Course Introduction

Larry Caretto
Mechanical Engineering 375

Heat Transfer

January 29-31, 2007

Northridge

Northridge

Monday Class

- First class day items: roll, outline, etc.
- · Class goals and learning objectives
- · Assessment quiz
- · Discussion of dimensions and units
 - Physical quantities have dimensions
 - Several units measure same dimension
 - Use SI system of units (meter, kilogram, ...
 - Also use engineering units (feet, pounds ...

Northridge

2

Wednesday Class

- · Definition of heat transfer terms
- Modes of heat transfer and their basic equations
 - Conduction and thermal conductivity
 - Convection and heat transfer coefficient
 - Radiation and Stefan-Boltzmann constant
- · Ohm's law analogy: thermal circuits
- Multiple modes of heat transfer

Northridge

J

Basic Information

- Larry Caretto, Jacaranda (Engineering) 3333, lcaretto@csun.edu, 818.677.6448
- Office hours Monday, Tuesday, Wednesday, and Thursday 1:30 to 2:30 pm; other times by email, phone, drop-in, or appointment
- http://www.csun.edu/~lcaretto/me375
- Yunus A. Çengel, Heat and Mass Transfer A Practical Approach (third edition), McGraw-Hill, 2007.

Northridge

Email

- Campus policy requires students to monitor their CSUN email addresses
 - These addresses will be used class email list me375-c@csun.edu
- Setup account and, if desired, forward cemail to another address.
 - ~- https://www.csun.edu/helpdesk/stuact.html
 - https://www.csun.edu/account

Northridge

5

Course Learning Objectives

- Understand and be able to formulate and solve problems in conduction, convection and radiation heat transfer using basic material properties: thermal conductivity, density, heat capacity, and thermal diffusivity
- solve problems with multiple modes of heat transfer, using heat transfer coefficients and the circuit analogy

where appropriate Northridge

More Learning Objectives

- solve one-dimensional, steady conduction heat transfer problems in various geometries with constant and variable thermal conductivity
- solve one-dimensional, steady conduction heat transfer problems in various geometries with heat sources
- solve multi-dimensional, steady heat transfer problems using shape factors

Northridge

Still More Learning Objectives

- be familiar with the partial differential equations used for transient and steady heat transfer in one or more dimensions and be able to apply solutions to these equations to find temperatures
- solve transient heat transfer problems known as "lumped capacity" problems where the main heat transfer resistance is from external convection
- solve transient heat transfer with charts

Northridge

Learning Objectives (Almost over)

- understand the important parameters that govern the accuracy of a finite difference solution and be able to use these parameters to obtain accurate computer solutions with software packages
- understand differences: laminar vs. turbulent flows; external vs. internal flows; and free convection vs. forced convection; calculate appropriate dimensionless parameters for each

Northridge

Learning Objectives Concluded

- solve convection problems for any flow condition using empirical equations
- solve problems heat exchanger problems using both the U factor and the NTU methods
- use blackbody distribution function and radiation properties (emissivity, transmissivity, and absorbtivity) in solving problems
- use shape factors and the gray body assumption to solve radiation problems

Northridge

10

Thermodynamics

- Usually a prerequisite for ME 375, but not a prerequisite at CSUN
- EE students have choice of ME 370 or ME 375
- Instead of a 370 review this course will use "just-in-time" Thermodynamics
- Cover specific topics as required for course in nature of review

Northridge

11

Class Operation

- Wednesday: quiz (30 minutes) on old topic followed by lecture on new topic
- Monday: student group problem solving to prepare for quiz
 - First quiz is on February 7
- Reading assigned for new topic and lecture presentations available on web
- Homework with solutions posted assigned, but not collected, for quiz date

Northridge

12

ME 375 Heat Transfer

Quizzes

- · Twelve during the semester
- Based on group work and homework
 - Problems will be similar, but not exactly the same as group work and homework
- Count ten highest quiz grades for final
 - No makeup quizzes; final quiz grade based only on quizzes taken if fewer than ten
- First four closed book; remainder use sheet of equations from web site

