
Other Numerical ODE Algorithms April 28, 2014

ME 309 – Numerical Analysis of Engineering Systems 1

Other Algorithms for Ordinary 

Differential Equations

Larry Caretto

Mechanical Engineering 309

Numerical Analysis of Engineering 

Systems 

April 28, 2014

2

Outline

• Schedule

• Review systems of ODEs
– Spring-mass-damper problem with two 

masses as example

• Using ODE solvers in MATLAB

• Other approaches for solving the initial 
value problem
– Multistep methods

– Implicit methods

– Extrapolation methods

Remaining Course Schedule

• April 28 (today) – More on ODEs;  

programming assignment six due

• April 30 – Last quiz (on ODEs).  Final 

lecture on numerical solutions of ODEs

• May  5 – Review for final and program-

ming exams; programming assignment 

seven due 

• May 7 – Programming exam

• May 12 – Final exam, 8 – 10 pm
3

Review Systems of ODEs

• Can convert nth order ODE into n first-

order ODEs

• Can apply algorithms for one first-order 

ODE to systems of first-order ODEs

– Must have initial conditions on all variables

– Converting an nth order ODE to n first-order 

ODEs gives n – 1 derivative ODEs whose 

initial values we need

– Must apply each step of algorithms to all 

ODEs before going on to next step
4

Example

• Two masses joined by a spring/damper
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• Define velocities

• Original ODEs 

for each mass

• Rewrite original 

ODEs using 

velocities

m1 m2

x1, x2

k = spring constant (N/m)

c = damping coefficient (kg/s)

Example Continued

• Replace x1, x2, v1, v2 in equations below 

by y1, y2, y3, y4
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• Result is standard-form system: dyk/dt = fk
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MATLAB Derivative Function

function f = springMassDamper(t, y)

m1=1;  m2=2;  c = 0.5; k = 1;

f = zeros(4,1);

f(1) = y(3);

f(2) = y(4);

f(3) = (c*(y(4)-y(3))+k*(y(2)-y(1)))/m1;

f(4) = (c*(y(3)-y(4))+k*(y(1)-y(2)))/m2; 

End

>>[t y] = ode45(@springMassDamper, [0 1], …

[1 -1 0 0])
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General System Form

• Have N ODEs with common form:

• Each fm may depend on t and all ym

• Equations for fm (in terms of t and all y

values) depend on problem description

• Apply usual algorithms yi+1 = yi + hfavg to 

each equation: ym,i+1 = ym,i + hfavg,m

– ym,i is value of ym at t = ti (or x = xi)

• Must do each step/substep to all 

equations before taking next step/substep
8

m
m f

dt

dy


ti-2 ti-1 ti ti+1 ti+2 ti+3

How to Code This

• For any algorithm, each step must be 

done for all equations

• All equations have the form dym/dt = fm

• User-defined function, f = fSub(t, y), 

computes all f values for input t, y

• Each step, in each algorithm, is a loop 

over all equations getting appropriate 

updates

– Common time value for all yk to compute fk
9 10

Fourth-order Runge Kutta (RK4)

• Uses four derivative evaluations per step
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Look at code for 

this algorithm, 

then see changes 

to apply to a 

system of 

equations

ti-2 ti-1 ti ti+1 ti+2 ti+3

RK4 Code, one ODE

h = (tEnd - tStart)/nSteps

For step = 1 To nSteps

t = tStart + h * (step - 1)

f = fFct(t, y)  ‘initial y values

k1 = h * f

f = fFct(t + h / 2, y + k1/2)

k2 = h * f

f = fFct(t + h / 2, y + k2/2)

k3 = h * f

f = fFct(t + h, y + k3)

y = y + (k1 + 2*k2 + 2*k3 + h*f) / 6

Next step
11

t = independent vari-

able at start of step = ti

Use same program vari-

able, y, for yi+1 and yi

k4

Use Application.Run(“fFct”,t,y) in VBA

12

RK4 for N ODEs

• ym,i is is value of mth y variable at ti
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Vector notation for y

and k shows that (1) 

fm can depend on all 

ym values and (2) 

each fm calculation 

requires all y values to 

be updated
ti-2 ti-1 ti ti+1 ti+2 ti+3
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RK4 Code – Multiple ODEs

h = (xEnd - xStart) / nSteps

For step = 1 To nSteps

x = xStart + h * (step - 1)

f = fFct(x, y)  ‘initial y values

For m = 1 To N

k1(m) = h * f(m)

yTemp(m) = y(m) + 0.5 * k1(m)

Next m

f = fFct(x + h / 2, yTemp)

For m = 1 To N

k2(m) = h * f(m)

yTemp(m) = y(m) + 0.5 * k2(m) 13

Use Application. 

Run(“fFct”,t,y) in VBA

Example: 4th-order Runge-Kutta

Call fFct(x + h / 2, yTemp, f)

For m = 1 To N

k2(m) = h * f(m)

yTemp(m) = y(m) + 0.5 * k2(m)

Next m

f= fFct(x + h / 2, yTemp)

For m = 1 To N

k3(m) = h * f(m)

yTemp(m) = y(m) + k3(m)

Next m

f = fFct(x + h, yTemp)
14

Example: 4th-order Runge-Kutta

f = fFct(x + h, yTemp)

For m = 1 To N

k4(m) = h * f(m)

y(m) = y(m) + (k1(m) + 2 * k2(m) _

+ 2 * k3(m) + h * f(m)) / 6

Next m

Next step

15

• These new y values are used at start of 

loop to begin next step

– Same statements handle function input 

values for y(m)

k4(m)

