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Outline
• Review last external and introduction to 

internal flows
• Heat transfer coefficients for internal 

flows
– Temperature for computing properties
– Laminar and turbulent flows
– Pressure drop and heat transfer

• Circular and non-circular geometries
• Free convection
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Review External Flow Basics
• The flow is unconfined
• Moving objects into still air are modeled 

as still objects with air flowing over them
• There is an approach condition of 

velocity, U∞, and temperature, T∞

• Far from the body the velocity and 
temperature remain at U∞ and T∞

• T∞ is the (constant) fluid temperature 
used to compute heat transfer
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Review Flat Plate Equations
• Laminar flow (Rex, ReL < 500,000, Pr > .6)
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• Turbulent flow (5x105 < Rex, ReL < 107)
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For turbulent Nu, .6 < Pr < 60
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Review Flat Plate Equations II
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• Average properties for com-
bined laminar and turbulent 
regions with transition at xc = 
500000 ν/U∞
– Valid for 5x105 < ReL < 107 and 

0.6 < Pr < 60

Figure 7-10 from Çengel, Heat and Mass Transfer 6

Review Cylinder and Sphere
• Cylinder average h (RePr > 0.2; properties 

at (T∞ + Ts)/2 5/48/5
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• Sphere average h (3.5 ≤ Re ≤ 80,000; 0.7 
≤ Pr ≤ 380; μs at Ts; other properties at T∞)

[ ]
4/1

4.03/22/1 PrRe06.0Re4.02 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μ
μ

++== ∞

sk
hDNu



Convection coefficients two April 11, 2007

ME 375 – Heat Transfer 2

7

Review Tube Banks

Table 7-2 from Çengel, Heat and Mass Transfer
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Review Internal Flow Basics
• The flow is confined
• There is a temperature and velocity 

profile in the flow
– Use average velocity and temperature

• Wall fluid heat exchange will change the 
average fluid temperature
– There is no longer a constant fluid 

temperature like T∞ for computing heat 
transfer
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Review Area Terms

Figure 8-1 from Çengel, Heat and Mass Transfer

• Acs is cross-sectional area 
for the flow
– Acs = πD2/4 for circular pipe
– Acs =  LW for rectangular 

duct
• Aw is the wall area for heat 

transfer
– Aw = πDL for circular pipe
– Aw = 2(W + H)L for 

rectangular duct
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Review Fixed Wall Heat Flux
• Fixed wall heat flux,       , over given wall 

area, Aw, gives total heat input which is 
related to Tout – Tin by thermodynamics
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• “Outlet” can be any point along flow path 
where area from inlet is Aw

• We can compute Tw at this point as Tw = 
Tout +        /hwallq&
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Review Constant Wall Temperature
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Figure 8-14 from Çengel, Heat and Mass Transfer

• hAw /   cp = NTU, the 
number of transfer 
units

• This is general 
equation for 
computing Tout in 
internal flows

m&

12

Temperature Ratio versus NTU
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Review Log-mean Delta T
• Equations for overall heat transfer
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Developing Flows

Momentum 
boundary 
layer 
development

Thermal 
boundary 
layer 
development
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Fully Developed Flow
• Temperature profile does not change 

with x if flow is fully developed thermally
• This means that ∂T/∂r does not change 

with downstream distance, x, so heat 
flux (and Nu) do not depend on x
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Eggs from Figure 
8-9 in Çengel, 
Heat and Mass 
Transfer

Entry Region Nusselt Numbers
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Internal Flow Pressure Drop
• General formula: Δp = f (L/D) ρV2/2
• Friction factor, f, depends on Re = 

ρVD/μ and relative roughness, ε/D
• For laminar flows, f = 64/Re

– No dependence on relative roughness
• For turbulent flows
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Moody Diagram

Fundamentals of 
Fluid Mechanics, 5/E 
by Bruce Munson, 
Donald Young, and 
Theodore Okiishi. 
Copyright © 2005 by 
John Wiley & Sons, 
Inc.  All rights 
reserved.
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Laminar Nusselt Number
• Laminar flow if Re = ρVD/μ < 2,300
• Fully-developed, constant heat flux, Nu

= 4.36
• Fully-developed, constant wall 

temperature: Nu = 3.66
• Entry region, constant wall temperature:
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Noncircular Ducts
• Define hydraulic diameter, Dh = 4A/P

– A is cross-sectional area for flow
– P is wetted perimeter
– For a circular pipe where A = pD2/4 and P 

= πD, Dh = 4(πD2/4) / (πD) = D
• For turbulent flows use Moody diagram 

with D replaced by Dh in Re, f, and ε/D
• For laminar flows, f = A/Re and Nu = B 

(all based on Dh) – A and B next slide
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From Çengel, 
Heat and Mass 
Transfer
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Turbulent Flow
• Smooth tubes (Gnielinski)
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• Tubes with roughness
– Use correlations developed for this case
– As approximation use Gnielinski equation 

with f from Moody diagram or f equation
• Danger!  h does not increase for f >4fsmooth
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Free (Natural) Convection
• Flow is induced by temperature 

difference
– No external source of fluid motion
– Temperature differences cause 

density differences
– Density differences induce flow

• “Warm air rises”

• Used for electronic cooling with 
low cooling requirements

Eggs from Figure 
1-33 in Çengel, 
Heat and Mass 
Transfer

Forced

Free 
(Natural)
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Flow Direction
• Flow direction depends on 

temperature difference
– Warm object (compared to 

ambient) causes fluid to 
rise 

– Cool object (compared to 
object) causes fluid to sink

– Volume expansion coef-
ficient: β = –(1/ρ)(∂ρ/∂T)