Northridge

Grading

Quiz grades

35%

• Midterm (March 28)

20%

• Final (May 23)

35%

Design project (May 26)

10%

- · Plus/minus grading will be used
- · Grading criteria in course outline
- · No make-up quizzes or exams

Northridge

See the Course Outline

- · Download from course web site
 - http://www.csun.edu/~lcaretto/me375
- Contains lecture schedule and homework assignments
- · Also read information on the following items
 - Class participation and courtesy
 - Collaboration versus plagiarism: students found cheating receive F grade in course
- · Students are responsible for changes to outline announced in class

Northridge

15

Design Project

- · Involves use of heat transfer software
- · Due at end of semester
- · Details to be provided later

Northridge

Galileo Galilei (1564-1642)

You cannot teach a man anything; you can only help him find it within himself.

http://space.about.com/od/astronomyhistory/a/galileoquotes.htm

Northridge

Goals for this Course

- My goal is to help all students find within themselves sufficient knowledge of heat transfer so that they will all get an A grade in the course
- What is your goal for this course?
- · What will we do to help us achieve our mutual goals?

Northridge

18

How to get your A

- Spend six to ten hours per week outside class studying for the course
- Prepare for lecture and be ready to ask questions
 - Read the assigned reading before class
 - Download, print, and review the lecture presentations before class
 - Use presentations instead of writing notes
 - Listen to the lecture and ask questions
 - · Write additional notes on presentations

Northridge

19

How to Get your A, Part II

- Study with fellow students and try to answer each other's questions
- Do the homework as well as you can before reviewing the on-line solutions
- Contact me by email, telephone or office visits to ask questions
- Work with a group of classmates to study course material and help each other with homework

Northridge

20

What I will do to help

- Arrive at class a few minutes early to answer any questions you may have
- Give lectures that stress application of basics to problem solving
- Return quizzes and exams promptly so that you can learn from your errors
- Be available for questions in my office (visit or telephone) or email
- Send entire class emails as appropriate
 California State University
 Northridge

21

Preliminary Assessment

- · Designed to help instruction
- One set of questions on student background
- Second set of questions is ungraded quiz
- Take about 10 minutes for this assessment
- Hand yours in when finished
 Will call time when most students are done

Northridge

Northridge

22

Dimensions and Units

- Any physical quantity has a unique dimension: e.g., mass, length, time, ...
- Several units may be available for any dimension
 - Length is measured in meters, feet, miles, fathoms, furlongs, yards, light-years, etc.
 - You cannot measure length in units with the dimension of mass

Northridge

23

Systems of Units

- Arbitrary units for fundamental dimensions, e.g. mass (M), length (L), time (T), and temperature (Θ).
- Units for other physical quantities from the physical relations to quantities with fundamental units
 - Velocity dimensions are length/time.
 - Acceleration dimensions are length/time2,
 - Force dimension of (mass)(length)/(time)²

Northridge

24

More Dimensions

- Pressure = force per unit area = (force) / (length)²

 - = (mass) (length) / [(time)²(length)²] = (mass) / [(time)²(length)] or $MT^{-2}L^{-1}$
- Common dimensions for energy terms are (mass)(length)²/(time)² or ML²T⁻²
 - Work = force times distance
 - = (force)(length) = (mass)(length)²/(time)² or ML²T⁻²
 - Kinetic energy = $mV^2/2$
 - = (mass)(velocity)²
 - = $(mass)(length)^2/(time)^2$ or ML^2T^{-2}

Northridge

25

Still More Dimensions

- Another energy term
 - Potential energy = mgh = (mass)(acceleration)(length) = (mass)(length)²/(time)² or ML²T⁻²
- Power = (energy)/(time)
 - = (mass) (length) 2 /(time) 3 or ML 2 T- 3
- In thermodynamics work is PdV
 - This is like Fdx where P = F/A and dV = Adx (A is area)
- PdV dimensions are (length)³(force)/(area) which also is (mass)(length)²/(time)²

