
Other Numerical ODE Algorithms April 28, 2014

ME 309 – Numerical Analysis of Engineering Systems 1

Other Algorithms for Ordinary

Differential Equations

Larry Caretto

Mechanical Engineering 309

Numerical Analysis of Engineering

Systems

April 28, 2014

2

Outline

• Schedule

• Review systems of ODEs
– Spring-mass-damper problem with two

masses as example

• Using ODE solvers in MATLAB

• Other approaches for solving the initial
value problem
– Multistep methods

– Implicit methods

– Extrapolation methods

Remaining Course Schedule

• April 28 (today) – More on ODEs;

programming assignment six due

• April 30 – Last quiz (on ODEs). Final

lecture on numerical solutions of ODEs

• May 5 – Review for final and program-

ming exams; programming assignment

seven due

• May 7 – Programming exam

• May 12 – Final exam, 8 – 10 pm
3

Review Systems of ODEs

• Can convert nth order ODE into n first-

order ODEs

• Can apply algorithms for one first-order

ODE to systems of first-order ODEs

– Must have initial conditions on all variables

– Converting an nth order ODE to n first-order

ODEs gives n – 1 derivative ODEs whose

initial values we need

– Must apply each step of algorithms to all

ODEs before going on to next step
4

Example

• Two masses joined by a spring/damper

5

 121
21

2

1

2

1 Fxxk
dt

dx

dt

dx
c

dt

xd
m

 212
12

2

2

2

2 Fxxk
dt

dx

dt

dx
c

dt

xd
m

1
1 v

dt

dx

2
2 v

dt

dx

1

1
21

1

21

1

1

m

F
xx

m

k
vv

m

c

dt

dv

2

2
12

2

12

2

2

m

F
xx

m

k
vv

m

c

dt

dv

• Define velocities

• Original ODEs

for each mass

• Rewrite original

ODEs using

velocities

m1 m2

x1, x2

k = spring constant (N/m)

c = damping coefficient (kg/s)

Example Continued

• Replace x1, x2, v1, v2 in equations below

by y1, y2, y3, y4

6

1
1 v

dt

dx

2
2 v

dt

dx

1

1
21

1

21

1

1

m

F
xx

m

k
vv

m

c

dt

dv

2

2
12

2

12

2

2

m

F
xx

m

k
vv

m

c

dt

dv

31
1 yf

dt

dy

42
2 yf

dt

dy

 21

1

43

11

1
3

3 yy
m

k
yy

m

c

m

F
f

dt

dy

 12

2

34

22

2
4

4 yy
m

k
yy

m

c

m

F
f

dt

dy

• Result is standard-form system: dyk/dt = fk

Other Numerical ODE Algorithms April 28, 2014

ME 309 – Numerical Analysis of Engineering Systems 2

MATLAB Derivative Function

function f = springMassDamper(t, y)

m1=1; m2=2; c = 0.5; k = 1;

f = zeros(4,1);

f(1) = y(3);

f(2) = y(4);

f(3) = (c*(y(4)-y(3))+k*(y(2)-y(1)))/m1;

f(4) = (c*(y(3)-y(4))+k*(y(1)-y(2)))/m2;

End

>>[t y] = ode45(@springMassDamper, [0 1], …

[1 -1 0 0])

7

General System Form

• Have N ODEs with common form:

• Each fm may depend on t and all ym

• Equations for fm (in terms of t and all y

values) depend on problem description

• Apply usual algorithms yi+1 = yi + hfavg to

each equation: ym,i+1 = ym,i + hfavg,m

– ym,i is value of ym at t = ti (or x = xi)

• Must do each step/substep to all

equations before taking next step/substep
8

m
m f

dt

dy

ti-2 ti-1 ti ti+1 ti+2 ti+3

How to Code This

• For any algorithm, each step must be

done for all equations

• All equations have the form dym/dt = fm

• User-defined function, f = fSub(t, y),

computes all f values for input t, y

• Each step, in each algorithm, is a loop

over all equations getting appropriate

updates

– Common time value for all yk to compute fk
9 10

Fourth-order Runge Kutta (RK4)

