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Engineering Accreditation
• CSUN has accredited programs in Civil, 

Electrical, Manufacturing and 
Mechanical Engineering
– National accrediting agency reviews all 

engineering programs in US
• Fall 2007 reaccreditation visit requires 

collection of student work
– Turn in all your notes, quizzes design 

project and exams at end of semester
• You can get them back in late fall 2007
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Assessment Results
• 19 students completed assessment

– 17 are OK or better with Excel skills
– 5 are OK or better with Matlab skills

• Course completion data: Math 280(14), 
ECE 240(12), ME 309(5), ME 370(9), 
ME 390(4), ME 470(0), MSE 304(12)

• 15 got ∫x3dx = x4/4 + C  (6 missed C)
• 14 got d(eax) = eax
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Assessment Results II
• 3 got thermo problem correct

– Q = Q/m = ∫cpdT for constant P
• With constant cp, q = cp(T2 – T1)

• 5 got interpolation (4 got partial credit)

• 3 got problem to find Δh for dh/dT = 1 + 
100/T from T = 500 to T = 1000 (8 got 
partial credit)
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Outline
• Review last week
• Heat generation
• General energy balance and geometry
• Simplified cases: steady, one-

dimensional, no heat generation, 
constant thermal conductivity

• Analyze one dimensional cases
– Constant and variable thermal conductivity
– Constant heat generation term
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Review Definitions

Q is the total heat 
transfer with 
energy units of J 
or Btu

is the heat 
transfer rate in 
power units J/s = 
W or Btu/hr

Heat flux:

Q&

AQq && =
Figure 1-12 
from Çengel, 
Heat and 
Mass 
Transfer
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Review Conduction Fourier Law
• = –k∂T/∂x (1D: –kdT/dx)
• k is thermal conductivity 

(W/m·K or Btu/hr·ft2·oF)
– k depends on temperature; 

may be assumed constant for 
small temperature range

• For constant k
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Review Convection

h = heat transfer 
coefficient 
(W/m2·K) or 
Btu/hr·ft2·oF

Equation assumes 
direction of heat 
transfer is from 
solid to fluid

V∞
Figure 1-32 
from Çengel, 
Heat and 
Mass Transfer)( ∞−
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Review Radiation
• Radiation from surface 1 to surface 2

– is shape-emissivity factor
– σ, Stefan Boltzmann constant = 5.670x10-8

W/m2·K4 = 0.1714x10-8 Btu/hr·ft2·R4

– T is the absolute temperature!!!
– Black body is perfect radiator

• Emissivity is fraction of black body emitted by 
actual surface

• Absorbtivity is incoming fraction absorbed
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Heat Generation
• Various 

phenomena in 
solids can 
generate heat

• Define          
as the heat 
generated per 
unit volume 
per unit time

gene&

Figure 2-21 from Çengel, 
Heat and Mass Transfer
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Find        for a Wire with Current 
• The definition of          is the heat 

generated per unit volume per unit time
– Electrical resistance produces a heat 

dissipation of I2R = I2ρL/A in watts where
• I is the current in amps
• ρ is the electrical resistivity (ohm·m)
• L is the length of the wire in m
• A is cross sectional area of the wire, πr2, in m2

– Find an equation for         in terms of the 
variables shown here

gene&

gene&

gene&
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Find        for a Wire with Current 
• The definition of          is the heat energy 

generated per unit volume per unit time
– Electrical resistance produces an energy 

dissipation of I2R = I2ρL/A in watts which is 
energy per unit time

• Divide this by the wire volume, V = LA to get

gene&

gene&

gene&

42

2
2

2

2
2

2

r
IJ

A
I

LA
A

LI

V
RIegen

π
ρ

=ρ=
ρ

=

ρ

==&

J = current density (A/m2)



Heat Transfer Basics February 7, 2007

ME 375 – Heat Transfer 3

13

Find        for a Wire with Current 
• Apply the equation just found to find      

for a copper wire (ρ = 1.72x10-8 ohm·m
at 20oC) with a diameter of 1 mm         
(= 0.001 m) and a current of 10 
amperes
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Rectangular Energy Balance

Figure 2-21 from Çengel, Heat and Mass Transfer

Energy 
balance: 
Stored 
energy = 
heat inflow 
– heat 
outflow + 
heat 
generated

t
Tczyx

Storage

p ∂
∂

ρΔΔΔ

=

15

Rectangular Energy Balance
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Energy Balance Dimensions
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Energy Balance Simplifications
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Energy Balance Simplifications
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Simplest Cases
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Cylindrical Coordinates
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Steady 1-D Cylinder
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For no heat generation
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Cylindrical Shell

Figure 2-50 from Çengel, Heat and Mass Transfer
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Cylindrical Shell II

Figure 2-
50 from 
Çengel, 
Heat and 
Mass 
Transfer
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Sample Problem

Figure 2-
50 from 
Çengel, 
Heat and 
Mass 
Transfer

Insulation (k = 0.04 W/m·K) is to be 
added to a pipe with a 0.15 m diameter, 
a surface temperature of 120oC, and a 
heat loss per unit length of 25 W/m.  
What thickness of insulation, δ, is 
required if the temperature of the outer 
insulation surface is 40oC?