SI Units

- · Basic definitions for fundamental units
 - Mass: kilogram (kg) = international prototype
 - Time: second (s) = time for 9 192 631 770 periods of radiation from Cs¹³³
 - Length: meter (m) = length light travels in 1/299 792 458 of a second
 - Temperature: kelvin (K) = 1/273.16 of the triple point of water
 - Current: ampere (A) defined in terms of electrostatic force

Northridge

27

Other Units

- · Light intensity and molar units
- · Units for velocity and acceleration are m/s and m/s2
- Units for force are kg· m/s²
 - -1 newton (N) = 1 kg·m/s²
- Units for energy are $kg(m/s)^2 = N \cdot m$
 - -1 joule (J) = 1 N·m = 1 kg·m²/s²

Northridge

28

Still More Units

- Power: (energy)/(time) = joules/second $-1 \text{ watt (W)} = 1 \text{ J/s} = 1 \text{ N} \cdot \text{m/s} = 1 \text{ kg} \cdot \text{m}^2/\text{s}^3$
- Pressure: (force)/(area) = newtons per square meter
 - -1 pascal (Pa) = 1 N/m² = 1 kg/(m·s²)
 - Atmospheric pressure = 101.325 kPa
- Note that Sir Isaac Newton has a capital N; 1 newton of force does not, unless it is abbreviated as 1 N (true for all units named after individuals)

Northridge

29

Some Prefixes

pico, p	nano, n	micro, μ	milli, m
10-12	10 ⁻⁹	10 ⁻⁶	10-3
tera, t	giga, g	mega, M	kilo, k
10 ¹²	10 ⁹	10 ⁶	10 ³

Northridge

Temperature Units

- Fundamental unit is the kelvin (K) giving absolute temperature
 - Zero kelvin is lowest possible temperature
- Common unit is the Celsius degree (°C)
- $K = {}^{\circ}C + 273.15$
- Common engineering unit is the Fahrenheit degree – °F = 1.8*(°C) + 32
- Absolute temperature is rankine (R)
 R = °F + 459.69 = 1.8 K

California State University
Northridge

31

Temperature Difference

- If $T_2 T_1 = 10^{\circ}$ C what is $T_2 T_1$ in
 - kelvins 10 K
 - degrees Fahrenheit 18°F
 - rankine 18 R
- · Basic rules
 - Temperature differences have the same numeric values in kelvins and celsius
 - Temperature differences have the same numeric values in fahrenheit and rankine

Northridge

Northridge

 $\Delta T(^{\circ}F) = 1.8\Delta T(^{\circ}C)$

22

Engineering Units

- · Second is the basic unit of time
- The foot = 0.3048 m (exactly) is the basic unit of length
- Pound is confusing because it is used to represent two dimensions
 - Mass: pound-mass ($lb_m = 0.453592 \text{ kg}$)
 - Force: pound force ($lb_f = 32.174 lb_m \cdot ft/s^2$)
 - What is SI equivalent for pound force?

 $1 lb_f = 4.4482 N$

Northridge

33

More Engineering Units

- pressure in lb₄/in² (psia) or lb₄/ft² (psfa)
 - The final "a" means absolute pressure not gage (measured relative) pressure
- foot-pound is work (energy unit)
- British thermal unit (Btu = 778.16 ft-lb_f)
- Horsepower as power unit
 - $-1 \text{ hp-hr} = 2,545 \text{ Btu} = 1.98 \times 10^6 \text{ ft-lb}_f$
 - 1 kW·hr = 3,412 Btu

