Computing Heat Transfer Coefficients II

Larry Caretto
Mechanical Engineering 375

Heat Transfer

April 11, 2007

Outline

- Review last external and introduction to internal flows
- Heat transfer coefficients for internal flows
- Temperature for computing properties
- Laminar and turbulent flows
- Pressure drop and heat transfer
- Circular and non-circular geometries
- Free convection

Northridge

Review External Flow Basics

- The flow is unconfined
- Moving objects into still air are modeled as still objects with air flowing over them
- There is an approach condition of velocity, U_{∞}, and temperature, T_{∞}
- Far from the body the velocity and temperature remain at U_{∞} and T_{∞}
- T_{∞} is the (constant) fluid temperature used to compute heat transfer Northridge

Review Flat Plate Equations

- Laminar flow ($\mathrm{Re}_{\mathrm{x}}, \mathrm{Re}_{\mathrm{L}}<500,000, \mathrm{Pr}>.6$) $C_{f_{x}}=\frac{\tau_{\text {wall }}}{\rho U_{\infty}^{2} / 2}=0.664 \mathrm{Re}_{x}^{-1 / 2} \quad N u_{x}=\frac{h_{x} x}{k}=0.332 \operatorname{Re}_{x}^{1 / 2} \operatorname{Pr}^{1 / 3}$ $C_{f}=\frac{\bar{\tau}_{\text {wall }}}{\rho U_{\infty}^{2} / 2}=1.33 \mathrm{Re}_{L}^{-1 / 2} \quad N u_{L}=\frac{\bar{h} L}{k}=0.664 \mathrm{Re}_{L}^{1 / 2} \operatorname{Pr}^{1 / 3}$
- Turbulent flow ($5 \times 10^{5}<\operatorname{Re}_{\mathrm{x}}, \mathrm{Re}_{\mathrm{L}}<10^{7}$) $C_{f_{x}}=\frac{\tau_{\text {wall }}}{\rho U_{\infty}^{2} / 2}=0.059 \operatorname{Re}_{x}^{-1 / 5} \quad N u_{x}=\frac{h_{x}^{x}}{k}=0.0296 \operatorname{Re}_{x}^{0.8} \operatorname{Pr}^{1 / 3}$ $C_{f}=\frac{\bar{\tau}_{\text {wall }}}{\rho U_{\infty}^{2} / 2}=0.074 \operatorname{Re}_{L}^{-1 / 5} \quad N u_{L}=\frac{\bar{h} L}{k}=0.037 \operatorname{Re}_{L}^{0.8} \operatorname{Pr}^{1 / 3}$

Cilfonnequatineraty
Northridge \quad For turbulent $\mathrm{Nu}, .6<\mathrm{Pr}<60 \quad 4$

Review Flat Plate Equations II

- Average properties for combined laminar and turbulent regions with transition at $x_{c}=$ $500000 \mathrm{v} / \mathrm{U} \infty$
- Valid for $5 \times 10^{5}<\mathrm{Re}_{\mathrm{L}}<10^{7}$ and $0.6<\operatorname{Pr}<60$
$C_{f}=\frac{\bar{\tau}_{\text {wall }}}{\rho U_{\infty}^{2} / 2}=\frac{0.074}{\mathrm{Re}_{L}^{1 / 5}}-\frac{1742}{\mathrm{Re}_{L}} \quad N u_{L}=\frac{\bar{h} L}{k}=\left(0.037 \mathrm{Re}_{L}^{0.8}-871\right) \mathrm{Pr}^{1 / 3}$

[^0]
Review Cylinder and Sphere

- Cylinder average h (RePr > 0.2; properties at $\left(T_{\infty}+T_{s}\right) / 2$
$N u=\frac{h D}{k}=0.3+\frac{0.62 \mathrm{Re}^{1 / 2} \mathrm{Pr}^{1 / 2}}{\left[1+\left(\frac{0.4}{\mathrm{Pr}}\right)^{2 / 3}\right]^{1 / 4}}\left[1+\left(\frac{\mathrm{Re}}{282,000}\right)^{5 / 8}\right]^{4 / 5}$
- Sphere average $\mathrm{h}(3.5 \leq \operatorname{Re} \leq 80,000 ; 0.7$ $\leq \operatorname{Pr} \leq 380 ; \mu_{\mathrm{s}}$ at T_{s}; other properties at T_{∞})
$N u=\frac{h D}{k}=2+\left[0.4 \mathrm{Re}^{1 / 2}+0.06 \mathrm{Re}^{2 / 3}\right] \operatorname{Pr}^{0.4}\left(\frac{\mu_{\infty}}{\mu_{s}}\right)_{6}^{1 / 4}$

