Radiation Fundamentals

Larry Caretto
Mechanical Engineering 375
Heat Transfer

April 25, 2007

Northridge
Northridge

- Review last topic
- Basic ideas of heat exchangers
- Overall heat transfer coefficient
- Log-mean temperature difference method
- Effectiveness -NTU method
- Practical considerations

EM Radiation Properties

- Wavelength, λ, ranges from 10^{-9} to 10^{10} $\mu \mathrm{m}$ is distance between wave peaks
- EM waves travel at speed of light = $299,792,458 \mathrm{~m} / \mathrm{s}$ (in a vacuum)
- Frequency, $v=c / \lambda$, units of $\mathrm{Hz}=\mathrm{s}^{-1}$
- Radian frequency $\omega=2 \pi v$, units s^{-1}
- For $v=60 \mathrm{~Hz}=60 \mathrm{~s}^{-1}, \lambda=(299,792,458$ $\mathrm{m} / \mathrm{s}) /\left(60 \mathrm{~s}^{-1}\right) \approx 5 \times 10^{6} \mathrm{~m}=5 \times 10^{12} \mu \mathrm{~m}$

Black-body Radiation

- Perfect emitter - no surface can emit more radiation than a black body
- Diffuse emitter radiation is uniform in all directions

- Perfect absorber - all radiation striking a black body is absorbed

Black-Body Radiation II

- Basic black body equation: $\mathrm{E}_{\mathrm{b}}=\sigma \mathrm{T}^{4}$
$-E_{b}$ is total black-body radiation energy flux
$\mathrm{W} / \mathrm{m}^{2}$ or Btu/hr.ft²
$-\sigma$ is the Stefan-Boltzmann constant
- $\sigma=5.670 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}^{4}$
- $\sigma=0.1714 \times 10^{-8} \mathrm{Btu} / \mathrm{hr} \cdot \mathrm{ft}^{2} \cdot \mathrm{R}^{4}$
- Must use absolute temperature
- Radiation flux varies with wavelength
$-E_{b \lambda}$ is flux at given wavelength, λ
Northridge

Stefan-Boltzmann Constant

- Found experimentally, but later analysis relates σ to other fundamental constants $-\sigma=2 \pi^{5} k^{4} /\left(15 h^{3} c^{2}\right)$
$-\mathrm{k}=$ Boltzmann's constant $=1.38065 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
(molecular gas constant) $=\mathrm{R}_{\mathrm{u}} / \mathrm{N}_{\text {Avagadro }}$
$-\mathrm{h}=$ Planck's constant $=6.62607 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
- First notion of quantum mechanics that energy associated with a wave, $\varepsilon=h \nu=h c / \lambda$
$-c=299,792,458 \mathrm{~m} / \mathrm{s}=$ speed of light in a vacuum
Northridge

Integral Proof II

- Get single variable z and integrate
$\frac{E_{b}}{T^{4}}=\int_{C_{2} / y=\infty}^{C_{2} / y=0} \frac{C_{1}}{y^{5}\left(e^{C_{2} / y}-1\right)} \frac{C_{2}^{5}}{C_{2}^{5}} d y=\int_{z=\infty}^{z=0} \frac{C_{1} z^{5}}{\left(e^{z}-1\right)} \frac{1}{C_{2}^{5}} d y$
$=-\int_{z=\infty}^{z=0} \frac{C_{1} z^{5}}{\left(e^{z}-1\right)} \frac{1}{C_{2}^{5}} \frac{C_{2}}{z^{2}} d z=\frac{C_{1}}{C_{2}^{4}} \int_{z=0}^{z=\infty} \frac{z^{3}}{\left(e^{z}-1\right)} d z=\frac{C_{1}}{C_{2}^{4}} \frac{\pi^{4}}{15}$
- Standard integral found from Matlab command int(' $z^{\wedge} 3 /(\exp (z)-1)^{\prime}, 0$, inf $)$ $E_{b}=\frac{C_{1}}{C_{2}^{4}} \frac{\pi^{4}}{15} T^{4}=\frac{2 \pi h c^{2}}{(h c / k)^{4}} \frac{\pi^{4}}{15} T^{4}=\frac{2 \pi^{5} k^{4}}{15 h^{3} c^{2}} T^{4}=\sigma T^{4}$
Northridge

Sample Problem

- A conventional light bulb has a filament temperature of $4000^{\circ} \mathrm{F}$. Find the fraction of visible radiation from this filament, if it is a black body.
- Given: T = $4000^{\circ} \mathrm{F}$ and visible region
- Find: Fraction of total radiation in region
- Missing information: Visible region is between $0.4 \mu \mathrm{~m}$ and $0.76 \mu \mathrm{~m}$
- Conversion: $4000^{\circ} \mathrm{F}=4460 \mathrm{R}=2478 \mathrm{~K}$

Northridge

Sample Problem Solution

- Compute λT at λ_{1} and λ_{2} and find corresponding f_{λ} values in Table 12.2
$-\lambda_{1} \mathrm{~T}=(0.4 \mu \mathrm{~m})(2478 \mathrm{~K})=991 \mu \mathrm{~m} \cdot \mathrm{~K}$
$-\lambda_{1} \mathrm{~T}=(0.79 \mu \mathrm{~m})(2478 \mathrm{~K})=1883 \mu \mathrm{~m} \cdot \mathrm{~K}$
$-f\left(\lambda_{1} T\right)=0.000289$ (interpolation in table)
$-\mathrm{f}\left(\lambda_{2} \mathrm{~T}\right)=0.04980$ (interpolation in table)
- Fraction in visible range $=0.04980-$ $0.000289=0.0495$ or about 5% in visible range for conventional lighting Northridge 17