Northridge

34

Calculating Units

- What is kinetic energy of a 100 lb_m mass moving at 10 ft/s
- $mV^2/2 = (100 lb_m)(10 ft/s)^2/2 = 5000 lb_m \cdot ft \cdot s^{-2}$
- Unit conversion

$$KE = \frac{(100 \, lb_m)}{2} \left(\frac{10 \, ft}{s}\right)^2 \frac{lb_f \cdot s^2}{32.174 \, lb_m \cdot ft} = 165.4 \, ft \cdot lb_f$$

· Note algebraic cancellation of units

Northridge

35

Calculating Units II

- What is the change in potential energy when a mass of 100 kg is raised a distance of 5 m?
- Do this for a location where the local value of g = 2 m/s²

$$PE = mgh = (100 \ kg) \frac{2 \ m}{s^2} (5 \ m) \frac{N \cdot s^2}{1 \ kg \cdot m} \frac{1 \ J}{N \cdot m} = 1000 \ J$$

Northridge

Units quiz

- What is the change in potential energy when a mass of 200 lb_m is raised a distance of 15 ft?
- Do you need more data to answer this question?
- What is g? Use 5 ft/s² for this problem

$$PE = mgh = (200 \, lb_m) \frac{5 \, ft}{s^2} (15 \, ft) \frac{lb_f \cdot s^2}{32.174 \, lb_m \cdot ft} = 466.2 \, ft \cdot lb_f$$

Northridge
Northridge

37

Another Quiz

- Some European engineering calculations use the kilogram-force, defined in the same way as the pound force and measure pressure in kg/cm²
- What exactly is the definition of a kg_f?
- How many newtons are in a kg_f?
- How many pascals are in a kg_f/cm²?

Northridge
Northridge

38

Solutions to Another Quiz

 One kg_f is the force required to accelerate 1 kg at an acceleration of standard gravity, g = 9.8067 m/s²

$$1 kg_f = 1 kg \frac{9.8067 m}{s^2} \frac{1 N \cdot s^2}{kg \cdot m} = 9.8067 N$$

$$1\frac{kg_f}{cm^2} = 1\frac{kg_f}{cm^2} \frac{9.8067 \ N}{kg_f} \left(\frac{100 \ cm}{m}\right)^2 \frac{Pa \cdot m^2}{1 \ N} = 98067 \ Pa$$

Northridge

55

Material Properties

- **Density**, ρ , is mass per unit volume
- Density is the reciprocal of specific volume, v (ρ = 1/v)
 - the specific volume, v, is used more commonly in thermodynamics
- The SI units for density are kg/m³
- Engineering units for density are lb_m/ft³
 - For water ρ is ~1000 kg/m³ or 62.4 lb_m/ft³; for air, ρ is ~1.2 kg/m³ or 0.0765 lb_m/ft³

California State University
Northridge

40

Ideal Gases

- From chemistry: $PV = n\mathcal{R}T$
 - -n = m / M is the number of moles
 - for mass in kg n is in kilogram moles (kmol); for mass in lb_m, n is in pound moles (lbmol)
 - \Re = 8.31447 kJ/kmol·K = 10.7316 psia·ft³ / lbmol·R is universal gas constant
 - R = \mathscr{R}/M is engineering gas constant that is different for each gas (For air R = 0.2870 kJ/kg·K = 0.3704 psia·ft³/lbmol·K)
 - $-P = n\Re T / V = (m/M)\Re T / V = (m/V)(\Re/M)T$

Northridge

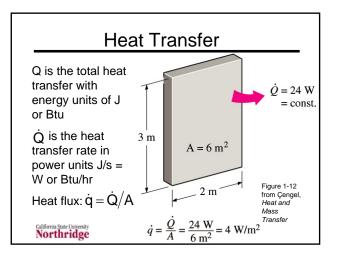
 $P = \rho RT$

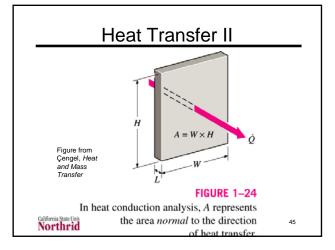
•

- Expansion coefficients
 - Volume expansivity, β_P
 - Isothermal compressibility, κ_T
 - κ_T is always > 0; β_P may be either sign

