Heat Transfer Basics

Larry Caretto Mechanical Engineering 375 Heat Transfer

February 7, 2007

Northridge

Engineering Accreditation

- CSUN has accredited programs in Civil, Electrical, Manufacturing and Mechanical Engineering
 - National accrediting agency reviews all engineering programs in US
- Fall 2007 reaccreditation visit requires collection of student work
 - Turn in all your notes, quizzes design project and exams at end of semester
- You can get them back in late fall 2007 Northridge

Assessment Results II

- 3 got thermo problem correct
 - $-Q = Q/m = \int c_n dT$ for constant P
 - With constant c_p , $q = c_p(T_2 T_1)$
- 5 got interpolation (4 got partial credit)

$$x = x_1 + \frac{x_2 - x_1}{y_2 - y_1} (y - y_1)$$

• 3 got problem to find Δh for dh/dT = 1 +100/T from T = 500 to T = 1000 (8 got partial credit)

$$h_2 - h_1 = \int dh = \int_{T_1}^{T_2} \left(1 + \frac{100}{T}\right) dT = \left[T + 100 \ln T\right]_{T_1}^{T_2} = T_2 - T_1 + 100 \ln \frac{T_2}{T_1}$$
deformis State University

Assessment Results

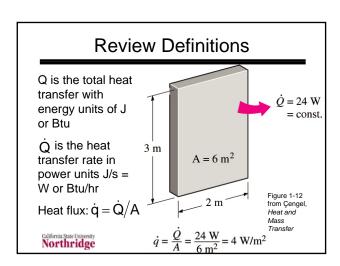
- 19 students completed assessment
 - 17 are OK or better with Excel skills
 - -5 are OK or better with Matlab skills
- Course completion data: Math 280(14), ECE 240(12), ME 309(5), ME 370(9), ME 390(4), ME 470(0), MSE 304(12)
- 15 got $\int x^3 dx = x^4/4 + C$ (6 missed C)
- 14 got d(eax) = eax

Northridge

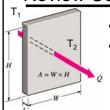
Outline

- · Review last week
- Heat generation
- General energy balance and geometry
- · Simplified cases: steady, onedimensional, no heat generation, constant thermal conductivity
- Analyze one dimensional cases
 - Constant and variable thermal conductivity

- Constant heat generation term Northridge



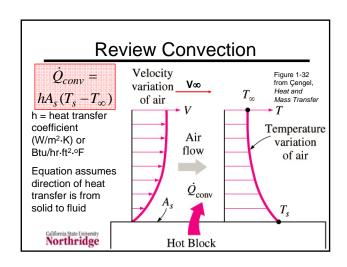
Review Conduction Fourier Law



- $\dot{q}_{x} = -k\partial T/\partial x$ (1D: -kdT/dx)
- k is thermal conductivity (W/m⋅K or Btu/hr⋅ft²⋅°F)
 - k depends on temperature; may be assumed constant for small temperature range
- For constant k

$$\dot{q} = \frac{k(T_1 - T_2)}{L}$$
 or $\dot{Q} = \dot{q}A = \frac{kA(T_1 - T_2)}{L}$

Northridge



Review Radiation

• Radiation from surface 1 to surface 2

$$\dot{Q}_{rad,1\rightarrow2}=A_1\mathfrak{F}_{12}\sigma\left(T_1^4-T_2^4\right)$$
– \mathfrak{F}_{12} is shape-emissivity factor

- σ, Stefan Boltzmann constant = 5.670x10⁻⁸ $W/m^2 \cdot K^4 = 0.1714x10^{-8} Btu/hr \cdot ft^2 \cdot R^4$
- T is the absolute temperature!!!
- Black body is perfect radiator
 - · Emissivity is fraction of black body emitted by actual surface
 - · Absorbtivity is incoming fraction absorbed

Northridge

Heat Generation Figure 2-21 from Çengel, Heat and Mass Transfer Chemical Various reactions phenomena in solids can generate heat Define ė_{qen} Nuclear fuel rods as the heat generated per unit volume per unit time Electric resistance Northridge wires

