

3

Review External Flow Basics

- · The flow is unconfined
- Moving objects into still air are modeled as still objects with air flowing over them
- There is an approach condition of velocity, $U_{\scriptscriptstyle \infty}$, and temperature, $T_{\scriptscriptstyle \infty}$
- Far from the body the velocity and temperature remain at U_{∞} and T_{∞}
- T_∞ is the (constant) fluid temperature used to compute heat transfer Northridge

Review Tube Banks						
Nusselt number correlations for cross flow over tube banks for $N > 16$ and $0.7 < Pr < 500$ (from Zukauskas, 1987)*						
Arrangement	Range of Re _D	Correlation				
In-line	0-100	$Nu_D = 0.9 \text{ Re}_D^{0.4} Pr^{0.36} (Pr/Pr_s)^{0.25}$				
	100-1000	$Nu_D = 0.52 \text{ Re}_D^{0.5} \text{Pr}^{0.36} (\text{Pr/Pr}_s)^{0.25}$				
	$1000-2 \times 10^{5}$	$Nu_D = 0.27 \text{ Re}_D^{0.63} Pr^{0.36} (Pr/Pr_s)^{0.25}$				
	$2\times10^{5}2\times10^{6}$	$Nu_D = 0.033 \text{ Re}_D^{0.8} \text{Pr}^{0.4} (\text{Pr/Pr}_s)^{0.25}$				
Staggered	0–500	$Nu_D = 1.04 \text{ Re}_D^{0.4} Pr^{0.36} (Pr/Pr_s)^{0.25}$				
	500-1000	$Nu_D = 0.71 \ Re_D^{0.5} Pr^{0.36} (Pr/Pr_s)^{0.25}$				
	$1000-2 \times 10^{5}$	${\rm Nu}_{D}=0.35(S_{T}/S_{L})^{0.2}~{\rm Re}_{D}^{0.6}{\rm Pr}^{0.36}({\rm Pr}/{\rm Pr}_{\rm s})^{0.25}$				
	$2\times10^{5}\!\!-\!\!2\times10^{6}$	$Nu_D = 0.031(S_T/S_L)^{0.2} Re_D^{0.8} Pr^{0.36} (Pr/Pr_s)^{0.36}$				
	o be evaluated at T _s). University	at the arithmetic mean of the inlet and outlet temperatures irom Çengel, <i>Heat and Mass Transfer</i> 7				

	a/b	l_c/p , Re = $V_{avg}D_h/v$, and Nu = I Nusselt Number		Friction Factor
Tube Geometry	or θ°	$T_s = \text{Const.}$	\dot{q}_s = Const.	f
Circle	-	3.66 From Çengel, Heat and Mass Transfer	4.36	64.00/Re
Rectangle	<u>a/b</u>			
	1	2.98	3.61	56.92/Re
/ /	2	3.39	4.12	62.20/Re
	3	3.96	4.79	68.36/Re
6	4	4.44	5.33	72.92/Re
	6	5.14	6.05	78.80/Re
←a	8	5.60	6.49	82.32/Re
	00	7.54	8.24	96.00/Re