Material Properties II

$$\beta_P = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_P = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_P \qquad \kappa_T = -\frac{1}{v} \left(\frac{\partial v}{\partial P} \right)_T = \frac{1}{\rho} \left(\frac{\partial \rho}{\partial P} \right)_T$$


- · For Ideal gases
 - Volume expansivity, $\beta_P = 1 / T$
 - Isothermal compressibility, $\kappa_T = 1 / P$


Northridge

Heat Capacity, c_n and c_v

- dQ = c_xdT (c_x is heat capacity/specific heat)
 - Integrate for total heat transferred in constant x process from initial to final temperature
 - dimensions are energy/mass-temperature; can use °C or K (°F or R)
 - SI & engr units are J/kg·K & Btu/lb_m·R
- For all substances Liquids and solids: $c_P = c_v + \frac{T\beta_P^2}{\rho \kappa_T}$
 - $c_P \approx c_v$; use c_p as common symbol

Northridge

Fourier's Law

- · Basic law for heat conduction
- Actually a vector equation Q = -k grad T
- k is thermal conductivity
 - More on k on next slide
- For one dimensional heat transfer, q_x = -kdT/dx; integration (constant qx) gives

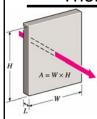
$$\dot{q} = \frac{k(T_1 - T_2)}{L}$$
 or $\dot{Q} = \dot{q}A = \frac{kA(T_1 - T_2)}{L}$

Northridge

48

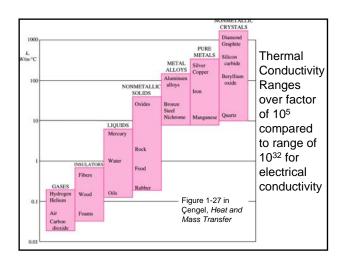
Thermal Conductivity I

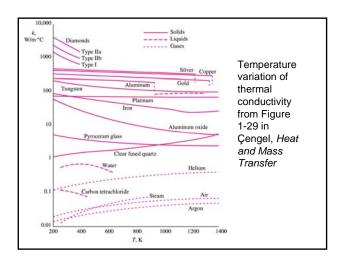
• Thermal conductivity, k, a material property like electrical conductivity, κ


- Ohm's Law: $I = E/R = E/(\rho L/A) = \kappa EA/L =$

- SI units for κ are units for IL/(EA), which are amps·m/volts·m² = amps/volts·m
 - Units are (flow quantity) divided by (driving force times length)

47


Northridge


Thermal Conductivity II

- Q= heat flow rate in watts
- $T_1 T_2$ = driving force in K
- A and L are cross sectional area and thickness
- Fourier Law: Q = kA/L(T₁ - T_2); k = thermal conductivity
- SI units for k are units of QL /ΔTA = watts·m/K·m² = watts/m·K

- Engineering units: Btu/hr⋅ft⋅°F Northridge

Typical Units				
Quantity	SI units	Engr units		
Density	kg/m³	lb _m /ft ³		
Pressure & shear stress	1 kPa = 1 kN/m ² = 1000 Pa	1 psi = 1 lb _t /in ² = 144 psf = 144 lb _t /ft ²		
Velocity	m/s	ft/s		
Thermal conductivity	W/m⋅K = W/m⋅°C	Btu/hr⋅ft⋅R = Btu/hr⋅ft⋅∘F		
Heat capacity	J/kg⋅K = J/kg⋅°C	Btu/lb _m ⋅R = Btu/lb _m ⋅∘F		
California State University Northridge		51		