• Uses four derivative evaluations per step

),(

2
,

2

2
,

2

),(

6

22

34

2
3

1
2

1

1
4321

1

kyhthfk

k
yhthfk

k
yhthfk

ythfk

htt
kkkk

yy

ii

ii

ii

ii

iiii

Look at code for

this algorithm,

then see changes

to apply to a

system of

equations

ti-2 ti-1 ti ti+1 ti+2 ti+3

RK4 Code, one ODE

h = (tEnd - tStart)/nSteps

For step = 1 To nSteps

t = tStart + h * (step - 1)

f = fFct(t, y) ‘initial y values

k1 = h * f

f = fFct(t + h / 2, y + k1/2)

k2 = h * f

f = fFct(t + h / 2, y + k2/2)

k3 = h * f

f = fFct(t + h, y + k3)

y = y + (k1 + 2*k2 + 2*k3 + h*f) / 6

Next step
11

t = independent vari-

able at start of step = ti

Use same program vari-

able, y, for yi+1 and yi

k4

Use Application.Run(“fFct”,t,y) in VBA

12

RK4 for N ODEs

• ym,i is is value of mth y variable at ti

),(

2
,

2

2
,

2

),(

6

22

3,4

2
,3

1
,2

,1

1

,4,3,2,1

,1,

ky

k
y

k
y

y

iimm

iimm

iimm

iimm

ii

mmmm

imim

hthfk

hthfk

hthfk

thfk

htt
kkkk

yy

Vector notation for y

and k shows that (1)

fm can depend on all

ym values and (2)

each fm calculation

requires all y values to

be updated
ti-2 ti-1 ti ti+1 ti+2 ti+3

Other Numerical ODE Algorithms April 28, 2014

ME 309 – Numerical Analysis of Engineering Systems 3

RK4 Code – Multiple ODEs

h = (xEnd - xStart) / nSteps

For step = 1 To nSteps

x = xStart + h * (step - 1)

f = fFct(x, y) ‘initial y values

For m = 1 To N

k1(m) = h * f(m)

yTemp(m) = y(m) + 0.5 * k1(m)

Next m

f = fFct(x + h / 2, yTemp)

For m = 1 To N

k2(m) = h * f(m)

yTemp(m) = y(m) + 0.5 * k2(m) 13

Use Application.

Run(“fFct”,t,y) in VBA

Example: 4th-order Runge-Kutta

Call fFct(x + h / 2, yTemp, f)

For m = 1 To N

k2(m) = h * f(m)

yTemp(m) = y(m) + 0.5 * k2(m)

Next m

f= fFct(x + h / 2, yTemp)

For m = 1 To N

k3(m) = h * f(m)

yTemp(m) = y(m) + k3(m)

Next m

f = fFct(x + h, yTemp)
14

Example: 4th-order Runge-Kutta

f = fFct(x + h, yTemp)

For m = 1 To N

k4(m) = h * f(m)

y(m) = y(m) + (k1(m) + 2 * k2(m) _

+ 2 * k3(m) + h * f(m)) / 6

Next m

Next step

15

• These new y values are used at start of

loop to begin next step

– Same statements handle function input

values for y(m)

k4(m)

Use same

program vari-

able, y(m), for

ym,i+1 and ym,i

ODE Solvers in MATLAB
• Several different solvers

• For initial value problems the general

function call is [t, y] = solverName(

derivativeF, tSpan, y0, options), where

– t is a column vector of “time” points output

by the calculation

– y is the output matrix for the solution

• Column k of y is the solution for variable yk

• Each row of y is the solution of all yk for the

“time” point in the same row of t

16

ODE Solvers in MATLAB II

– derivativeF is the handle for a function that

evaluates the derivatives, f(t,y)

