Unit Four – First Law for Ideal Gases

Mechanical Engineering 370

Thermodynamics

Larry Caretto

September 16, 2010

California State University Northridge

Outline

- · Quiz three solution
- Unit four first law for ideal gases
 - Heat capacities, c_v and c_n are properties
 - For ideal gases $du = c_v dT$ and $dh = c_p dT$, regardless of path
 - For ideal gases u = u(T) only and h = u + Pv = u + RT = h(T) only
 - Solving first law problems with ideal gases

Northridge

2

Unit Four Goals

- As a result of studying this unit you should be able to
 - describe the path for a process and determine the work with greater confidence than you had after completing unit three
 - understand the heat capacities C_x (e.g. C_p and C_v) as dQ = C_x dT in a "constant-x" process
 - use the *property* relations for ideal gases du = c_v dT and dh = c_p dT for **any** process

California State University Northridge

Unit Four Goals Continued

- find changes in internal energy and enthalpy for an ideal gas where the heat capacity is constant or a function of temperature.
- use ideal gas tables to find changes in internal energy and enthalpy where the heat capacities are functions of temperature
- find internal energy changes for ideal gases as $\Delta h = \Delta u + R \Delta T$
- convert results from a per-unit-mole basis
 to a per-unit-mass basis and *vice versa*

California State University
Northridge

Unit Four Goals Continued

- be able to find other properties about a state when you know (or able to calculate) the internal energy or enthalpy
- be able to work problems using the first law, Pv = RT, $du = c_v dT$, and a path equation (may be iterative)
- use the equation c_p c_v = R to find c_p from c_v (and *vice versa*), which also applies to equations; if c_p = a + bT + cT², then c_v = (a-R) + bT + cT²

Northridge

Why Use Ideal Gas?

- · Simple equations
- Real gas behavior close to ideal gas for low pressure (or high temperature)
- Want P low compared to P_c or T high compared to T_c
 - Have seen that ideal gas gives good results for P-v-T data when P < ~0.2P_c or T > ~2T_c
 - Will also see that this region gives good results for internal energy change, ∆u

Heat Capacity

- Heat capacity, C_x = mc_x, gives heat transfer dQ = C_xdT in constant x process
- Specific heat capacity, c_x = C_x/m is a property
- Use c_v and c_p for constant volume and pressure, respectively
- For liquids and solids c_v and c_p are essentially the same
 - $-dq = c_v dT$ at constant volume
 - $-dq = c_0 dT$ at constant pressure

California State University Northridge

Ideal Gases

- For ideal gases, du = c_vdT, dh = c_pdT regardless of path
- · Note these differences
 - Path dependent heat transfer
 - dq = c_vdT for constant volume only
 - dq = c_odT for constant pressure only
 - Path independent properties du and dh
- $\Delta u = \Delta U/m = \int c_v dT$, $\Delta h = \Delta H/m = \int c_n dT$
- h = u + Pv = u +RT for ideal gases
- $dh = du + RdT = > c_0 dT = c_v dT + RdT$

Northeridge + R

Is c_v for Constant Volume or Not?

· Depends on path and substance

Find	Equation	Path	Substance	
dq	c _v dT	Constant volume	Any	
dq	c _p dT	Constant pressure	Any	
du	c _v dT	Any	Ideal gas	
dh	c _p dT	Any	Ideal gas	

Northridge

10

Compare/Contrast Tables

- For any property relations we have:
 - First law: Q = ΔU + W
 - Work: W = $\int_{path} PdV$
- · So what is different?
 - With property tables we use tables to find P-v-T relationships and internal energy
 - Ideal gases use Pv = RT and du = c_vdT
 - Use data sources for c_v as average value, c_v as a function of temperature and integrate

11

• Find u(T) in ideal gas tables

Northridge

Example Calculation
on: 10 kg of H₂O at 100 kPa. 2

- Given: 10 kg of H₂O at 100 kPa, 200°C expanded to 400°C at constant pressure
- · Find: Heat Transfer
 - using H₂O tables (for comparison)
 - using ideal gas with constant heat capacity
 - using ideal gas with variable heat capacity
- First Law: Q = ΔU + W = m(u₂ u₁) + W
- Path: W = $\int_{\text{path}} PdV = P_{1-2} (V_2 V_1)$ for constant pressure, $P_{1-2} = P_1 = P_2$
- u₂ u₁ = $\int_{C_v} dT$ for ideal gas

