Unit Seven – Introduction to the Second Law

Mechanical Engineering 370

Thermodynamics

Larry Caretto

October 19, 2010

Outline

- Quiz six and midterm results and solution (Note revised schedule)
- Introduction to the Second Law of Thermodynamics
- · Physical background for second law
- · Mathematical statement of second law
- Use of entropy as determination of maximum efficiency
- Deriving other common forms of the second law Northridge

Unit Seven Goals

- As a result of studying this unit you should be able to
 - recognize that there is a thermodynamic property, called entropy, s, defined as follows: ds = (du + Pdv) / T
 - understand the inequality that $dS \ge dQ/T$
 - understand that $dS \ge 0$ for isolated systems
 - recognize that entropy is a property
 - Understand that the = part of the ≥ sign applies in a reversible process

California State University Northridge

More Unit Seven Goals

- understand the definitions of engine and refrigeration cycles
- apply the definitions of work and heat flow for these cycles
- compute the efficiency of an engine cycle
- compute the coefficient of performance (COP) for a refrigeration cycle
- perform Carnot cycle computations
- Read second law notes from web site

Why the Second Law?

- Encapsulates the phenomenon that certain process in nature flow one way
 - Water flows downhill
 - Heat flows from high to low temperatures
- We know that we can reverse these processes with an external effect
 - pump water uphill
 - use a refrigerator to transfer heat from low to high temperature

Northridge

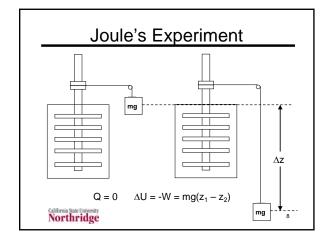
Second Law Application

- Based on entropy, a thermodynamic property
- Used to define ideal (reversible) processes
- Shows that maximum efficiency of conversion of heat to work occurs in a reversible process
- Gives quantitative calculations for this maximum efficiency

Northridge

Approach to Second Law

- Developed around 1850 by considering of engine and refrigeration cycles
- · Text considers similar derivation
- · Important idea is in result using entropy
- · Class notes will start at this point
 - Provide focus on ultimate calculations
 - Show equivalence to text derivation



Joule's Experiment Explained

- The falling weight, mg, turns the paddle wheels increasing the system energy
- For an insulated system Q = ΔU + W = 0 so that ΔU = -W = mg(z_{initial} - z_{final})
- For falling weight, $z_{initial} z_{final} > 0$, so $\Delta U > 0$, corresponding to water heating.
- What about process where weight rises and water cools?

Northridge

Another Example

- · Two identical blocks
 - Same mass and heat capacity
 - Block A at 300 K, block B at 500 K
 - Blocks placed in contact each reaching a final temperature of 400 K
 - No heat or work external to blocks
 - $-\Delta U = \Delta U_A + \Delta U_B = 0$ or $\Delta U_A = -\Delta U_B$
- Can $T_{A,Final} = 200 \text{ K}$ and $T_{B,Final} = 600 \text{ K}$?
 - This also gives $\Delta U = \Delta U_A + \Delta U_B = 0$ or $\Delta U_A = -\Delta U_B$

Northridge

10

General Idea

- Some processes in nature are observed to only proceed in one direction
- First law does not prohibit these processes going in the opposite direction
- Is there any general rule that shows the one-directional nature of processes
- Yes, it is the second law

Northridge

The Second Law

 There exists an extensive thermodynamic property called the entropy, S, defined as follows:

$$dS = (dU + PdV)/T$$

- For any process dS ≥ dQ/T
- For an isolated system dS ≥ 0
- T must be absolute temperature
- Inequality is required to show directional effects

Northridge

11

12

Entropy as a Property

- · Have total entropy, S, and specific entropy, s = S/m
- Dimensions of entropy are energy divided by temperature
- For S, typical units are kJ/K or Btu/R
 - Units for s: kJ/kg·K or Btu/lb_m·R
 - s in tables is similar to v
 - One-phase regions give s(T,P)
 - In mixed region, $s = s_f + x s_{fq}$
 - Ideal gas equations for entropy as well