Find egen for a Wire with Current

- The definition of \dot{e}_{qen} is the heat generated per unit volume per unit time
 - Electrical resistance produces a heat dissipation of $I^2R = I^2\rho L/A$ in watts where
 - I is the current in amps
 - ρ is the electrical resistivity (ohm·m)
 - L is the length of the wire in m
 - A is cross sectional area of the wire, πr^2 , in m^2
 - Find an equation for equation for equation in terms of the variables shown here

Northridge

11

Find egen for a Wire with Current

- The definition of \dot{e}_{gen} is the heat energy generated per unit volume per unit time
 - Electrical resistance produces an energy dissipation of $I^2R = I^2\rho L/A$ in watts which is energy per unit time
 - Divide this by the wire volume, V = LA to get \dot{e}_{qen}

$$\dot{e}_{gen} = \frac{I^2 R}{V} = \frac{\frac{I^2 \rho L}{A}}{LA} = \frac{I^2 \rho}{A^2} = \rho J^2 = \frac{I^2 \rho}{\pi^2 r^4}$$

Northridge

 $J = current \ density (A/m^2)_{12}$

Find egen for a Wire with Current

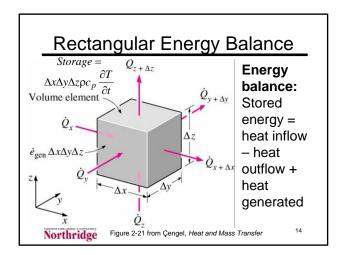
Apply the equation just found to find ė_{gen} for a copper wire (ρ = 1.72x10⁻⁸ ohm·m at 20°C) with a diameter of 1 mm (= 0.001 m) and a current of 10 amperes

$$\dot{e}_{gen} = \frac{I^2 \rho}{A^2} = \frac{I^2 \rho}{\left(\frac{\pi}{4}D^2\right)^2} = \frac{(10 \text{ A})^2 (1.72 \times 10^{-8} \text{ ohm} \cdot \text{m})}{\left(\frac{\pi}{4}(0.001 \text{ m})^2\right)^2 \frac{A^2 \cdot \text{ohm}}{W}} = \frac{2.788 \times 10^6 \text{ W}}{m^3}$$

Northridge

Northridge

15



Rectangular Energy Balance

$$\rho c_{p} \frac{\partial T}{\partial t} = -\frac{\partial \dot{q}_{x}}{\partial x} - \frac{\partial \dot{q}_{y}}{\partial y} - \frac{\partial \dot{q}_{z}}{\partial z} + \dot{e}_{gen}$$
 Stored energy heat inflow - heat outflow energy heat outflow per part of the state of

Energy Balance Dimensions

$$\begin{split} & \rho c_p \, \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \, k \, \frac{\partial T}{\partial x} + \frac{\partial}{\partial y} \, k \, \frac{\partial T}{\partial y} + \frac{\partial}{\partial z} \, k \, \frac{\partial T}{\partial z} + \dot{e}_{gen} \\ & \rho c_p \, \frac{\partial T}{\partial t} \, \text{ dimensions:} & \frac{M}{L^3} \, \frac{E}{M \cdot \Theta} \, \frac{\Theta}{T} = \frac{E}{L^3 \cdot T} \\ & \frac{\partial}{\partial \xi} \, k \, \frac{\partial T}{\partial \xi} \, \text{ dimensions:} & \frac{1}{L} \, \frac{E}{T \cdot L \cdot \Theta} \, \frac{\Theta}{L} = \frac{E}{L^3 \cdot T} \end{split}$$

All terms have dimensions of energy Northridge per unit volume per unit time 16

Energy Balance Simplifications

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} k \frac{\partial T}{\partial x} + \frac{\partial}{\partial y} k \frac{\partial T}{\partial y} + \frac{\partial}{\partial z} k \frac{\partial T}{\partial z} + \dot{e}_{gen}$$
Of or steady best transfer.