12

Using H₂O Tables

- At $T_1 = 200$ °C and $P_1 = 100$ kPa, $V_1 = 2.1724$ m³/kg and $U_1 = 2658.2$ kJ/kg
- At T_2 = 400°C and P_2 = P_1 = 100 kPa, V_2 = 3.1027 m³/kg and U_2 = 2968.3 kJ/kg
- W = P_{1-2} ($V_2 V_1$) = P_{1-2} m($V_2 V_1$) = (10 kg)(100 kPa)(3.1027 2.1724) m³/kg = 931 kPa·m³ = 931 kJ
- Q = $m(u_2 u_1)$ + W = (10 kg)(2968.3 2658.2) kJ/kg + 931 kJ = 4,029 kJ

Northridge

13

Ideal Gas Calculations

- Q = ΔU + W = m($u_2 u_1$) + $\int_{path} PdV$
- Q = $m(u_2 u_1) + m \int_{path} P dv$
- PV = mRT Pv = RT
- We use PV = mRT to determine mass and specific volume from P and T
- The work calculation does not depend on assumptions about c_v (or c_n = c_v + R)
- Find R = 0.4615 kJ/kg·K = 0.4615 kPa·m³/kg·K in Table A-1, page 908

Northridge

14

Work – Ideal Gas Assumption

- At $T_1 = 200^{\circ}$ C and $P_1 = 100 \text{ kPa}$, $V_1 = RT_1/P_1$ = (.4615 kJ/kg•K)(473.15 K)/(100 kPa) = 2.1836 m³/kg
- At T_2 = 400°C and P_2 = P_1 = 100 kPa, V_2 = RT_2/P_2 = (.4615 kJ/kg•K)(673.15 K)/(100 kPa) = 3.1066 m³/kg
- W = P_{1-2} ($V_2 V_1$) = P_{1-2} m($V_2 V_1$) = (10 kg)(100 kPa)(3.1066 2.1836) m³/kg = 923 kPa·m³ = 923 kJ

California State University Northridge 15

Ideal Gas Internal Energy

- $u_2 u_1 = \int c_v(T)dT = \int c_v(T)dT R\Delta T$
- Possible calculations for c_v (or c_p)
 - Assume constant (easiest) $\Delta u = c_v \Delta T$ (Table A-2(a), page 909 or Table A-2(b), page 910)
 - Integrate equation for c_v or c_p as a function of temperature (Table A-2(c), p 911)
 - Use ideal gas tables giving u(T) and h(T) (Tables A-17 to A-26, pp 934-947)
 - Last two give molar properties (except air)
- Divide by molar mass, M, to get per-unit-mass property values

 Northridge

Ideal-gas specific heat	ts of various comm	on gases				
(a) At 300 K						
Gas	Formula	Gas constant, <i>R</i> kJ/kg⋅K	<i>c_p</i> kJ/kg⋅K	<i>c</i> , kJ/kg⋅K		
Air	_	0.2870	1.005	0.718		
Argon	Ar	0.2081	0.5203	0.3122		
Butane	C4H10	0.1433	1.7164	1.5734		
Carbon dioxide	CO ₂	0.1889	0.846	0.657		
Carbon monoxide	CO	0.2968	1.040	0.744		
Ethane	C ₂ H ₆	0.2765	1.7662	1.4897		
Ethylene	C ₂ H ₄	0.2964	1.5482	1.2518		
Helium	He	2.0769	5.1926	3.1156		
Hydrogen	H ₂	4.1240	14.307	10.183		
Methane	CĤ₄	0.5182	2.2537	1.7354		
Neon	Ne T	0.4119	1.0299	0.6179		
Nitrogen	N_2	0.2968	1.039	0.743		
Octane	C ₈ H ₁₈	0.0729	1.7113	1.6385		
Oxygen	02	0.2598	0.918	0.658		
Propane	C ₃ H ₈	0.1885	1.6794	1.4909		
Steam	H ₂ O	0.4615	1.8723	1.4108		

Ideal-gas specific heats of various common gases (Continued)						
(b) At various	temperature	S		1		
Temperature,	c_p kJ/kg \cdot K	<i>c</i> _v kJ/kg⋅K	k	c_p kJ/kg·K	<i>c_v</i> kJ/kg⋅K	k
K		Air		Cart	oon dioxide, (CO ₂
250 300 350 400 450 500 550 600 650	1.003 1.005 1.008 1.013 1.020 1.029 1.040 1.051 1.063	0.716 0.718 0.721 0.726 0.733 0.742 0.753 0.764 0.776	1.401 1.400 1.398 1.395 1.391 1.387 1.381 1.376	0.791 0.846 0.895 0.939 0.978 1.014 1.046 1.075 1.102	0.602 0.657 0.706 0.750 0.790 0.825 0.857 0.886 0.913	1.314 1.288 1.268 1.252 1.239 1.229 1.220 1.213 1.207
	tate University 1ridge					18

