Outline

3

Example

• Define velocities $\frac{dx_1}{dt} = v_1$ $\frac{dx_2}{dt} = v_2$

 m_1

 m_2

Original ODEs

for each mass

Rewrite original

ODEs using

velocities

California State University Northridge

Northridge

mping coefficient (kg/s

MATLAB Derivative Function

```
function f = springMassDamper(t, y)
m1=1; m2=2; c = 0.5; k = 1;
f = zeros(4,1);
f(1) = y(3);
f(2) = y(4);
f(3) = (c*(y(4)-y(3))+k*(y(2)-y(1)))/m1;
f(4) = (c*(y(3)-y(4))+k*(y(1)-y(2)))/m2;
End
>>[t y] = ode45(@springMassDamper, [0 1], ...
[1 -1 0 0])
Characterizety
To the set the s
```


- Common time value for all y_k to compute f_k

RK4 Code – Multiple ODEs
<pre>h = (xEnd - xStart) / nSteps For step = 1 To nSteps x = xStart + h * (step - 1) f = fFct(x, y) 'initial y values For m = 1 To N Use Application. k1(m) = h * f(m) yTemp(m) = y(m) + 0.5 * k1(m)</pre>
Next m f = fFct(x + h / 2, yTemp) For m = 1 To N k2(m) = h * f(m) California State Pulseshy yTemp(m) = y(m) + 0.5 * k2(m) ¹³

Example: 4th-order Runge-Kutta
Call fFct(x + h / 2, yTemp, f) For m = 1 To N k2(m) = h * f(m) yTemp(m) = y(m) + 0.5 * k2(m) Next m
<pre>f= fFct(x + h / 2, yTemp) For m = 1 To N</pre>
$\begin{tabular}{c} Next m \\ \hline f = fFct(x + h, yTemp) \\ \hline California State Twinestry \\ \hline Northridge \\ \hline 14 \end{tabular}$

ODE Solvers in MATLAB
 Solver names: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
 – ode45 should be first choice
 This is a Runge-Kutta procedure that uses a fourth and fifth order expressions, called the Dormand-Prince pair, to adjust step size, h
 – ode113 is a multistep algorithm based on the Adams-Bashfort-Moulton approach
 Application information for solvers from MATLAB help on next slide
Collification Operation The Second Inc.

19

California State University Northridge

MATLAB Solver Help

Solver	Problem Type	Order of Accuracy	When to Use	
ode45	Nonstiff	Medium	Most of the time. This should be the first solver you try	
ode23	Nonstiff	Low	Problems with crude error tolerances or for solving moderately stiff problems	
ode113	Nonstiff	Low to high	Problems with stringent error tolerances or computationally intensive problems	
ode15s	Stiff	Low to medium	If ode45 is slow because the problem is stiff	
ode23s	Stiff	Low	With crude error tolerances to solve stiff systems (mass matrix is constant)	
ode23t	Modera- tely Stiff	Low	Moderately stiff problems if you need a solution without numerical damping.	
ode23tb	Stiff	Low	If using crude error tolerances to solve stiff systems. 20	
vorum	nage		still systems. 20	

MATLAB ode45 Example
<pre>>> type odeF.m function f = odeF(t, y) %odeF sample ode derivative routine f = zeros(3,1); f(1) = -y(2)*y(2)/y(3); %Use semi- f(2) = -2*y(2)*y(3)/y(1)^3; %colons f(3) = -3*y(1)*y(2); %to avoid prints</pre>
<pre>end >> tS = [0 .1 .2 .4 .6 .8 1]; %Time data >> y0 = [1 1 1]'; %Initial y values >> [t y] = ode45(@odeF,tS,y0) %use solver %Output time, t, and solution, y on next %slide California Succession Northridge</pre>

MATLAB ode45 Example II					
t = 0 y 0.1000 0.2000 0.4000 0.6000 0.8000 1.0000	0.5488	1.0000 0.8187 0.6703 0.4493 0.3012 0.2019 0.1353	0.1653 0.0907		
<pre>%Results shown only for specified times %If t array were entered as [0 1] results % for all times would be displayed %If exact solution, yExact known, errors %in numerical solutions for all times are >> err = abs([y - yExact]) Morthridge</pre>					

Numerical ODE Approaches Have seen explicit, single-step, methods, like Runge-Kutta, that solve for y_{n+1} using only values at step n Implicit methods use information about point n+1 in algorithm for y_{n+1}; some sort of approximation required Multistep methods use information from steps n – 1, n – 2, *etc*. Extrapolation methods

Extrapolation methods
 California State University
 Northridge

23

Implicit Methods
 Methods discussed previously are called explicit
 Can find y_{n+1} in terms of values at n Use predictors to estimate y values between y_n and y_{n+1}
 Implicit methods use f_{n+1} in algorithm
 Usually require approximate solution
Can use larger h values with more work per step compared to explicit methods
Trapezoid method is an example Northridge 24

33

• Predictor equation uses derivative values from four points

$$y_{n+1}^{P} = y_n + \frac{h}{24} (55f_n - 59f_{n-1} + 37f_{n-2} - 9f_{n-3})$$

 Corrector equation uses four points including point n+1 with predicted y^P

$$y_{n+1}^{C} = y_{n} + \frac{h}{24} \Big[9f(x_{n+1}, y_{n+1}^{P}) + 19f_{n} - 5f_{n-1} + f_{n-2} \Big]$$
California State University
Northridge

Northridge

California State University Northridge 38

37

Northridge (interpolated points)