Review Tube Banks		
Nusselt number correlations for cross flow over tube banks for $N>16$ and $0.7<\operatorname{Pr}<500$ (from Zukauskas, 1987)*		
Arrangement	Range of Re_{0}	Correlation
In-line	0-100	$\mathrm{Nu}_{D}=0.9 \mathrm{Re}^{0.4} \mathrm{Pr}^{0.36}\left(\mathrm{Pr} / \mathrm{Pr}_{s}\right)^{0.25}$
	100-1000	$\mathrm{Nu}_{D}=0.52 \mathrm{Re}^{0.5} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}^{\prime} / \mathrm{Pr}_{5}\right)^{0.25}$
	$1000-2 \times 10^{5}$	$\mathrm{Nu}_{D}=0.27 \mathrm{Re}_{D}^{0.63} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}^{2} / \mathrm{Pr}_{s}\right)^{0.25}$
	$2 \times 10^{5}-2 \times 10^{6}$	$\mathrm{Nu}_{D}=0.033 \mathrm{Re}_{D}^{0.8} \mathrm{Pr}^{0.4}\left(\mathrm{Pr}^{2} / \mathrm{Pr}_{s}\right)^{0.25}$
Staggered	0-500	$\mathrm{Nu}_{D}=1.04 \mathrm{Re}^{0.4} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}^{\prime} / \mathrm{Pr}_{s}\right)^{0.25}$
	500-1000	$\mathrm{Nu}_{D}=0.71 \mathrm{Re}^{0.5} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}^{\prime} / \mathrm{Pr}_{5}\right)^{0.25}$
	$1000-2 \times 10^{5}$	$\mathrm{Nu}_{D}=0.35\left(S_{T} / S_{L}\right)^{0.2} \operatorname{Re}^{0.6} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}_{2} / \mathrm{Pr}_{s}\right)^{0.25}$
	$2 \times 10^{5}-2 \times 10^{6}$	$\mathrm{Nu}_{D}=0.031\left(S_{T} / S_{L}\right)^{0.2} \mathrm{Re}_{D}^{0.8} \mathrm{Pr}^{0.36}\left(\mathrm{Pr}^{2} / \mathrm{Pr}_{s}\right)^{0.25}$

*All properties except Pr , are to be evaluated at the arithmetic mean of the inlet and outlet temperatures of the fluid (Pr , is to be evaluated at T_{s}).

Northridge Table 7-2 from Çengel, Heat and Mass Transfer

Review Fixed Wall Heat Flux

- Fixed wall heat flux, $\dot{\mathrm{q}}_{\text {wall }}$, over given wall area, A_{w}, gives total heat input which is related to $\mathrm{T}_{\text {out }}-\mathrm{T}_{\text {in }}$ by thermodynamics $\dot{Q}=\dot{q}_{\text {wall }} A_{w}=\dot{m} c_{p}\left(T_{\text {out }}-T_{\text {in }}\right) \Rightarrow T_{\text {out }}=T_{\text {in }}+\frac{\dot{q}_{\text {wall }} A_{w}}{\dot{m} c_{p}}$
- "Outlet" can be any point along flow path where area from inlet is A_{w}
- We can compute T_{w} at this point as $T_{w}=$ $\mathrm{T}_{\text {out }}+\dot{\mathrm{q}}_{\text {wall }} / \mathrm{h}$

Northridge

Review Internal Flow Basics

- The flow is confined
- There is a temperature and velocity profile in the flow
- Use average velocity and temperature
- Wall fluid heat exchange will change the average fluid temperature
- There is no longer a constant fluid temperature like T_{∞} for computing heat transfer

Northridge
8

Review Log-mean Delta T

- Equations for overall heat transfer

$$
\begin{gathered}
\dot{Q}=\dot{m} c_{p}\left(T_{\text {out }}-T_{\text {in }}\right) \\
\dot{Q}=h A(L M D T)
\end{gathered}
$$

$L M D T=\frac{\left(T_{\text {out }}-T_{\text {in }}\right)}{\ln \left(\frac{T_{\text {out }}-T_{s}}{T_{\text {in }}-T_{s}}\right)}=\frac{\left(T_{\text {out }}-T_{s}\right)-\left(T_{\text {in }}-T_{s}\right)}{\ln \left(\frac{T_{\text {out }}-T_{s}}{T_{\text {in }}-T_{s}}\right)}$
Northridge

Developing Flows

Laminar Nusselt Number

- Laminar flow if $\operatorname{Re}=\rho V D / \mu<2,300$
- Fully-developed, constant heat flux, Nu $=4.36$
- Fully-developed, constant wall temperature: Nu = 3.66
- Entry region, constant wall temperature:

$$
N u=3.66+\frac{0.065(D / L) \operatorname{Re} \operatorname{Pr}}{1+0.04[(D / L) \operatorname{Re} \operatorname{Pr}]^{2 / 3}}
$$

Noncircular Ducts

- Define hydraulic diameter, $D_{h}=4 A / P$
- A is cross-sectional area for flow
$-P$ is wetted perimeter
- For a circular pipe where $A=p D 2 / 4$ and P
$=\pi D, D_{h}=4\left(\pi D^{2} / 4\right) /(\pi D)=D$
- For turbulent flows use Moody diagram with D replaced by D_{h} in $R e, f$, and ε / D
- For laminar flows, $f=A / R e$ and $N u=B$ (all based on D_{h}) - A and B next slide Northridge