• In derivativeF(t,y), t is a scalar time, and y is a

column vector of the dependent variables

• The function returns a column vector for f

• The user has to write this function to define the

problem being solved

– The tSpan argument is a row matrix that must

give at least the initial and final time

• MATLAB uses time is as the name of the

independent variable, which can be any quantity

17

ODE Solvers in MATLAB III
• If there are only the minimum of two points

(start and end) solvers will give output for each

time (independent variable) used in calculation

– Voluminous output good for smooth plots

• If three or more points are used in input, only

these input times will appear in output

– The y0 argument is a vector for initial

conditions of the dependent y variables

• Y0 = [1 5 12 -32] gives y1(0) = 1, y2(0) = 5, …

– The options argument allows the user to

override normal defaults in the solver

• See MATLAB help for more options information
18

Other Numerical ODE Algorithms April 28, 2014

ME 309 – Numerical Analysis of Engineering Systems 4

ODE Solvers in MATLAB

• Solver names: ode45, ode23, ode113,

ode15s, ode23s, ode23t, ode23tb

– ode45 should be first choice

• This is a Runge-Kutta procedure that uses a

fourth and fifth order expressions, called the

Dormand-Prince pair, to adjust step size, h

– ode113 is a multistep algorithm based on

the Adams-Bashfort-Moulton approach

– Application information for solvers from

MATLAB help on next slide

19

MATLAB Solver Help
Solver Problem

Type

Order of

Accuracy
When to Use

ode45 Nonstiff Medium Most of the time. This should be the first

solver you try

ode23 Nonstiff Low Problems with crude error tolerances or

for solving moderately stiff problems

ode113 Nonstiff Low to

high

Problems with stringent error tolerances

or computationally intensive problems

ode15s Stiff Low to

medium

If ode45 is slow because the problem is

stiff

ode23s Stiff Low With crude error tolerances to solve stiff

systems (mass matrix is constant)

ode23t Modera-

tely Stiff

Low Moderately stiff problems if you need a

solution without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve

stiff systems. 20

MATLAB ode45 Example

>> type odeF.m
function f = odeF(t, y)
%odeF -- sample ode derivative routine

f = zeros(3,1);
f(1) = -y(2)*y(2)/y(3); %Use semi-
f(2) = -2*y(2)*y(3)/y(1)^3; %colons
f(3) = -3*y(1)*y(2); %to avoid prints

end
>> tS = [0 .1 .2 .4 .6 .8 1]; %Time data
>> y0 = [1 1 1]'; %Initial y values
>> [t y] = ode45(@odeF,tS,y0) %use solver
%Output time, t, and solution, y on next
%slide

21

MATLAB ode45 Example II
t = 0

0.1000
0.2000
0.4000
0.6000
0.8000
1.0000

22

y = 1.0000 1.0000 1.0000
0.9048 0.8187 0.7408
0.8187 0.6703 0.5488
0.6703 0.4493 0.3012
0.5488 0.3012 0.1653
0.4493 0.2019 0.0907
0.3679 0.1353 0.0498

%Results shown only for specified times
%If t array were entered as [0 1] results
% for all times would be displayed
%If exact solution, yExact known, errors
%in numerical solutions for all times are
>> err = abs([y – yExact])

Numerical ODE Approaches

• Have seen explicit, single-step,

methods, like Runge-Kutta, that solve

for yn+1 using only values at step n

• Implicit methods use information about

point n+1 in algorithm for yn+1; some

sort of approximation required

• Multistep methods use information from

steps n – 1, n – 2, etc.