Conduction Problem

- Compute the heat flux through a solid that is 20 cm thick if the surface temperatures are at 100°C and 25°C if the solid is (a) aluminum or (b) pyroceram glass
 - What equation do we use? q
 - What values do the variables in this equation have from the problem data?
 - L = 20 cm = 0.2 m, $T_1 = 100$ °C, $T_2 = 25$ °C
- Find k values at average T = 62.5°C = 335.65 K

 California State University

 Northridge

Problem Results

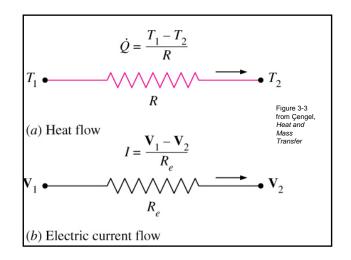
• For aluminum, k = 239 W/m·K

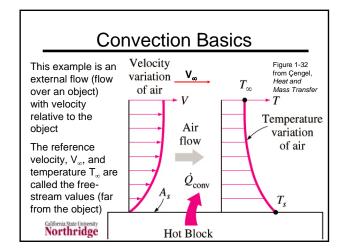
$$\dot{q} = \frac{k(T_1 - T_2)}{L} = \frac{239 \, W}{m \cdot K} \frac{(100 - 25)K}{0.2 \, m} \frac{kW}{1000 \, W} = \frac{89.6 \, kW}{m^2 \cdot K}$$

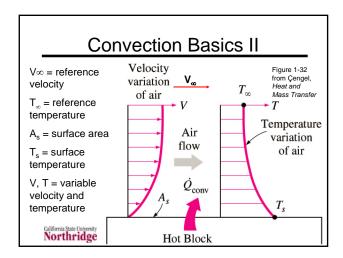
• For pyroceram glass, k = 4.01 W/m·K

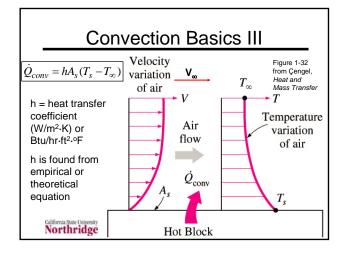
$$\dot{q} = \frac{k(T_1 - T_2)}{L} = \frac{4.01 \, W}{m \cdot K} \frac{(100 - 25)K}{0.2 \, m} \frac{kW}{1000 \, W} = \frac{1.50 \, kW}{m^2 \cdot K}$$

California State University
Northridge


Ohm's Law Analogy


- E = IR or I = E/R or flow equals driving force divided by resistance
- Fourier's law for one-dimensional conduction can be written in this form


$$\dot{Q} = \frac{kA(T_1 - T_2)}{L} \implies \dot{Q} = \frac{T_1 - T_2}{R} \implies R = \frac{L}{kA}$$


 Result for thermal resistance is similar to result for electrical resistance: R = $L/\kappa A$, where κ = electrical conductivity

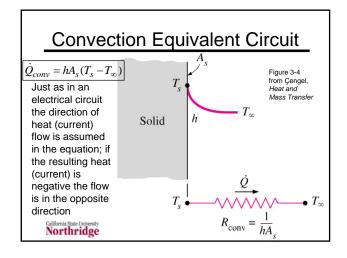
Northridge

Basic Convection Equation

- $\dot{Q}_{conv} = hA_{surface}(T_{surface} T_{fluid})$
- · Algebraic heat transfer is from surface to fluid
 - Physical heat transfer is from fluid to surface if Qconv is negative
- · During first part of course we will be given h values
- · Later we will learn how to find them from fluid and flow properties

60

Northridge


Ohm's Law for Convection

- E = IR or I = E/R or flow equals driving force divided by resistance
- Convection heat transfer relation can be written in this form

$$\dot{Q} = hA(T_s - T_f) \implies \dot{Q} = \frac{T_s - T_f}{R} \implies R = \frac{1}{hA}$$

 No direct analogy between heat transfer coefficient and electrical properties as for thermal and electrical conductivity

Northridge

Convection Classifications

· Free (natural) convection comes from buoyancy, forced convection has a driven flow

