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Outline
• Review previous material
• What is a fin and why do we use them?
• Examples of fins
• Analysis of fins
• Fin effectiveness
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Review Parallel Resistances
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Figure 3-5 
from Çengel, 
Heat and 
Mass Transfer
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Review Slab with Convection
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LA is area normal 
to heat flow

First find heat flux from h1, h2, 
L, k, T∞1, and T∞2

Once heat flux is known, find T1 and T2

2
22

1
11 h

qTT
h
qTT

&&
+=−= ∞∞

Figure 3-6 from 
Çengel, Heat and 
Mass Transfer
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Figure 3-26 
from Çengel, 
Heat and Mass 
Transfer

Review Composite 
Cylindrical Shell 
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Effect of Insulation Thickness
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Review: Adding insulation to a 
cylinder (or sphere) can 
actually increase heat transfer!

Maximum heat transfer is at rc = k/h, 
which may be less than physical radius

physical 
radius
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Resistances for Pipe Insulation
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Review Conduction Shape Factor
• Simplified analysis

– for multidimensional geometries with each 
surface at a uniform temperature

– Use shape factor, S, whose equation is 
found from tables like Çengel Table 3-7

– Basic equation:    = kS(T1 – T2)
– S must have dimensions of length

• Equations for S depend on parameters in the 
different geometries

Q&
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What is a Fin?
• A fin is a extended 

surface to 
increase area for 
convection heat 
transfer

• Goal is to increase 
As to increase

• Automobile radiator 
is example of fin   
Figure 3-33 from Çengel, Heat Transfer
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Innovative Fin Designs

Figure 3-34 from Çengel, 
Heat Transfer

• Important 
application is 
cooling of power 
electronics

• How do we 
analyze fin 
effectiveness?
– Start with 

simple 1D fin
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Analysis
• S • Conduction in x-

direction
• Convection from 

fin surface
• Heat balance 

over differential 
volume element
– p = perimeter
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Figure 3-35 
from Çengel, 
Heat Transfer
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What is Fin Shape?
• Analysis does not consider shape of 

cross section, only area and perimeter
– Derivation of fin equation assumes 

constant cross section
• Fin may be in the shape of a uniform cylinder, 

but not a cone

• Is fin two dimensional?
– Yes, but one-dimensional analysis is 

accurate if hδ/k < 0.2, where δ = D for 
circular fins, thickness for rectangular fins
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Fin Equation and Solution
• T0 = Tb = base temperature at x = 0
• Define θ = T – T∞ so θb = Tb – T∞

• The fin equation for constant k and Ac is

• The solution to this differential equation 
is:
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Boundary Conditions for C1, C2

• First condition: base temperature is Tb
so θ =  θb = Tb – T∞ at x = 0

• Alternatives for second condition
– Infinitely long fin (requires C1= 0)
– Negligible heat transfer from end at x = L
– Convection and radiation heat transfer 

coefficient for end at x = L
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Infinitely Long Fin
mxmx eCeC −+=θ 21

• C1 = 0 to keep solution finite
• At x = 0, θ = θb = requires C2 = θb
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Zero Heat Transfer at x = L

• At x = 0, θ = θb; at x = L, dθ/dx = 0
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Hyperbolic Tangent
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Convection
• For convection (+ 

radiation) at x = L 
use approximation of 
extra length

• Use adjusted length, 
Lc, to give area Ac

• Modified length, Lc = 
L + Ac/p, will give 
convection from end

Figure 3-39 from 
Çengel, Heat Transfer
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Problem
• A pin (cylindrical) fin has a diameter of  

4 mm, a length of 5 cm, and a thermal 
conductivity of 200 W/m·K.  If the heat 
transfer coefficient is 70 W/m2·K, with a 
surface temperature of 50oC and an air 
temperature of 20oC, what is the heat 
transfer with and without the fin?