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} k \frac{\partial T}{\partial x} + \frac{\partial}{\partial y} k \frac{\partial T}{\partial y} + \frac{\partial}{\partial z} k \frac{\partial T}{\partial z} + \dot{g}_{gen}$$

California State University
Northridge

17

Energy Balance Simplifications

$$\rho c_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} k \frac{\partial T}{\partial x} + \frac{\partial}{\partial y} k \frac{\partial T}{\partial y} + \frac{\partial}{\partial z} k \frac{\partial T}{\partial z} + \dot{e}_{gen}$$

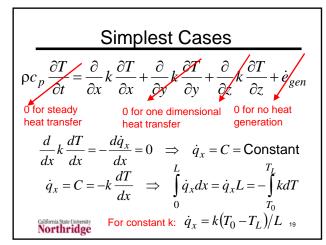
0 for one dimensional heat transfer

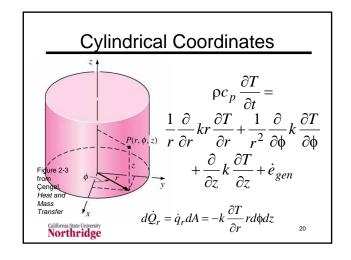
For constant thermal conductivity, k

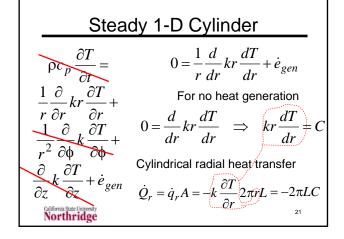
$$\rho c_p \frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) + \dot{e}_{gen}$$

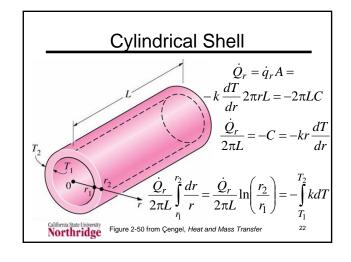
Northridge

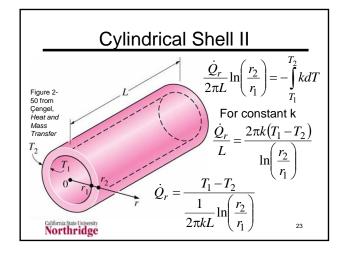
10

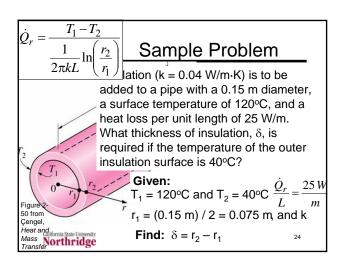












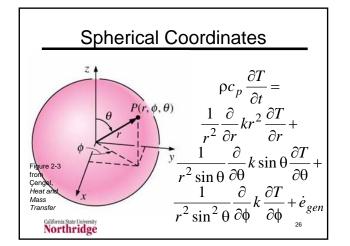
Sample Problem Solution

Given: $T_1 = 120^{\circ}C$, $T_2 = 40^{\circ}C$, $r_1 = 0.075$ m, k = 0.04 W/m·K and $\dot{Q}_r/L = 25$ W/m

$$\dot{Q}_r = \frac{T_1 - T_2}{\frac{1}{2\pi kL} \ln\left(\frac{r_2}{r_1}\right)} \implies \ln\left(\frac{r_2}{r_1}\right) = 2\pi k \frac{T_1 - T_2}{\frac{\dot{Q}_r}{L}}$$

$$= 2\pi \frac{0.04 W}{m \cdot {}^{o}C} \frac{120^{o}C - 40^{o}C}{\frac{25 W}{m}} = 0.804 \implies r_{2} = r_{1}e^{0.804} = (0.075 m)e^{0.804}$$
$$= 0.1676 m \implies \delta = r_{2} - r_{1} = 0.1676 m - 0.075 m = 0.0926 m$$

Northridge



Steady 1-D Sphere

$$\rho c_{p} \frac{\partial T}{\partial t} = 0 = \frac{1}{r^{2}} \frac{\partial}{\partial r} k r^{2} \frac{\partial T}{\partial r} + \dot{e}_{gen}$$

$$\frac{1}{r^{2}} \frac{\partial}{\partial r} k r^{2} \frac{\partial T}{\partial r} + \text{ For no heat generation}$$

$$\frac{1}{r^{2}} \frac{\partial}{\sin \theta} k \sin \theta \frac{\partial T}{\partial \theta} + 0 = \frac{d}{dr} k r^{2} \frac{dT}{dr}$$

$$\frac{1}{r^{2}} \frac{\partial}{\sin \theta} k \frac{\partial T}{\partial \phi} + \dot{e}_{gen} \qquad k r^{2} \frac{dT}{dr} = C$$
Collaboration of the properties of the properti

