}} dE = \int_{\phi=0}^{2\pi} \int_{\theta=0}^{\pi/2} I_e(\theta, \phi) \cos \theta \sin \theta d\theta d\phi$$

For constant I_e , $E = \pi I_e$

California State University
Northridge

 $\begin{array}{c|c} & & & & & \\ \hline & & & & \\ \hline & & \\$

Spectral Quantities

- Previous discussions of I, E, G, and J have not considered wavelength
- Can define I_{e,λ}, I_{i,λ}, and I_{e+r,λ}
 Called "spectral" quantities
- Previous quantities are then integrals over all wavelengths

$$I_e = \int\limits_0^\infty I_{e,\lambda} d\lambda \qquad \quad I_i = \int\limits_0^\infty I_{i,\lambda} d\lambda \qquad \quad I_{e+r} = \int\limits_0^\infty I_{e+r,\lambda} d\lambda$$
 California State University Northridge

Emissivity

- Emissivity, ε, is ratio of actual emissive power to black body emissive power
 - May be defined on a directional and wavelength basis, $\epsilon_{\lambda,\theta}(\lambda,\theta,\phi,T) = I_{\lambda,e}(\lambda,\theta,\phi,T)/I_{b\lambda}(\lambda,T)$, called spectral, directional emissivity
 - Total directional emissivity, average over all wavelengths, $\epsilon_{\theta}(\theta,\phi,T) = I_{e}(\theta,\phi,T)/I_{b}(T)$
 - Spectral hemispherical emissivity average over directions, $\varepsilon_{\lambda}(\lambda,T) = I_{\lambda}(\lambda,T)/I_{b\lambda}(\lambda,T)$
 - Total hemispheric emissivity = $E(T)/E_b(T)$

Northridge

Emissivity Assumptions

- Diffuse surface emissivity does not depend on direction
- Gray surface emissivity does not depend on wavelength
- Gray, diffuse surface emissivity is the does not depend on direction or wavelength
 - Simplest surface to handle and often used in radiation calculations

Northridge

Properties III

- As with emissivity, α , ρ , and τ may be defined on a spectral and directional basis
 - Can also take averages over wavelength, direction or both as with emissivity
 - Simplest case is no dependence on either wavelength or direction
 - Reflectivity may be diffuse or have angle of reflection equal angle of incidence

Northridge

37

Kirchoff's Law

- Absorptivity equals emissivity (at the same temperature)
- True only for values in a given direction and wavelength
- Assuming total hemispherical values of α and ϵ are the same simplifies radiation heat transfer calculations, but is not always a good assumption

Northridge

39

Effect of Temperature

- Emissivity, ε, depends on surface temperature
- Absorptivity, α, depends on source temperature (e.g. T_{sun} ≈ 5800 K)
- · For surfaces exposed to solar radiation
 - high α and low ϵ will keep surface warm
 - low α and high ϵ will keep surface cool
 - Does not violate Kirchoff's law since source and surface temperatures differ

Northridge

TABLE 12-3			TABLE 12-3		
Comparison of the solar absorptivity α_s of some surfaces with their emissivity ε at room temperature			Comparison of the solar absorptivity $\alpha_{\rm s}$ of some surfaces with their emissivity ε at room temperature		
Surface	$\alpha_{\rm S}$	8	Surface	$\alpha_{\rm S}$	ε
Aluminum			Plated metals Black nickel oxide	0.92	0.08
Polished	0.09	0.03	Black chrome	0.92	0.00
Anodized	0.14	0.84	Concrete	0.60	0.88
Foil	0.15	0.05	White marble	0.46	0.95
Copper			Red brick	0.63	0.93
Polished	0.18	0.03	Asphalt	0.90	0.90
Tarnished	0.65	0.75	Black paint	0.97	0.97
Stainless steel			White paint	0.14	0.93
Polished	0.37	0.60	Snow	0.28	0.97
Dull	0.50	0.21	Human skin		
			(Caucasian)	0.62	0.97
California State University Northridge	From Çengel, Heat and Mass Transfer			41	