Constant c_v Ideal Gas

- Get c_v = 1.4108 kJ/kg·K at 300 K (26.85°C) for water from Table A-2(a), p 909 (no data for water in Table A-2(b), page 910)
- ∆U = m∆u = m ∫c_v(T)dT = mc_v(T₂ T₁) = mc_v∆T, if c_v is constant
- Here, $\Delta U = mc_v(T_2 T_1) = (10 \text{ kg}) (1.4108 \text{ kJ/kg·K}) (673.15 \text{ K} 473.15 \text{ K}) = 2,822 \text{ kJ}$
- Q = \(\Delta U + W = 2.822 \) kJ + 923 kJ = 3.745 kJ, a 7% error compared to actual properties

California State University
Northridge

20

Ideal Gas with $c_v(T)$

$$\begin{split} & \Delta \overline{h} = \int\limits_{T_1}^{T_2} \overline{c}_p(T) dT = \int\limits_{T_1}^{T_2} \left(a + bT + cT^2 + dT^3 \right) \! dT \\ & = a \left(T_2 - T_1 \right) + \frac{b}{2} \left(T_2^2 - T_1^2 \right) + \frac{c}{3} \left(T_2^3 - T_1^3 \right) = \frac{d}{4} \left(T_2^4 - T_1^4 \right) \\ & \Delta u = \frac{\Delta \overline{u}}{M} = \frac{\Delta \overline{h} - \overline{R} \Delta T}{M} = \frac{\Delta \overline{h}}{M} - R \Delta T \quad & \text{a,b,c,d data from Table} \\ & \Delta - 2(c), \text{ page 911} \\ & \text{Details not shown here} \end{split}$$

- · Use kelvins for temperature
- Molar enthalpy change = 7229.3 kJ/kmol
- ∆u = (7229.3 kJ/kmol) / (18.015 kg/kmol) -(.4615 kJ/kg•K)(200 K) = 309.0 kJ/kg

Northridge

Ideal Gas Tables

- Find molar u(T) for H₂O in Table A-23 on page 946
- Have to interpolate to find the values of $u_1 = u(473.15 \text{ K}) = 11,953 \text{ kJ/kmol}$ and $u_2 = u(673.15 \text{ K}) = 17,490 \text{ kJ/kmol}$
- $\Delta U = (10 \text{ kg})(17,490 \text{ kJ/kmol} 11,953 \text{ kJ/kmol}) / (18.015 \text{ kg / kmol}) = 3,074 \text{ kJ}$
- $Q = \Delta U + W = 3,074 \text{ kJ} + 923 \text{ kJ}$
- Q = 3,997 kJ

Northridge
Northridge

23

Comparison of Results (kJ)

Method	ΔU	W	Q
Tables	3,098	931	4,029
Const c _v	2,822	923	3,745
∫c _v (T)dT	3,090	923	4,013
Ideal gas tables	3,074	923	3,997

Northridge

24

Ideal gases: du = c,dT

- · This does not depend on path
- We just computed the Q = ΔU + W for a constant pressure path of an ideal gas
- We used ∆U = m∆u = m∫c_vdT to compute the internal energy change
- We would use the same equation regardless of the path between state 1 and state 2

Northridge

25

Assuming c_v Constant

- Assumption of constant heat capacity introduces about a 7% error for this problem
- Accounting for temperature variation of heat capacity reduces error to <= 0.8%
- Next page shows figure 4-24, page 177
 - Constant heat capacity assumption is best for noble gases (e.g., argon, neon) and reasonable for diatomic molecules at ambient temperatures
 - Assumption worsens as the temperature range increases

Northridge

26

In-class exercise

- 2 kg of air initially at 100 kPa and 300 K heated to 1200 K. Find the heat transfer for each of the following processes:
 - Constant volume
 - Constant pressure
 - A straight line path to a pressure of 250 kPa
- Use air tables to find the change in internal energy
- How will path affect ∆U?