 Flows contained in pipes and ducts are internal flows; egg pictures show external flow

 Other considerations are laminar vs. turbulent flow and convection during boiling or condensation Eggs from Figure 1-

Northridge

33 in Çengel, Heat and Mass Transfer

Typical Convection Coefficients

Flow Description	W/m ² .°C	Btu/hr-ft2-oF
Gas free convection	2 – 25	0.5 - 5
Liquid free convection	10 – 1000	2 - 175
Gas forced convection	25 – 250	5 – 45
Liquid forced convection	50 – 20,000	10 – 3,500
Boiling and Condensation	2,500 – 100,000	450 – 17,500

Northridge

Convection Problem

· An electrical circuit board with a surface area of 100 cm² has to dissipate 10 W of heat that it produces. The temperature of the circuit board must be maintained at or below 70°C. Convection cooling in air with a heat transfer coefficient of 30 W/m²·K is used. What is the maximum air temperature that can be used for cooling?

Northridge

65

Convection Problem II

- · How do we analyze this problem?
- · What is the equation that we use?

$$\dot{Q}_{conv} = hA_s(T_s - T_{\infty})$$

- · How do we match the data in this problem with the given equation
- First we have to say that the heat dissipated by the circuit is the convection heat transfer, Q_{conv}

Convection Problem II

 An electrical circuit board with surface area $A_s = 100 \text{ cm}^2$ has to dissipate Q_{conv} = 10 W of heat. The temperature of the circuit board $T_s \le 70^{\circ}C$. Convection cooling in air with a heat transfer coefficient h = 30 W/m²·K. What is the maximum air temperature, T_{∞} that can be used for cooling?

$$\dot{Q}_{conv} = hA_s(T_s - T_{\infty})$$

Northridge

Convection Problem III

$$\dot{Q}_{conv} = hA_{s}(T_{s} - T_{\infty}) \implies T_{s} = \frac{\dot{Q}_{conv}}{hA_{s}} + T_{\infty} \le 70^{\circ} C$$

$$T_{\infty} \le 70^{\circ} C - \frac{\dot{Q}_{conv}}{hA_{s}} = 70^{\circ} C - \frac{10 W \left(\frac{100 cm}{m}\right)^{2}}{\frac{30 W}{m^{2} \cdot {}^{\circ} C} (100 cm^{2})} = 37^{\circ} C$$

 Lower air temperatures will dissipate the same amount of heat while keeping a lower circuit board temperature

Northridge

68

Radiation Heat Transfer

- · All surfaces give off thermal radiation proportional to the fourth power of their temperature: $\dot{\mathbf{q}}_{rad,emitted} = \varepsilon \sigma T^4$
 - $-\epsilon$ is the emissivity (0 $\leq \epsilon \leq$ 1), a material property
 - ε = 1, perfect radiator, called "black body"
 - σ is the Stefan-Boltzmann constant = $5.670 \times 10^{-8} \text{ W/m}^2 \cdot \text{K}^4 =$ 0.1714x10-8 Btu/hr-ft2-R4
 - · Must use absolute temperatures for radiation

Northridge

 $\dot{Q}_{
m incident}$ $\dot{Q}_{\text{ref}} = (1 - \alpha) \, \dot{Q}_{\text{incident}}$ From Çengel, Heat and Mass Transfer reflected radiation $\dot{Q}_{abs} = \alpha \, \dot{Q}_{incident}$ For transparent solids some FIGURE 1-36 The absorption of radiation incident on an opaque surface of absorptivity α . Northridge

Radiation Heat Transfer

- Complicated because of property dependence on wavelength of radiation and exchange among several surfaces
- Simplest case is two surfaces that form an enclosure. In this case the heat flux from surface 1 to surface 2 is based on a shape-emissivity factor, \mathfrak{F}_{12}

$$\dot{Q}_{rad,1\to 2} = A_1 \mathfrak{F}_{12} \sigma \left(T_1^4 - T_2^4 \right)$$