Spherical Shell
$$\dot{Q}_r = \dot{q}_r A = -k \frac{dT}{dr} 4\pi r^2 = -4\pi C$$

$$\dot{q}_r = \dot{q}_r A = -k \frac{dT}{dr} 4\pi r^2 = -4\pi C$$

$$\dot{q}_r = \dot{q}_r A = -k \frac{dT}{dr} 4\pi r^2 = -4\pi C$$
For constant k
$$dT = \frac{4\pi k (T_1 - T_2)}{4\pi k (T_1 - T_2)} \qquad T_1 - T_2$$

For constant k
$$kr^2 \frac{dT}{dr} = C \qquad \dot{Q}_r = \frac{4\pi k (T_1 - T_2)}{\frac{1}{r_1} - \frac{1}{r_2}} = \frac{T_1 - T_2}{\frac{1}{4\pi k} \left(\frac{1}{r_1} - \frac{1}{r_2}\right)}$$
California State University
Northeridge

Steady, 1-D, Constant k, $\dot{e}_{gen} = 0$

$$\dot{Q} = \frac{kA(T_1 - T_2)}{L} \implies \dot{Q} = \frac{T_1 - T_2}{R} \implies R = \frac{L}{kA}$$

$$\dot{Q} = \frac{2\pi k L (T_1 - T_2)}{\ln(r_2/r_1)} = \frac{T_1 - T_2}{R} \implies R = \frac{\ln(r_2/r_1)}{2\pi k L}$$

$$\dot{Q} = \frac{4\pi k (T_1 - T_2)}{1/r_1 - 1/r_2} = \frac{T_1 - T_2}{R} \implies R = \frac{1/r_1 - 1/r_2}{4\pi k}$$

Northridge

- Steady, 1-D, Variable k, $\dot{e}_{gen} = 0$ Rectangular $\dot{Q} = -\frac{A}{L} \int_{T_0}^{T_L} k dT$ $\dot{q} = \frac{\dot{Q}}{A} = -\frac{1}{L} \int_{T_0}^{T_L} k dT$
- Cylindrical shell

$$\dot{Q} = -\frac{2\pi L}{\ln(r_2/r_1)} \int_{T}^{T_2} k dT \quad \frac{\dot{Q}}{L} = -\frac{2\pi}{\ln(r_2/r_1)} \int_{T}^{T_2} k dT$$

Spherical shell

$$\dot{Q} = -\frac{4\pi}{1/r_1 - 1/r_2} \int_{T}^{T_2} k dT$$

Average Thermal Conductivity

- All the equations on the previous chart had an integral of thermal conductivity that is in the general form of an average
- If y = y(x) then y_{avg} , the average value of y $y_{avg} = \overline{y} = \frac{1}{x_2 x_1} = \int\limits_{x_1}^{x_2} y dx$ between x_1 and x_2 , is
- Applied to thermal conductivity, this general result is Northridge

$$k_{avg} = \overline{k} = \frac{1}{T_2 - T_1} = \int_{T_1}^{T_2} kdT$$

- Steady, 1-D, Variable k, $\dot{\mathbf{e}}_{gen} = 0$ Rectangular $\dot{Q} = -\frac{A}{L} \int_{-L}^{T_L} k dT$ $\dot{q} = \frac{\dot{Q}}{A} = -\frac{\bar{k}(T_L T_0)}{L}$
- · Cylindrical shell $\dot{Q} = -\frac{2\pi L}{\ln(r_2/r_1)} \int_{-\infty}^{T_2} k dT \quad \frac{\dot{Q}}{L} = -\frac{2\pi \bar{k} (T_2 - T_1)}{\ln(r_2/r_1)}$
- Spherical shell $\dot{Q} = -\frac{4\pi}{1/r_1 1/r_2} \int\limits_{T}^{T_2} k dT = -\frac{4\pi \overline{k} \left(T_2 T_1 \right)}{1/r_1 1/r_2}$