• Extrapolation methods
23 24

Implicit Methods

• Methods discussed previously are
called explicit

– Can find yn+1 in terms of values at n

– Use predictors to estimate y values
between yn and yn+1

• Implicit methods use fn+1 in algorithm

• Usually require approximate solution

• Can use larger h values with more work
per step compared to explicit methods

• Trapezoid method is an example

Other Numerical ODE Algorithms April 28, 2014

ME 309 – Numerical Analysis of Engineering Systems 5

25

Trapezoid Method I
• Basic implicit result for this method

 nn

nn

nnnn yy
y

f
h

x

f
ff

h
yy 11

2

n

n

n

nn

y

fh

h

x

f
hf

yy

2
1

2

2

1
• Have to compute

f(x,y) partial derivatives

)(
2

3
11 hO

h
ffyy nnnn

• Need way to compute fn+1 when we do

not know yn+1

– First approach: replace fn+1 by Taylor series

26

Trapezoid Method II

• Another approach to using fn+1 in

algorithm to solve for the unknown yn+1

– Use an explicit approach to get an initial

approximation for yn+1

– Iterate on implicit method

• E.g.: Euler step for first approximation of yn+1

nnn hfyy
)0(
1

2

)(
1,1)1(

1

m
nnn

n
m

n

yxffh
yy

27

Trapezoid Method III

• Use Newton-Raphson iteration for yn+1

– Solve g(x) = 0 by iteration x(m+1) = x(m) –

g(x(m)) / g’(x(m))

– g(yn+1) = yn+1 – yn – hfn/2 – hf(xn+1,yn+1)/2

– g’(yn+1) = fn+1 – 0 – 0 – h(f/y)/2

)(

1

)(
11

)(
11)(

1
)(
1

)1(
1

2
,

2

,

2
m

n

m
nn

m
nnn

n
m

n
m

n
m

n

y

fh
yxf

yxhfhf
yy

yy

28

Trapezoid Method Derivation

• Subtract series expansion for yn about

yn+1 from series for yn+1 about yn

)(
2

'' 3
2

1 hO
yh

hfyy n
nnn

)(
2

'' 31
2

11 hO
yh

hfyy n
nnn

)(

2

'''' 31
2

111

hO
yyh

hfhfyyyy

nn

nnnnnn

29

Trapezoid Method Derivation II

• Collect terms is last equation and

substitute y’’n+1 = y’’n + hyn’’’ + O(h2)

)(
2

3
11 hO

h
ffyy nnnn

)(
4

''''

2

31
2

11 hO
yyhh

ffyy nn
nnnn

)(
4

)('''''''

2

3
22

11 hO
hOhyyyhh

ffyy nnn
nnnn

30

Trapezoid Method Example
• Look at sample equation dy/dx = f = -ay

• Here, fn = -ayn, f/x = 0 and f/y = -a

ha

yha

ha

hayhay

ah

hay
y

y

f
h

h
x

f
hf

yy

nnn

n
n

n

n

n

nn

2

2

2

22

)(2

02

2

2 2

1

• So yn+1 = G yn with G = (2 – ha)/(2 + ha)

• Will use this later in stability discussion

Other Numerical ODE Algorithms April 28, 2014

ME 309 – Numerical Analysis of Engineering Systems 6

31

Multistep Methods

• Previous methods used only information
from most recent step (yn and fn)

• Took intermediate steps between xn and
xn+1 to improve accuracy

• Multistep methods use information from
previous steps for improved accuracy
with less work than single step methods

• Need starting procedure that is a single
step method

32

Multistep Method Derivation

• Uses interpolation polynomial that
passes through previous points

• Polynomial is integrated from xn to xn+1

• Resulting expression gives yn+1 in terms
of values and derivatives of previous
steps