T1 = 120oC and T2 = 40oC

r1 = (0.15 m) / 2 = 0.075 m

Find:
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Sample Problem Solution 
• Given: T1 = 120oC, T2 = 40oC, r1 = 

0.075 m, k = 0.04 W/m·K and mW25LQr =&
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Spherical Coordinates
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Steady 1-D Sphere
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Spherical Shell
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Steady, 1-D, Constant k,    
• Rectangular
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Steady, 1-D, Variable k,

• Rectangular

• Cylindrical shell
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Average Thermal Conductivity
• All the equations on the previous chart 

had an integral of thermal conductivity 
that is in the general form of an average
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• If y = y(x) then yavg, the 
average value of y 
between x1 and x2, is

• Applied to thermal 
conductivity, this 
general result is
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Steady, 1-D, Variable k,
• Rectangular

• Cylindrical shell
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The formulas are the same as those for 
constant k if a suitable average is used
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1-D, Rectangular, Heat Generation
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1-D, Rectangular, Heat Generation
[ ] 21 CdxCdxekdT gen ++=− ∫ ∫∫ &

• How do we find C1 and C2?
– Have to match boundary conditions (at x = 

0 and x = L) given in a particular problem
• Can specify temperature at 0, L, or both
• Can specify     = –kdT/dx at 0 or L, but not both
• Can specify –kdT/dx = h(T - T∞) at 0, L, or both
• Can specify combinations of above conditions

– Look at constant k and        heregene&

q&
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1-D, Rectangular, Heat Generation

[ ] =++=−=− ∫ ∫∫ 21 CdxCdxekTkdT gen&

• For constant k and       we can integrate 
the previous equation two times
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• How do we get C1 and C2 if we know T 
= T0 at x = 0 and T = TL at x = L?
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1-D, Rectangular, Heat Generation
• For T = T0 at x = 0 we must have
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1-D, Rectangular, Heat Generation
• Substitute C1 and C2 into general solution
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1-D, Rectangular, Heat Generation
• Write last equation in terms of dimen-

sionless temperature ratio and x/L
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Plot of (T - T0)/(TL - T0) for Heat Generation in a Slab
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1-D, Rectangular, Heat Generation
• Compute the heat flux from the boxed 

temperature equation on chart 34
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Verify Heat Balance
• (Heat in at x = 0) + (Heat generated) = 

(Heat out at x = L)
– Look at a slab with thickness, L, and cross 

sectional area, A, giving a volume LA
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What if T0 = TL = TB
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• Setting T0 = TL = TB in general 
equations above gives
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• Setting    = 0 and solving for x gives 
location of maximum temperature
– Recall that    = –kdT/dx so dT/dx = 0 if
– Find that x = L/2 for maximum temperature 

T0 = TL = TB Manipulations
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See derivation slides at end of lecture
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Slab With Heat Generation
Both boundary temperatures = TB
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Other Geometries
• Can find similar results with heat gene-

ration for solid cylinders and spheres, 
spherical shells and cylindrical shells
– Same general approach, but different 

results for each type of geometry
– See printed notes to get results for various 

geometries
• Temperature, heat flow, maximum temperature, 

conditions for maximum temperature
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Solid Cylinder
• A solid cylinder with radius, R, constant 

heat generation and constant k, has a 
maximum temperature at its center

k
Re

TT gen
surface 4

2

max
&

=−

• Chart 6 example had heat generation of 
2.788x106 W/m3 for a 0.001 m diameter 
copper wire with a current of 10 A.  
What is Tmax – Tsurface for this wire?
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Solution
• Take k = 403 W/m·K at 20oC
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• Can combine equations for Tmax and

k
Re

TT gen
surface 4

2

max
&

=− 42

2

2

2

R
I

A
Iegen

π
ρ

=
ρ

=&

2

2

max 4kR
ITT surface
ρ

=−

gene&

48

Additional Charts
• The results shown in chart 37 are 

derived in the following slides 
– These charts show the algebraic details for 

the following results
• Location of the maximum temperature
• Value of the maximum temperature
• Dimensionless forms of the temperature 

equation 

• Additional version of the Tmax – Tsurface
equation is also presented
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Chart 37 Manipulation Details
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• Start with basic result from chart 36 

• Divide by TB and multiply terms on left 
by L/L or L2/L2 then rearrange to get 
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Chart 37 Manipulation Details II

( )
2

0
2
2

max

Lx
Lxe

q
dx
dTk T

gen =⇒=
−

==−
&

&

B

gen

LxB

gen

B kT
Le

L
x

L
x

kT
Le

T
T

8
11

2
1

2

2

2
max &&

+=
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ −+=

=

• Set dT/dx = 0 in chart 36 equation

• Substitute this x value into T equation to 
get the maximum temperature
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Chart 37 Manipulation Details III
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More on Tmax – Tsurface

• Last equation 
on chart 41 2

2

max 4kR
ITT surface
ρ

=−

• Weidemann-Franz Law (approximate) for 
metals: L = ρk/T = 2.45x10-8 ohm·W/K2

– L is called the Lorentz constant
– Experimental data agree to better than 10%
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