The formulas are the same as those for constant k if a suitable average is used

1-D, Rectangular, Heat Generation

$$\rho c_{p} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} k \frac{\partial T}{\partial x} + \frac{\partial}{\partial y} k \frac{\partial T}{\partial y} + \frac{\partial}{\partial z} k \frac{\partial T}{\partial z} + \dot{e}_{gen}$$
0 for steady
heat transfer
$$\frac{d}{dx} k \frac{dT}{dx} + \dot{e}_{gen} = 0 \implies -k \frac{dT}{dx} = \int \dot{e}_{gen} dx + C_{1}$$

$$- \int k dT = \iint \left[\dot{e}_{gen} dx + C_{1} \right] dx + C_{2}$$

Northridge

33

1-D, Rectangular, Heat Generation

$$-\int kdT = \int \left[\int \dot{e}_{gen} dx + C_1 \right] dx + C_2$$

- How do we find C₁ and C₂?
 - Have to match boundary conditions (at x = 0 and x = L) given in a particular problem
 - Can specify temperature at 0, L, or both
 - Can specify $\dot{q} = -kdT/dx$ at 0 or L, but not both
 - Can specify –kdT/dx = h(T T_∞) at 0, L, or both
 - Can specify combinations of above conditions
 - Look at constant k and \dot{e}_{gen} here

Northridge

34

1-D, Rectangular, Heat Generation

For constant k and $\dot{e}_{\it gen}$ we can integrate the previous equation two times

$$-\int k dT = -kT = \int \left[\int \dot{e}_{gen} dx + C_1 \right] dx + C_2 = \int \left[\dot{e}_{gen} x + C_1 \right] dx + C_2$$
$$-kT = \int \left[\dot{e}_{gen} x + C_1 \right] dx + C_2 = \frac{\dot{e}_{gen} x^2}{2} + C_1 x + C_2$$

How do we get C₁ and C₂ if we know T
 = T₀ at x = 0 and T = T_L at x = L?

Northridge

35

1-D, Rectangular, Heat Generation

• For $T = T_0$ at x = 0 we must have

$$-kT_0 = \frac{\dot{e}_{gen}0^2}{2} + C_10 + C_2 \implies -kT_0 = C_2$$

• For $T = T_L$ at x = L we must have

$$-kT = \frac{\dot{e}_{gen}x^{2}}{2} + C_{1}x + C_{2} \implies -kT_{L} = \frac{\dot{e}_{gen}L^{2}}{2} + C_{1}L + C_{2}$$

$$-kT_{L} = \frac{\dot{e}_{gen}L^{2}}{2} + C_{1}L - kT_{0} \implies C_{1} = \frac{k(T_{0} - T_{L})}{L} - \frac{\dot{e}_{gen}L}{2}$$

1-D, Rectangular, Heat Generation

• Substitute C₁ and C₂ into general solution

$$-kT = \frac{\dot{e}_{gen}x^{2}}{2} + C_{1}x + C_{2}$$

$$-kT = \frac{\dot{e}_{gen}x^{2}}{2} + \left(\frac{k(T_{0} - T_{L})}{L} - \frac{\dot{e}_{gen}L}{2}\right)x - kT_{0}$$

$$T = T_{0} - \frac{\dot{e}_{gen}x^{2}}{2k} + \frac{\dot{e}_{gen}xL}{2k} - \frac{(T_{0} - T_{L})x}{L}$$

Northridge

1-D, Rectangular, Heat Generation

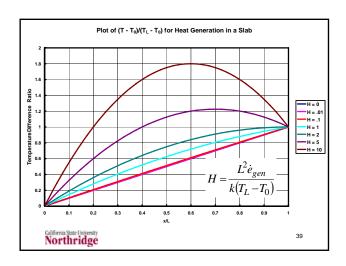
· Write last equation in terms of dimensionless temperature ratio and x/L

$$\frac{T - T_0}{T_L - T_0} = \frac{x}{L} - \frac{\dot{e}_{gen}x(L - x)}{2k(T_L - T_0)} = \frac{x}{L} - \frac{L^2 \dot{e}_{gen}}{2k(T_L - T_0)} \frac{x}{L} \left(1 - \frac{x}{L}\right)$$

• Define dimensionless heat generation $H = \frac{L^2 \dot{e}_{gen}}{k(T_L - T_0)}$

$$H = \frac{L^2 \dot{e}_{gen}}{k(T_L - T_0)}$$

$$\frac{T - T_0}{T_L - T_0} = \frac{x}{L} - \frac{H}{2} \frac{x}{L} \left(1 - \frac{x}{L} \right) = \frac{x}{L} \left[1 - \frac{H}{2} \left(1 - \frac{x}{L} \right) \right]$$



