Language basics for examinations

ME309, L. S. Caretto, Spring 2014

Page 1

MATLAB and VBA Basics for Examinations

statements per line

or comma

Topic MATLAB VBA
Case sensitive (is No, but editor will change your typing to
a different from Yes standard upper and lower case notation for
A?) VBA
Normally one statement per line, use Normally one statement per line, use
Statement . .)
structure three periods(...) to contllnue a space+underscore(_) to continue a statement
statement on a new line to a new line
Multiple End initial statement(s) with semicolon

End initial statement(s) with colon

Command window

Results of all statements without

. . - N/A
results semicolon shown in command window
Comrntggevsanable Double by default, string Long, Boolean, Double, Date, String
Declaration Not required Dim <variable> As <type>
statement
Symbolic N/A Const Pl As Double = 3.14159265358979
Constants

Common arith-
metic operators

Addition(+), exponentiation(”), subtraction and unary minus(-), multiplication(*) and

division(/)

Other arithmetic
operators

Use function Mod(a,b)

Integer division{\), Mod

Array arithmetic

+ —* [N x A
Note difference between matrix

Requires For loops. Two loops required for
term-by-term operations and three loops for

subscript

operators operators (*, /,) and term-by-term matrix multiplication
operators (.*, ./, .")

Solving Ax =b x=A\b mmult(minverse(A),b)
Dim <array>(<dimensions>) as <type>, where
Declaring Arrays N/A dimensions can be a single number or a range

like 5 To 12.
Lowest array 0 by default, default can be changed to 1 by

1 Option Base 1 statement and can be set to any

value for individual arrays

Array components

A(i), B(i..j)

Entering Arrays

Row array: A=[123..]]
Column array B =[1; 2; 3; ...]
Rectangular C=[12;34;56;...]

N/A

Subarrays

D = A(rowl:row2,coll:,col2)
D = A(:,coll:col2)
D = A(rowl:,row2,:)
D = A(oneRow, coll:col2)
D = A(rowl:row2,0neColumn)

For row = rowl To row?2
For col = coll to col2
D(row-rowl+1, col—coll +1) = A(row,col)
Next col
Next row

Common relational
operators

Less than(<), less than or equal(<=), greater than or equal(>=), greater than(>)

Different relational
operators

Equal (==), not equal(~=)

Equal(=), not equal(<>)

Scalar logical
operators

Not(~), and(&&), or(]])

Not(Not), and(And), or(Or)

Array logical
operators

Not(~), and(&), or(])

N/A

Array Example

x = 0:100
y = sin(pi*x/100)

Dim x(0 To 100 As Double
Dim y(0 To 100) As Double
For k =0 To 100

x(k) = k

y(k) = sin(P1*k/100)
Next k

Language basics for examinations

ME309, L. S. Caretto, Spring 2014

Page 2

MATLAB and VBA Basics for Examinations

Topic

MATLAB

VBA

If statements

if <condition1>

<Done if conditionl is true>
elseif <condition2>

<Done if condition?2 is true>
elseif <condition3>

<Done if condition3 is true>
<May be other conditions>
else

<Done if all conditions false>
end
<Execute here after any statements
done>

If <condition1> Then
<Done if conditionl is true>
Elself <condition2> Then
<Done if condition2 is true>
Elself <condition3> Then
<Done if condition3 is true>
<May be other conditions>
Else
<Done if all conditions false>
End If
<Execute here after any statements done>

Count-controlled

for <counter> = <array>

For <counter> = <start> To _
<end> Step <increment>

< >
loop en dstatements <statements>
Next <increment>
for <counter> = <start>:
Similar count- .. <increment>:<end>
Same for loop as above
controlled loop <statements>
end
Basic conditional while <condition> Do While (<condition>)
<statements> <statements>
loop
end Loop

Other conditional

Can create with combinations of if
statements (to allow test after) and
while loop. Necessary to change

Do <statements> Loop
Do Whilel (<condition>) <sts> Loop
Do Until (<condition>) <sts> Loop

loops condition that remains_ false in_ until_ Do <sts> Loop Until (<condition>)
:ggg/to one that remains true in while Do <sts> Loop While (<condition>)
function <return> = <name> ... Function <name> (<arguments>) As <type>
(<arguments>) <name> is the name of the function
<return> is a one variable or row array <type> is the data type for the function
of variables returned by the function <arguments> may be blank or have one or
<name> is the name of the function more entries of the form:
. <arguments> may be blank or have <variable> As <type>
Functions . . . : ; .
one or more variable names separated | <variable> is a variable used in the function
by commas <type> is the data type for that variable
Arguments provide input data to Separate multiple <variable> entries in the
function <arguments> list by commas
Each variable in the <return> list must Arguments provide input data to function
be assigned a value in the function Set function name equal to return value
Strings s = ‘this is a string’ Dim s as String : s = “This is a string”
Concatenation s = ['this is’ ‘ a string’] s = ‘Thisis a * & ‘string’ (can use + instead of &)