• Leads to process known as predictor-
corrector with two expressions for yn+1

and an error control expression

33

Adams-Bashforth-Moulton

• Predictor corrector method

• Predictor equation uses derivative

values from four points

 3211 9375955
24

 nnnnn

P

n ffff
h

yy

• Corrector equation uses four points

including point n+1 with predicted yP

 211,11 5199
24

 nnn

P

nnn

C

n fffyxf
h

yy

34

Adams-Bashforth-Moulton II

• Use difference between predictor and

corrector results to get error estimate

 3211 9375955
24

 nnnnn

P

n ffff
h

yy

• Derivation result (next two slides) gives

error estimate in terms of (yP – yC)n+1

 211,11 5199
24

 nnn

P

nnn

C

n fffyxf
h

yy

 C

n

P

nC

v

C yyyhE 11

)(5

270

19
)(

720

19

)(
720

19
)(

720

251
0)(5

1

)(5

1 C

vC

nP

vP

n yhyyhy

35

Derive Error Equation

• From an error analysis of the integrated

interpolation polynomials we can find

)(
720

251
)()(5

11 P

vP

nn yhyxy

)(
720

19
)()(5

11 C

vC

nn yhyxy

)()(
720

251
)(

720

19

720

251
0)()(5)(5

11 C
v

P
v

C
vC

n
P
n yyhyhyy

• Neglect y(v)(P) - y(v)(C)

1. Subtract equations

)(
720

19

720

251)(5

11 C

vP

n

C

n yhyy

2. Subtract and

add y(v)(C) term

36

Derive Error Equation

• Solve for EC, the
corrector error

)(
720

19
)()(5

11 C

vC

nnC yhyxyE

)(
720

270
)(

720

19

720

251)(5)(5

11 C

v

C

vP

n

C

n yhyhyy

• Error estimate gives step size control

• How to change h in multistep method?

 C

n

P

n

P

n

C

n
C

v

C yy
yy

yhE 11
11)(5

270

19

720

270720

19
)(

720

19

Other Numerical ODE Algorithms April 28, 2014

ME 309 – Numerical Analysis of Engineering Systems 7

37

Step Size Control

• Establish emin and emax to achieve

desired problem accuracy

• If emin ≤ EC ≤ emax, do not change h

• If EC < emin double step size, h

• If EC > emax half step size, h

• Carry extra steps to be ready for step-

size doubling

• Interpolate data if h is cut in half

38

Grid halving if error too large

• Normal operation, no step size change

i-3 i-2 i-1 i i+1 (old step)

●---------●---------●---------●---------●---------●

(new) i-3 i-2 i-1 i i+1

• Error too large: Half grid size and repeat step

i-3 i-2 i-1 i i+1 (old step)

●----o----●----o----●----o----●----o----●

(repeated) i-3 i-2 i-1 i i+1

(interpolated points)

39

Grid doubling for very small error

• Normal operation, no step size change

i-5 i-4 i-3 i-2 i-1 i i+1 (old step)

o-----o-----o-----o-----o-----o-----o-----o

i-5 i-4 i-3 i-2 i-1 i i+1 (new)

• Error very small: Double grid size

i-5 i-4 i-3 i-2 i-1 i i+1 (old step)

●-----o-----●-----o-----●-----o-----●-----------●

i-3 i-2 i-1 i i+1

(Retained to use for doubling) 40

Grid Halving and Doubling

• Keep extra values fi-4 and fi-5 in memory to

be ready for grid doubling

– fi-3,new = fi-5; fi-2,new = fi-3; fi-1,new = fi-1; fi,new = fi+1

• Grid halving requires interpolation for

missing values in old grid

– fi-2,new = fi-1; fi,new = fi

 iiiiinewi ffffff 3514070285
128

1
1234,1

 iiiiinewi ffffff 1234,3 2454163
64

1

41

Use of Multistep Methods

• Many different equations possible with

different orders and errors

• Used for high accuracy computation

requirements with less computer time

• Used in high-accuracy MATLAB solver

ode113

• Runge-Kutta type methods easier to

apply, and can have error control for

lower accuracy requirements
42

Extrapolation Methods

• Use Richardson extrapolation for better
estimate from results on two values of h

– Construct large step, H, between two x

values, x and x + H

• Subdivide H into n smaller steps, h = H/n

• Compute intermediate approximations to y,

called zm for the substep index, m

• Use Richardson extrapolation for different m’s

– Bulirsch-Stoer method uses extrapolation

and rational function approximation