Northridge

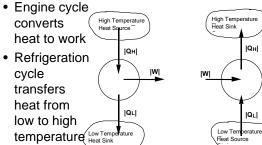
13

Cyclic Processes

- . In a cycle, the initial and final states of the system are the same
- · Since the initial and final states are the same, the properties of the initial and final states are the same
- Thus, for a cycle, $\Delta u = \Delta s = 0$
- Since heat and work depend on path. these may be nonzero, but $Q = \Delta U + W$ means that Q = W for a cycle

Northridge

Cycles with $|Q_H| = |Q_I| + |W|$



Refrigeration Cycle

Northridge

Engine Cycle Heat and Work Relation between cycle terms and usual sign

conventions · Engine cycle

 $|Q_H| = -Q_{HTHS} = Q_{H,Cycle}$ $|Q_L| = Q_{LTHS} = -Q_{L.Cvcle}$

 $Q_{\text{cycle}} = |Q_{\text{H}}| - |Q_{\text{L}}|$ $Q_{cvcle} = W > 0$

|QH| |QL|

Engine Cycle Schematic

Refrigeration Cycle Heat/ Work

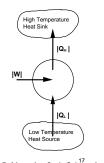
· Relation between cycle terms and usual sign conventions

Northridge Engine Cycle

• Refrigeration cycle

$$\begin{aligned} |Q_{H}| &= Q_{HTHS} = -Q_{H,Cycle} \\ |Q_{L}| &= -Q_{LTHS} = Q_{L,Cycle} \\ Q_{cycle} &= |Q_{L}| - |Q_{H}| = W < 0 \end{aligned}$$

Northridge



Refrigeration Cycle Schematic

Cycle Parameters

- Engine cycle efficiency
- Refrigeration cycle COP (coefficient of performance)
- · General definitions, valid for any cycle
- · Engine efficiency always less than one
- COP can be greater than one

Northridge

Reversible Process

- In a reversible process where dS_{isolated system} = 0 it is possible to return a system to its initial state with no changes in the surroundings
- This is an idealization; we cannot do better than a reversible process
- External reversibility is when dS = 0 is true for an isolated system
- Internal reversibility is when dS = dQ/T for one subsystem in an isolated system

May still have dS_{isolated system} > 0

Northridge

19

Temperature Reservoir

- A body that transfers heat with no change in its temperature
- Two-phase fluid is best example
- Reservoir usually envisioned as very large body such that $\Delta T = Q/(mc_v) \approx 0$
- Basic idea is that instead of dS = dQ/T we can write ∆S = ∫dQ/T = Q/T
- Temperature reservoir is internally reversible

Northridge

20

Carnot Cycle Introduction

- This cycle has theoretical significance but is not a practical cycle
- In traditional approaches to the second law, results for Carnot cycles are used to derive entropy
- Here we will show that Carnot cycle results can be obtained from principle that $dS_{isolated\ system} \ge 0$

California State University
Northridge

21

Carnot Cycle Results

- Carnot cycle uses one high temperature reservoir at T_H and one low temperature reservoir at T_I
- We have results for Carnot engine cycle efficiency and Carnot refrigeration cycle coefficient of performance
- Efficiency $\eta = |W| / |Q_H| \le 1 T_L / T_H = \eta_C$
- COP = $|Q_L| / |W| \le T_L / (T_H T_L) = \beta_{Carnot}$

Northridge

22

Carnot Cycle

- Cycle with only two temperature reservoirs, HTR at T_H and LTR at T_L
- $\Delta S_{isol \ syst} = \Delta S_{HTR} + \Delta S_{cycle} + \Delta S_{LTR} \ge 0$
- $\Delta S_{isol \, syst} = Q_{HTR}/T_H + 0 + Q_{LTR}/T_L \ge 0$
- For the engine cycle Q_{HTR} = - $|Q_H|$ and Q_{LTR} = $|Q_L|$, so - $|Q_H|/T_H$ + $|Q_L|/T_L \ge 0$
- Refrigeration cycle $Q_{HTR} = |Q_H|$ and $Q_{LTR} = -|Q_L|$, so $|Q_H|/T_H |Q_L|/T_L \ge 0$