TABLE 8-1

Nusselt number and friction factor for fully developed laminar flow in tubes of various cross sections ($D_{h}=4 A_{c} / p, \mathrm{Re}=V_{\text {avg }} D_{h} / \nu$, and $\mathrm{Nu}=h D_{h} / k$)

Turbulent Flow

- Smooth tubes (Gnielinski)
$N u=\frac{(f / 8)(\operatorname{Re}-1000) \operatorname{Pr}}{1+12.7(f / 8)^{0.5}\left(\operatorname{Pr}^{2 / 3}-1\right)}\binom{0.5 \leq \operatorname{Pr} \leq 2000}{3 \times 10^{3}<\operatorname{Re}<5 \times 10^{6}}$ Petukhov: $f=[0.790 \ln (\mathrm{Re})-1.64]^{-2} \quad 3000<\mathrm{Re}<5 \times 10^{6}$
- Tubes with roughness
- Use correlations developed for this case
- As approximation use Gnielinski equation with f from Moody diagram or f equation - Danger! h does not increase for $\mathrm{f}>4 \mathrm{f}_{\text {smooth }}$ Northridge

Laminar and Turbulent	
	- Free convection can be laminar or turbulent - Diagram shows laminar and turbulent regions - Mach-Zender interferometer shows density lines that are
	(b) Turbulent flow proportional to T

Grashof and Rayleigh Numbers

- Dimensionless groups for free (natural) convection
$G r=\frac{\beta g \Delta T L_{c}^{3}}{v^{2}}=\frac{\rho^{2} \beta g \Delta T L_{c}^{3}}{\mu^{2}} \quad \begin{gathered}R a=G r \mathrm{Pr}= \\ \frac{\beta g \Delta T L_{c}^{3}}{v \alpha}\end{gathered}$
$-\mathrm{g}=$ acceleration of gravity $\left(\mathrm{LT}^{-2}\right)$
$-\beta=-(1 / \rho)(\partial \rho / \partial T)$ called the volume expansion coefficient (dimensions: $1 / \Theta$)
$-\Delta T=\left|T_{\text {wall }}-T_{\text {fluid }}\right|$ (dimensions: Θ)
- Other terms same as previous use

Equations for Nu

- Equations have form of $A G r^{a} P^{b}$ or $B R a^{c}$
- Since Gr and Ra contain $\left|\mathrm{T}_{\text {wall }}-\mathrm{T}_{\text {fluid }}\right|$, an iterative process is required if one of these temperatures is unknown
- Transition from laminar to turbulent occurs at given Ra values
- For vertical plate transition $\mathrm{Ra}=10^{9}$
- Evaluate properties at "film" (average) temperature, $\left(\mathrm{T}_{\text {wall }}+\mathrm{T}_{\text {fluid }}\right) / 2$

Vertical Plate Free Convection

- Simplified equations on previous chart for constant wall temperature
- More accurate: Churchill and Chu, any Ra
$N u_{L}=\left\{0.825+\frac{0.387 R a_{L}^{1 / 6}}{\left[1+(0.492 / \operatorname{Pr})^{9 / 16}\right]^{\beta / 27}}\right\}^{2} \quad$ Any $R a_{L}$
- More accurate laminar Churchill/Chu
$N u_{L}=0.68+\frac{0.670 R a_{L}^{1 / 4}}{\substack{\text { N } \\ \text { Northridge }}}\left[1+(0.492 / \operatorname{Pr})^{9 / 16}\right]^{4 / 9} \quad 0<R a_{L}<10^{9}$

Vertical Plate Free Convection

- Constant wall heat flux
- Use $\dot{q}=h A\left(T_{w}-T_{\infty}\right)$ to compute an unknown temperature (T_{w} or T_{∞}) from known wall heat flux and computed h
- T_{w} varies along wall, but the average heat transfer uses midpoint temperature, $\mathrm{T}_{\mathrm{L} / 2}$
$\dot{q}_{\text {wall }}=h A_{\text {wall }}\left(T_{L / 2}-T_{\infty}\right) \Rightarrow T_{L / 2}-T_{\infty}=\frac{\dot{q}_{\text {wall }}}{h A_{\text {wall }}}$
- Use trial and error solution with $T_{L / 2}-T_{\infty}$ as $\Delta \mathrm{T}$ in Ra used to compute $\mathrm{h}=\mathrm{kNu} / \mathrm{L}$ Northridge

Vertical Cylinder

Cylinder figure
from Table 9-1 in Çengel, Heat and Mass Transfer

Apply equations for vertical plate from previous charts if D/L $\geq 35 / \mathrm{Gr}^{1 / 4}$

- For this D/L effects of curvature are not important
- Thin cylinder results of Cebeci and Minkowcyz and Sparrow available in ASME Transactions

Horizontal Plate II

Figures from Table 9-1 in
Çengel, Heat and Mass
Transfer

$$
N u=0.27 R a_{L_{c}}^{1 / 4} \quad 10^{5}<R a<10^{11}
$$

Northridge

[^0]: Northridge
 Figure 7-10 from Çengel, Heat and Mass Transfer