1-D, Rectangular, Heat Generation

· Compute the heat flux from the boxed temperature equation on chart 34

$$T = T_0 - \frac{\dot{e}_{gen}x^2}{2k} + \frac{\dot{e}_{gen}xL}{2k} - \frac{(T_0 - T_L)x}{L}$$

$$\dot{q} = -k\frac{dT}{dx} = -k\left[-\frac{\dot{e}_{gen}2x}{2k} + \frac{\dot{e}_{gen}L}{2k} - \frac{\left(T_0 - T_L\right)}{L}\right]$$

$$\dot{q} = \frac{\dot{e}_{gen}(2x - L)}{2} + \frac{k(T_0 - T_L)}{L}$$

Northridge

Verify Heat Balance

• (Heat in at x = 0) + (Heat generated) = (Heat out at x = L) $\dot{Q}_{x=0} + \dot{E}_{gen} = \dot{Q}_{x=L}$ - Look at a slab with thickness, L, and cross

sectional area, A, giving a volume LA

$$\dot{q} = \frac{\dot{e}_{gen}(2x - L)}{2} + \frac{k(T_0 - T_L)}{L}$$

 $\dot{Q}_{x=0} = \dot{q}_{x=0} A = -\frac{\dot{e}_{gen} LA}{2} + \frac{kA(T_0 - T_L)}{I} \qquad \dot{E}_{gen} = LA\dot{e}_{gen}$

ME 375 - Heat Transfer

California State University Northridge $\dot{Q}_{x=L} = \dot{q}_{x=L} A = \frac{\dot{e}_{gen} L A}{2} + \frac{k A (T_0 - T_L)}{L}$

What if
$$T_0 = T_L = T_R$$

$$T = T_0 - \frac{\dot{e}_{gen}x^2}{2k} + \frac{\dot{e}_{gen}xL}{2k} - \frac{(T_0 - T_L)x}{L}$$

$$\dot{q} = \frac{\dot{e}_{gen}(2x - L)}{2} + \frac{k(T_0 - T_L)}{L}$$

• Setting $T_0 = T_L = T_B$ in general equations above gives

$$T = T_B - \frac{\dot{e}_{gen}x^2}{2k} + \frac{\dot{e}_{gen}xL}{2k} \qquad \dot{q} = \frac{\dot{e}_{gen}(2x - L)}{2}$$

7

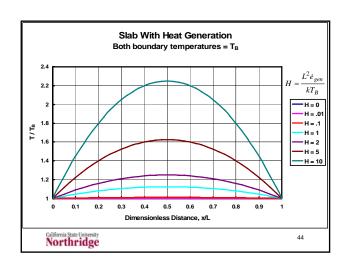
$T_0 = T_1 = T_B$ Manipulations

- Setting $\dot{q} = 0$ and solving for x gives location of maximum temperature
 - Recall that $\dot{q} = -kdT/dx$ so dT/dx = 0 if $\dot{q} = 0$
 - Find that x = L/2 for maximum temperature

$$\frac{T_{\text{max}}}{T_B} = 1 + \frac{\dot{e}_{gen}L^2}{8kT_B}$$

· Dimensionless temperature results

$$\frac{T}{T_B} = 1 + \frac{\dot{e}_{gen}L^2}{2kT_B} \frac{x}{L} \left(1 - \frac{x}{L}\right) \quad and \quad \frac{T - T_B}{T_{max} - T_B} = 4 \frac{x}{L} \left(1 - \frac{x}{L}\right)$$
Northridge
See derivation slides at end of lecture



Other Geometries

- · Can find similar results with heat generation for solid cylinders and spheres, spherical shells and cylindrical shells
 - Same general approach, but different results for each type of geometry
 - See printed notes to get results for various geometries
 - Temperature, heat flow, maximum temperature, conditions for maximum temperature

Northridge

45

Solid Cylinder

· A solid cylinder with radius, R, constant heat generation and constant k, has a maximum temperature at its center

$$T_{\text{max}} - T_{surface} = \frac{\dot{e}_{gen}R^2}{4k}$$

 Chart 6 example had heat generation of 2.788x106 W/m3 for a 0.001 m diameter copper wire with a current of 10 A. What is $T_{max} - T_{surface}$ for this wire?