Northridge

20

In-class Exercise Solution

- Path will not affect ∆U
 - For an ideal gas, u is a function of temperature only. Since ΔT is the same, ΔU = mΔu will be the same.
 - From air tables, Table A-17, pp 934-935
 - u(300 K) = 214.07 kJ/kg
 - u(1200 K) = 933.33 kJ/kg
 - $m\Delta u = (2 \text{ kg})(719.24 \text{ kJ/kg}) = 1438.48 \text{ kJ}$
 - Q = W + 1438.48 kJ

Northridge

29

Exercise Solution II

 $V_{1} = \frac{mRT_{1}}{P_{1}} = \frac{(2 kg)(300 K)}{100 kPa} \bullet$ $\frac{0.2870 kPa \cdot m^{3}}{kg \cdot K} = 1.722 m^{3}$ • Look at constant T = 300 K

- Look at constant volume path first
- For constant volume path, W = 0 so Q = ΔU = 1438.48 kJ

Northridge

30

Exercise Solution III

- For constant pressure, $V_2 = V_1(T_2/T_1) = 6.888 \text{ m}^3$
- W = P₁₋₂(V₂ V₁) = (100 kPa)(6.888 m³ -1.722 m³) = 516.6 kJ

31

For constant pressure path, Q = ΔU + W
 = 1438.48 kJ + 516.66 kJ = 1955.14 kJ

California State University
Northridge

Exercise Solution IV

T = 1200 K

T = 300 K

- For straight line path, $V_2 = V_1(P_1T_2/P_2T_1) = 2.7552 \text{ m}^3$
- W = $(P1 + P_2)(V_2 V_1) / 2 = (100 \text{ kPa} + 250 \text{ kPa})(2.7552 \text{ m}^3 1.722 \text{ m}^3) = 180.81 \text{ kJ}$
- For this straight-line path, Q = ΔU + W = 1438.48 kJ + 180.81 kJ = 1619.29 kJ
 Northridge

In-Class Exercise

- Air, initially at 100 psia, 1000 R and 1 ft³ undergoes an expansion following the polytropic path PV^{1.3} = constant to a final temperature of 500 R. Find the heat transfer.
- For a polytropic path the work is given by the following equation

$$W = \frac{P_2 V_2 - P_1 V_1}{1 - n}$$

Northridge

In Class Exercise II

- · Given data:
 - Initial state: $T_1 = 1000 R$, $P_1 = 100 psia$, $V_1 = 1 ft^3$
 - Path: $PV^{1.3}$ = constant
 - $P_1V_1^{1.3} = P_2V_2^{1.3}$
 - Final state: T_2 = 500 R
 - Substance: Air
 - Property relations: ideal gas
 - PV = mRT and $du = c_v dT$
 - Air tables give integral of c,dT

Northridge

24

In Class Exercise III

- · Equations and data:
 - First Law: Q = ΔU + W = m($u_2 u_1$) + W
 - $-W = \int_{path} PdV$
 - $-W = (P_2V_2 P_1V_1) / (1 n)$ for polytropic path, $PV^n = constant$
 - -PV = mRT
 - du = c_v dT (or use air tables for u, A-17E, pp 982–983 for engineering units)
 - For air, R = $0.3704 \text{ psia} \cdot \text{ft}_3/\text{lb}_\text{m} \cdot \text{R} = 0.06855$ Btu/lb_m·R (Table A-1E, page 958)

Northridge

35

In Class Exercise IV

• From air tables, $u_1 = u(1000 \text{ R}) = 172.43 \text{ Btu/lb}_m$ and $u_2 = u(500 \text{ R}) = 85.20 \text{ Btu/lb}_m$

$$m = \frac{P_1 V_1}{R T_1} = \frac{(100 \ psia)(1 \ ft^3)}{0.3704 \ psia \cdot ft^3} = 0.2700 \ lb_m$$

$$lb_m \cdot R$$

$$W = \frac{P_2 V_2 - P_1 V_1}{1000 \ R} = \frac{mR(T_2 - mRT_1)}{1000 \ R} = \frac{mR(T_2 - T_1)}{1000 \ R}$$

$$\frac{1-n}{(0.2700 \, lb_m) \frac{0.06855 \, Btu}{lb_m \cdot R}} \frac{1-n}{(500 \, R - 1000 \, R)} = 30.845 \, Btu$$

Northridge

ie IC

In Class Exercise V

• Q = ΔU + W = $m(u_2 - u_1)$ + W

$$Q = (0.2700 \ lb_m) \left(\frac{85.20 \ Btu}{lb_m} - \frac{172.43 \ Btu}{lb_m} \right) + 30.845 \ Btu$$

• Assuming constant c_v = 0.174 Btu/lb_m·R at mean temperature of 750 R = 290.3°F from Table A-2E(b), page 960 gives Q = 7.36 Btu Northridge