• Given: k = 200 W/m·K, h = 70 W/m2·K, 
D = 0.004 m, L = 0.05 m, Ts = 50oC, T∞
= 20oC,  Find: with and without finQ&
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Solution
• Use equation for finite length fin with 

end correction for convection
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Solution II

• Without fin available area is Ac

( ) ( )

( )( ) ( )⎥⎦
⎤

⎢⎣
⎡

⋅⋅

•−=−= ∞=

m
mKm

Wmm
Km

W

KmLTThpkAQ cbcx

051.071.18tanh20000001257.001257.070

2050tanh

2
2

0
&

WQ fin 05.1=&

( ) ( )( ) WKm
Km

WTThAQ bcfinno 0264.03000001257.070 2
2 =
⋅

=−= ∞
&

• Increase by factor of 39.64 (effectiveness, ε)
22

Increase of 40 times?
• Factor of 40 increase in heat transfer is 

just for area of fin
– A practical installation of small fins like this 

one would have several fins on a surface
– Consider two areas on original surface

• Area where pins occur will have increase by 
factor shown in fin analysis

• Area without fins has usual flat surface result
– Will consider this difference in determining 

fin effectiveness
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Fin Effectiveness
• Effectiveness, εfin, is ratio of heat trans-

fer with fin to heat transfer with no fin
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• Ab is fin area at base, same as Ac for fin 
with constant cross sectional area

• Want fin effectiveness greater than one 
to get additional heat transfer
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Constant Ac Fin Effectiveness
• Infinitely long fin
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convection
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What makes a fin effective?
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• For infinite fin high k, low h and high ratio 
of p/Ac make a fin effective

• For pin fin, p = πD and Ac = πD2/4, so 
p/Ac = 4/D; small D gives better ε

• Effect of variables on fin with convection 
at end is not clear
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What makes a fin effective? II

• Choose a base case and vary each 
parameter from 0.1 to 10 times base value
– Rectangular fin with width, w, and thickness, t, 

so that Ac = tw and p = 2(t + w)
• Base case has k = 200 W/m·K, w = 0.03 m, 

t = 0.005 m, h = 70 W/m2·K,  L = 0.08 m
– Base mLc = 1.05 and ε = 28.5
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Effect of Parameters on Rectangular Fin Effectiveness
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Overall Fin Effectiveness
• Original area, A = (area 

with fins, Afin) + (area 
without fins, Aunfin)
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Figure 3-45 from 
Çengel, Heat Transfer
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Fin Efficiency
• Compare actual 

heat transfer to 
ideal case where 
entire fin is at 
base temperature
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Figure 3-39 from 
Çengel, Heat Transfer 30

Fin Efficiency II
• Relation to effectiveness
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• Recall pin fin problem with D = 0.004 m 
and Lc = 0.051 m so Afin = pLc = πDLc = 
π(0.004 m)(0.051 m) = 0.0006409 m2

– Previously showed ε = 39.64 so η = (39.64) 
(pD2/4)/(0.0006409 m2) = 0.777
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Fin Efficiency Data

Figure 3-42 
from Çengel, 
Heat 
Transfer
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Fin Efficiency Data II

Figure 3-43 from 
Çengel, Heat Transfer
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Electronic Heat Sinks
• Designed to protect equipment like 

power transistors from overheating
• Characterized by thermal resistance, R, 

such that     = power dissipation = 
(Tdevice - T∞)/R

• See Table 3-6 in Çengel for examples 
with R values
– First part of table shown on next chart

Q&
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From Çengel, Heat Transfer
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Problem
• A power transistor that dissipates      

120 W has a maximum operating 
temperature of 70oC.  Cooling air is 
available at 25oC.  Are any of the heat 
sinks on the previous page suitable for 
this transistor?

• Given:      = 120 W, Tsurf = 70oC, T∞ = 
25oC

• Find: Do devices have sufficient R

Q&
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Solution

• Only the HS 5030 mounted vertically 
(with R = 0.9oC/W) will satisfy this 
cooling requirement

• The R values for the other heat sinks 
are too large (1.2oC/W and 5oC/W)
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Extra Charts
• The following charts show the details of 

the fin equation solution for no 
convection (dT/dx = 0) at x = L
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Zero Heat Transfer at x = L

• At x = 0, θ = θb; at x = L, dθ/dx = dT/dx= 0
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Zero Heat Transfer at x = L II
• Combine results from last chart
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Zero Heat Transfer at x = L III
• Rearrange exponential terms on last 

chart and introduce hyperbolic cosine, 
cosh(x) = (ez + e-z)/2
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