• For ideal gases β = 1/TFigure 9-2 in Çengel, Heat 
and Mass Transfer
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Laminar and Turbulent

Figure 9-5 in 
Çengel, Heat 
and Mass 
Transfer

• Free convection can 
be laminar or 
turbulent

• Diagram shows 
laminar and turbulent 
regions
– Mach-Zender

interferometer shows 
density lines that are 
proportional to T
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Profiles
• Warm vertical wall at Ts

with cooler fluid at T∞

• Velocity is zero at wall 
and edge of boundary 
layer

• Driving force is density 
differences
– ρ = ρ∞ + β(T – T∞)

Figure 9-6 in Çengel, Heat 
and Mass Transfer
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Grashof and Rayleigh Numbers
• Dimensionless groups for free (natural) 

convection

– g = acceleration of gravity (LT-2)
– β = –(1/ρ)(∂ρ/∂T) called the volume 

expansion coefficient (dimensions: 1/Θ)
– ΔT = |Twall – Tfluid| (dimensions: Θ)
– Other terms same as previous use
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Equations for Nu
• Equations have form of AGraPrb or BRac

• Since Gr and Ra contain |Twall – Tfluid|, 
an iterative process is required if one of 
these temperatures is unknown

• Transition from laminar to turbulent 
occurs at given Ra values
– For vertical plate transition Ra = 109

• Evaluate properties at “film” (average) 
temperature, (Twall + Tfluid)/2
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Vertical Plate Free Convection
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Plate figure from Table 
9-1 in Çengel, Heat 
and Mass Transfer 30

Vertical Plate Free Convection
• Simplified equations on previous chart 

for constant wall temperature
– More accurate: Churchill and Chu, any Ra
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Vertical Plate Free Convection
• Constant wall heat flux

– Use    = hA(Tw – T∞) to compute an 
unknown temperature (Tw or T∞) from 
known wall heat flux and computed h

– Tw varies along wall, but the average heat 
transfer uses midpoint temperature, TL/2

– Use trial and error solution with TL/2 – T∞ as 
ΔT in Ra used to compute h = kNu/L
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Vertical Cylinder
• Apply equations for vertical 

plate from previous charts if 
D/L ≥ 35/Gr1/4

• For this D/L effects of 
curvature are not important

• Thin cylinder results of Cebeci
and Minkowcyz and Sparrow 
available in ASME 
Transactions

Cylinder figure 
from Table 9-1 in 
Çengel, Heat and 
Mass Transfer
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Horizontal Plate
• Convection 

depends on 
temperature 
and direction

• Hot plate shown 
here has strong 
currents above 
plate and stops 
flow below plate

Figure 9-11 in 
Çengel, Heat and 
Mass Transfer 34

Horizontal Plate II

Figure 9-11 in 
Çengel, Heat and 
Mass Transfer

Cold 
plate

Natural 
convection 

currents

Natural 
convection 

currents
• Cold plate 

shown here 
(Tplate < T∞)

• This has strong 
currents below 
plate and stops 
flow above 
plate
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Horizontal Plate III

• Hot surface facing up or cold surface 
facing down

• Lc = area / perimeter (As/p)
– For a rectangle of length, L, and width, W, 

Lc = (LW) / (2L + 2W) = 1 / ( 2 / W + 2 / L)
– For a circle, Lc = πR2 / 2πR = R/2 = D/4

Cold surface
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Figures from Table 9-1 in 
Çengel, Heat and Mass 
Transfer
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Horizontal Plate IV

• Cold surface facing up or hot surface 
facing down

• Lc = area / perimeter (As/p)
– For a rectangle of length, L, and width, W, 

Lc = (LW) / (2L + 2W) = 1 / ( 2 / W + 2 / L)
– For a circle, Lc = πR2 / 2πR = R/2 = D/4

Cold surface

1154/1 101027.0 <<= RaRaNu
cL

Figures from Table 9-1 in 
Çengel, Heat and Mass 
Transfer
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Horizontal Cylinder

• NuD is average value for the cylinder
• Note differences around cylinder in 

figure on left
– What if cylinder on left were cold?
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Figure 9-12 (left) and figure from Table 9-1 (right) in 
Çengel, Heat and Mass Transfer
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Sphere
• Equation is valid for RaD < 

1011 and Pr  .7
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Figure from Table 9-1 in 
Çengel, Heat and Mass 
Transfer
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Horizontal Enclosures
• Top side warmer:

no convection
• Conduction only, Nu

= hL/k = 1
• Bottom warmer:

convection becomes 
significant when RaL
= (Pr)βgΔTL3/ν2 = 
βgΔTL3/να > 1708

L

Figure 9-22 in Çengel, 
Heat and Mass Transfer
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Horizontal Enclosures II
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Globe and Dropkin for 
a range of liquids

Hollands et al. for air; also for other fluids if RaL < 105
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Vertical Enclosures
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23 in 
Çengel, 
Heat and 
Mass 
Transfer
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keff

• Effective 
thermal 
conductivity

• keff = kNu
• For vertical 

enclosures 
with no 
motion, keff
= 1

Figure 9-23 in Çengel, 
Heat and Mass Transfer



Convection coefficients two April 11, 2007

ME 375 – Heat Transfer 8

43

Horizontal Enclosures
• If T2 > T1, (top 

warmer) there is 
no convection

• Conduction only, 
Nu = hL/k = 1

• If T2 < T1, (bottom warmer) significant 
convection starts when RaL = 
(Pr)βgDTL3/ν2 > 1708