Radiation Tables

- Can show that f_{λ} is function of λT
$\left.f_{\lambda}=\frac{1}{\sigma T^{4}} \int_{0}^{\lambda} E_{b \lambda} \lambda \lambda=\frac{1}{\sigma T^{4}} \int_{0}^{\lambda} \frac{C_{1}}{\lambda^{5}\left(e^{C_{2} / \lambda T}-1\right.}\right)^{d \lambda=\frac{1}{\sigma} \int_{0}^{\lambda T} \frac{C_{1}}{(\lambda T)^{5}\left(e^{C_{2} / \lambda T}-1\right)} d(\lambda T)}$
- Radiation tables give f_{λ} versus λT
- See table 12-2, page 672 in text
- Extract from this table shown at right
Northridge
Blackbody radiation functions f_{A}

Radiation Exchange

- In general, radiation leaving a surface can vary in direction
- Ideal of diffuse radiation is uniform in all directions
- Need coordinate system for radiation leaving a surface
- Look at hemisphere on top of surface and use spherical coordinate system
$-I(\theta, \phi)$ is radiation intensity in direction (θ, ϕ)
- See chart after next for diagram

Solid Angle

- Similar to radian angular measure in 2D

- Arc length, $\ell=r \theta$ so $\theta=\ell / r$
- Differential arc length $d \ell=$ rd θ so $d \theta=d / r$
- Partial surface area, $S^{\text {Solid angle. }}$ $=r^{2} \omega$ So $\omega=S / r^{2}$
(Total area $=4 \pi r^{2}$)
- Units for ω are called steradians (sr) Northridge

Emissive Power

- Radiation flux for emitted radiation (energy per unit area of surface)

$$
\begin{gathered}
d E=\frac{d \dot{Q}_{e}}{d A \cos \theta d \omega}=I_{e}(\theta, \phi) \cos \theta \sin \theta d \phi \\
E=\int_{\substack{\text { hemi- } \\
\text { sphere }}} d E=\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi / 2} I_{e}(\theta, \phi) \cos \theta \sin \theta d \theta d \phi
\end{gathered}
$$

For constant $I_{e}, E=\pi I_{e}$
Northridge

Spectral Quantities

- Previous discussions of I, E, G, and J have not considered wavelength
- Can define $\mathrm{I}_{\mathrm{e}, \lambda}, \mathrm{I}_{\mathrm{i}, \lambda}$, and $\mathrm{I}_{\mathrm{e}+\mathrm{r}, \lambda}$
- Called "spectral" quantities
- Previous quantities are then integrals over all wavelengths

$$
I_{e}=\int_{0}^{\infty} I_{e, \lambda} d \lambda \quad I_{i}=\int_{0}^{\infty} I_{i, \lambda} d \lambda \quad I_{e+r}=\int_{0}^{\infty} I_{e+r, \lambda} d \lambda
$$

Northridge

Emissivity

- Emissivity, ε, is ratio of actual emissive power to black body emissive power
- May be defined on a directional and wavelength basis, $\varepsilon_{\lambda, \theta}(\lambda, \theta, \phi, \mathrm{T})=$ $I_{\lambda, e}(\lambda, \theta, \phi, T) / I_{\mathrm{b} \lambda}(\lambda, T)$, called spectral, directional emissivity
- Total directional emissivity, average over all wavelengths, $\varepsilon_{\theta}(\theta, \phi, T)=I_{e}(\theta, \phi, T) / I_{b}(T)$
- Spectral hemispherical emissivity average over directions, $\varepsilon_{\lambda}(\lambda, T)=I_{\lambda}(\lambda, T) / I_{\mathrm{b} \lambda}(\lambda, T)$
- Total hemispheric emissivity $=E(T) / E_{b}(T)$

Northridge

Emissivity Assumptions

- Diffuse surface - emissivity does not depend on direction
- Gray surface - emissivity does not depend on wavelength
- Gray, diffuse surface - emissivity is the does not depend on direction or wavelength
- Simplest surface to handle and often used in radiation calculations

Properties III

- As with emissivity, α, ρ, and τ may be defined on a spectral and directional basis
- Can also take averages over wavelength, direction or both as with emissivity
- Simplest case is no dependence on either wavelength or direction
- Reflectivity may be diffuse or have angle of reflection equal angle of incidence

Effect of Temperature

- Emissivity, ε, depends on surface temperature
- Absorptivity, α, depends on source temperature (e.g. $\mathrm{T}_{\text {sun }} \approx 5800 \mathrm{~K}$)
- For surfaces exposed to solar radiation
- high α and low ε will keep surface warm
- low α and high ε will keep surface cool
- Does not violate Kirchoff's law since source and surface temperatures differ

TABLE 12-3			TABLE 12-3		
Comparison of the solar absorptivity α_{s} of some surfaces with their emissivity ε at room temperature			Comparison of the solar absorptivity α_{s} of some surfaces with their emissivity ε at room temperature		
Surface	α_{s}	ε	Surface	α_{s}	ε
Aluminum			Plated metals	0	8
Polished	0.09	0.03	Black chrome	0.87	0.09
Anodized	0.14	0.84	Concrete	0.60	0.88
Foil	0.15	0.05	White marble	0.46	0.95
Copper			Red brick	0.63	0.93
Polished	0.18	0.03	Asphalt	0.90	0.90
Tarnished	0.65	0.75	Black paint	0.97	0.97
Stainless steel			White paint	0.14	0.93
Polished	0.37	0.60	Snow	0.28	0.97
Dull	0.50	0.21	Human skin (Caucasian)	0.62	0.97
Northridge	From Çen	el, Heat	nd Mass Transfer	4	