Northridge

Radiation Heat Transfer II

· Some simple cases of two surfaces

Small object (1) in $\dot{Q}_{rad,1\rightarrow 2} = A_1 \varepsilon_1 \sigma \left(T_1^4 - T_2^4 \right)$ large enclosure

Two infinite parallel $\dot{Q}_{rad,1 \rightarrow 2} = \frac{A_1 \sigma \left(T_1^4 - T_2^4\right)}{\frac{1}{\epsilon_1} + \frac{1}{\epsilon_2} - 1}$

Two infinite concentric cylinders $\dot{Q}_{rad,l\rightarrow 2} = \frac{A_1\sigma \left(T_1^4 - T_2^4\right)}{\frac{1}{\epsilon_1} + \frac{1 - \epsilon_2}{\epsilon_2}\frac{r_1}{r_2}}$ (1 is inner)

Northridge

Ohm's Law for Radiation

- E = IR or I = E/R or flow equals driving force divided by resistance
- Radiation heat transfer relation can be rearranged to this form, but is nonlinear

$$\begin{split} \dot{Q}_{rad} &= A_1 \mathfrak{F}_{12} \sigma \left(T_1^4 - T_2^4 \right) = A_1 \mathfrak{F}_{12} \sigma \left(T_1 - T_2 \right) \left(T_1^3 + T_2^3 + T_2^2 T_1 + T_1^2 T_2 \right) \\ \dot{Q}_{rad} &= \frac{T_1 - T_2}{A_1 \mathfrak{F}_{12} \sigma \left(T_1^3 + T_2^3 + T_2^2 T_1 + T_1^2 T_2 \right)} = \frac{T_1 - T_2}{R_{rad}} \end{split}$$

Northridge

Ohm's Law for Radiation II

 Define radiation heat transfer coefficient analogous to that for convection where R_{conv} = 1/Ah_{conv}

$$R_{rad} = \frac{1}{A_1 \mathfrak{F}_{12} \sigma(T_1^3 + T_2^3 + T_2^2 T_1 + T_1^2 T_2)} = \frac{1}{A_1 h_{rad}}$$

- Use simple values for h_{rad} in initial parts of the course
 - Analyze more complex radiation analysis as final topic in course

Northridge

74

Radiation Heat Transfer Problem

• Compute the radiation flux a small surface with ε = 0.7 at 25°C in a large room whose surfaces are at 0°C

$$\dot{q}_{rad,1\to2} = \frac{\dot{Q}_{rad,1\to2}}{A_1} = \frac{A_1 \varepsilon_1 \sigma \left(T_1^4 - T_2^4\right)}{A_1} = \varepsilon_1 \sigma \left(T_1^4 - T_2^4\right)$$

$$= (0.7) \left(\frac{5.670 \times 10^{-8} W}{m^2 \cdot K^4}\right) \left[(298.15 K)^4 - (273.15 K)^4\right]$$

$$\dot{q}_{rad,1\to2} = \frac{92.7 W}{m^2}$$

Northridge

Radiation and Convection
 Can have radiation and convection in

- Can have radiation and convection in parallel: Q
 total = Q
 conv + Q
 rad
- Problem: what is total heat flux for the previous radiation problem if there is also convection with h = 20 W/m².°C and $T_{\infty} = 0$ °C

$$\dot{q}_{conv} = \frac{\dot{Q}_{conv}}{A} = h(T_s - T_{\infty}) = \frac{20 \text{ W}}{m^2 \cdot {}^{o}C} \left(25^{o}C - 0^{o}C\right) = \frac{500 \text{ W}}{m^2}$$

$$\dot{q}_{total} = \dot{q}_{conv} + \dot{q}_{rad} = \frac{500 \text{ W}}{m^2} + \frac{92.7 \text{ W}}{m^2} = \frac{593 \text{ W}}{m^2}$$
Northridge