Northridge

23

Carnot Cycle Continued

- For both cycles, $|Q_H| = |Q_1| + |W|$
- For the engine cycle
 - -|Q_H|/T_H + |Q_L|/T_L ≥ 0 so that -|Q_H|/T_H + (|Q_H| |W|)/T_L ≥ 0
 - Rearrange to get $|Q_H|(1/T_L 1/T_H) \ge |W|/T_L$
 - $-\eta = |W| / |Q_H| \le 1 T_L / T_H = \eta_{Carnot}$
- It is impossible to construct an engine cycle without heat rejection

Northridge

24

Carnot Cycle Concluded

- For both cycles, $|Q_H| = |Q_L| + |W|$
- For the refrigeration cycle
 - $\begin{array}{l} \ |Q_H|/T_H \ \ \text{--} \ |Q_L|/T_L \geq 0 \ \text{so that} \ (|Q_L| + |W|)/T_H \\ \ |Q_L|/T_L \geq 0 \ \text{or} \ (|Q_L| + |W|)/T_H \geq Q_L|/T_L \end{array}$
 - Divide by |W| and rearrange to get
 - $-\beta = |Q_L|/|W| \le T_L/(T_H T_L) = \beta_{Carnot}$
- It is impossible to transfer heat from low to high temperature without work input

Northridge

25

This Week's Homework

- · Generally deal with definitions of efficiency, $\eta = |W| / |Q_H|$, or coefficient of performance, $\beta = |Q_L| / |W|$
- Also require use of |Q_H| = |Q₁| + |W|
- For Carnot Cycles, η =1 T₁ / T_H
- · A heat pump cools outside air while heating inside air; $\beta_{\text{heat pump}} = |Q_H| / |W|$

Northridge

Class Exercise

- · Find the entropy and enthalpy of water at a pressure of 1000 psia and 1000°F
- What is the enthalpy at a state with the same entropy you just found and a pressure of 80 psia?
- What is the enthalpy at a state with the same entropy you found above and a pressure of 5 psia?

Northridge

27

Class Exercise Solution

- At 1000 psia and 1000°F, h = 1506.2 $s = 1.6535 \text{ Btu/lb}_{m} \cdot \text{R}$ (Table Btu/lb_m A-6E, p946)
- At 80 psia, s = 1.6535 Btu/lb_m·R is between s = $1.6271 \text{ Btu/lb}_{\text{m}} \cdot \text{R}$ at 320°F and s = 1.6545 Btu/lb_m-R at 360°F

Interpolate h and s

1209.9 kJ 1187.9 kJ $h = \frac{1187.9 \, kJ}{L_{\Omega}} + \frac{kg}{1.6545 \, kJ}$ $1.6271 \, kJ$ kg 1.6535 kJ 1.6271 kJ $1209.1 \, kJ$ Northridge

Class Exercise Solution II

- At 5 psia, s = 1.6535 Btu/lb_m·R is between $s_f = 0.23488 \text{ Btu/lb}_m \cdot \text{R}$ and s_a = 1.8438 Btu/lb_m·R (Table A-5E, p 942)
- Compute $h = h_f + xh_{fa}$ and $x = (s s_f)/s_{fa}$ - Combine these equations to eliminate x

$$h = h_f + \frac{s - s_f}{s_{fg}} h_{fg} = \frac{130.18 \, kJ}{kg} + \frac{\frac{1.6535 \, kJ}{kg \cdot K} - \frac{0.23488 \, kJ}{kg \cdot K}}{\frac{1.60894 \, kJ}{kg \cdot K}} \frac{1000.5 \, kJ}{kg} = \frac{1012.3 \, kJ}{kg}$$

Northridge

29

Meaning of Class Exercise

- · Entropy is a property
- We can find the entropy if we know two independent properties that can specify the state
- · We can use entropy and one other property to identify the state
- · Mixed region calculations for entropy are the same as those for volume, internal energy and enthalpy

Northridge