Northridge

46

Solution

• Take k = 403 W/m-K at 20°C

$$T_{\text{max}} - T_{surface} = \frac{\dot{e}_{gen}R^2}{4k} = \frac{\frac{2.788x10^6 W}{m^3} (0.0005 m)^2}{4\frac{403 W}{m \cdot K}} = 0.0004 K$$

• Can combine equations for T_{max} and \dot{e}_{qen}

$$T_{\text{max}} - T_{surface} = \frac{\dot{e}_{gen}R^2}{4k}$$
 $\dot{e}_{gen} = \frac{I^2\rho}{A^2} = \frac{I^2\rho}{\pi^2 R^4}$

California State University Northridge $T_{
m max} - T_{surface} = rac{I^2
ho}{4kR^2}$

Additional Charts

- · The results shown in chart 37 are derived in the following slides
 - These charts show the algebraic details for the following results
 - Location of the maximum temperature
 - · Value of the maximum temperature
 - · Dimensionless forms of the temperature
- Additional version of the T_{max} T_{surface} equation is also presented

Northridge

48

Chart 37 Manipulation Details

Start with basic result from chart 36

$$T = T_B - \frac{\dot{e}_{gen}x^2}{2k} + \frac{\dot{e}_{gen}xL}{2k}$$

Divide by T_{B} and multiply terms on left by L/L or L^2/L^2 then rearrange to get

$$\frac{T}{T_B} = 1 - \frac{\dot{e}_{gen}x^2}{2kT_B} \frac{L^2}{L^2} + \frac{\dot{e}_{gen}xL}{2kT_B} \frac{L}{L} = 1 + \frac{\dot{e}_{gen}L^2}{2kT_B} \frac{x}{L} \left(1 - \frac{x}{L}\right)$$

Northridge

Chart 37 Manipulation Details II

• Set dT/dx = 0 in chart 36 equation

$$-k\frac{dT}{dx} = \dot{q} = \frac{\dot{e}_{gen}(2x - L)}{2} = 0 \implies x_{T_{\text{max}}} = \frac{L}{2}$$

• Substitute this x value into T equation to get the maximum temperature

$$\frac{T_{\text{max}}}{T_B} = \left\{ 1 + \frac{\dot{e}_{gen}L^2}{2kT_B} \frac{x}{L} \left(1 - \frac{x}{L} \right) \right\}_{x = \frac{L}{2}} = 1 + \frac{\dot{e}_{gen}L^2}{8kT_B}$$

Northridge

Chart 37 Manipulation Details III

• Compare T/T_B and T_{max}/T_B equations

$$\frac{T}{T_B} = 1 + \frac{\dot{e}_{gen}L^2}{2kT_B} \frac{x}{L} \left(1 - \frac{x}{L} \right) \implies \frac{T}{T_B} - 1 + \frac{\dot{e}_{gen}L^2}{2kT_B} \frac{x}{L} \left(1 - \frac{x}{L} \right)$$

$$\frac{T_{\text{max}}}{T_B} = 1 + \frac{\dot{e}_{gen}L^2}{8kT_B} \implies \frac{\dot{e}_{gen}L^2}{2kT_B} = 4 \left(\frac{T_{\text{max}}}{T_B} - 1 \right)$$

$$\frac{T}{T_B} - 1 = 4 \left(\frac{T_{\text{max}}}{T_B} - 1 \right) \frac{x}{L} \left(1 - \frac{x}{L} \right) \implies \frac{T - T_B}{T_{\text{max}} - T_B} = 4 \frac{x}{L} \left(1 - \frac{x}{L} \right)$$

- Last equation $T_{\text{max}} T_{\text{surface}} = \frac{I^2 \rho}{4kR^2}$ on chart 41
- · Weidemann-Franz Law (approximate) for metals: $L = \rho k/T = 2.45 \times 10^{-8} \text{ ohm} \cdot W/K^2$
 - L is called the Lorentz constant
 - Experimental data agree to better than 10%

$$T_{\max} - T_{surface} = \frac{LI^2T}{4k^2R^2} = \frac{\left(\frac{2.45x10^{-8} \text{ ohm} \cdot W}{K^2}\right)I^2T}{4k^2R^2}$$
Sortheridge