Use same 

program vari-

able, y(m), for 

ym,i+1 and ym,i

ODE Solvers in MATLAB
• Several different solvers

• For initial value problems the general 

function call is [t, y] = solverName( 

derivativeF, tSpan, y0, options), where

– t is a column vector of “time” points output 

by the calculation

– y is the output matrix for the solution

• Column k of y is the solution for variable yk

• Each row of y is the solution of all yk for the 

“time” point in the same row of t

16

ODE Solvers in MATLAB II

– derivativeF is the handle for a function that 

evaluates the derivatives, f(t,y)

• In derivativeF(t,y), t is a scalar time, and y is a 

column vector of the dependent variables

• The function returns a column vector for f

• The user has to write this function to define the 

problem being solved

– The tSpan argument is a row matrix that must 

give at least the initial and final time

• MATLAB uses time is as the name of the 

independent variable, which can be any quantity

17

ODE Solvers in MATLAB III
• If there are only the minimum of two points 

(start and end) solvers will give output for each 

time (independent variable) used in calculation

– Voluminous output good for smooth plots

• If three or more points are used in input, only 

these input times will appear in output

– The y0 argument is a vector for initial 

conditions of the dependent y variables

• Y0 = [1 5 12 -32] gives y1(0) = 1, y2(0) = 5, …

– The options argument allows the user to 

override normal defaults in the solver

• See MATLAB help for more options information
18



Other Numerical ODE Algorithms April 28, 2014

ME 309 – Numerical Analysis of Engineering Systems 4

ODE Solvers in MATLAB

• Solver names: ode45, ode23, ode113, 

ode15s, ode23s, ode23t, ode23tb

– ode45 should be first choice

• This is a Runge-Kutta procedure that uses a 

fourth and fifth order expressions, called the 

Dormand-Prince pair, to adjust step size, h

– ode113 is a multistep algorithm based on 

the Adams-Bashfort-Moulton approach

– Application information for solvers from 

MATLAB help on next slide

19

MATLAB Solver Help
Solver Problem 

Type

Order of 

Accuracy
When to Use

ode45 Nonstiff Medium Most of the time. This should be the first 

solver you try

ode23 Nonstiff Low Problems with crude error tolerances or 

for solving moderately stiff problems

ode113 Nonstiff Low to 

high

Problems with stringent error tolerances 

or computationally intensive problems

ode15s Stiff Low to 

medium

If ode45 is slow because the problem is 

stiff

ode23s Stiff Low With crude error tolerances to solve stiff 

systems (mass matrix is constant)

ode23t Modera-

tely Stiff

Low Moderately stiff problems if you need a 

solution without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve 

stiff systems. 20

MATLAB ode45 Example

>> type odeF.m
function f = odeF( t, y )
%odeF -- sample ode derivative routine

f = zeros(3,1);
f(1) = -y(2)*y(2)/y(3);    %Use semi-
f(2) = -2*y(2)*y(3)/y(1)^3;   %colons
f(3) = -3*y(1)*y(2); %to avoid prints

end
>> tS = [0 .1 .2 .4 .6 .8 1];  %Time data
>> y0 = [1 1 1 ]';    %Initial y values
>> [t y] = ode45(@odeF,tS,y0) %use solver
%Output time, t, and solution, y on next 
%slide

21

MATLAB ode45 Example II
t =      0

0.1000
0.2000
0.4000
0.6000
0.8000
1.0000

22

y = 1.0000    1.0000    1.0000
0.9048    0.8187    0.7408
0.8187    0.6703    0.5488
0.6703    0.4493    0.3012
0.5488    0.3012    0.1653
0.4493    0.2019    0.0907
0.3679    0.1353    0.0498

%Results shown only for specified times
%If t array were entered as [0 1] results
% for all times would be displayed
%If exact solution, yExact known, errors
%in numerical solutions for all times are
>> err = abs([y – yExact])

Numerical ODE Approaches

• Have seen explicit, single-step, 

methods, like Runge-Kutta, that solve 

for yn+1 using only values at step n

• Implicit methods use information about 

point n+1 in algorithm for yn+1; some 

sort of approximation required

• Multistep methods use information from 

steps n – 1, n – 2, etc.

• Extrapolation methods
23 24

Implicit Methods

• Methods discussed previously are 
called explicit

– Can find yn+1 in terms of values at n

– Use predictors to estimate y values 
between yn and yn+1

• Implicit methods use fn+1 in algorithm

• Usually require approximate solution

• Can use larger h values with more work 
per step compared to explicit methods

• Trapezoid method is an example
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Trapezoid Method I
• Basic implicit result for this method
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• Need way to compute fn+1 when we do 

not know yn+1

– First approach: replace fn+1 by Taylor series
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Trapezoid Method II

• Another approach to using fn+1 in 

algorithm to solve for the unknown yn+1

– Use an explicit approach to get an initial 

approximation for yn+1

– Iterate on implicit method

• E.g.: Euler step for first approximation of yn+1
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Trapezoid Method III

• Use Newton-Raphson iteration for yn+1

– Solve g(x) = 0 by iteration x(m+1) = x(m) –

g(x(m)) / g’(x(m)) 

– g(yn+1) = yn+1 – yn – hfn/2 – hf(xn+1,yn+1)/2

– g’(yn+1) = fn+1 – 0 – 0 – h(f/y)/2 
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Trapezoid Method Derivation

• Subtract series expansion for yn about 

yn+1 from series for yn+1 about yn
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Trapezoid Method Derivation II

• Collect terms is last equation and 

substitute y’’n+1 = y’’n + hyn’’’ + O(h2)
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Trapezoid Method Example
• Look at sample equation dy/dx = f = -ay

• Here, fn = -ayn, f/x = 0 and f/y = -a
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• So yn+1 = G yn with G = (2 – ha)/(2 + ha)

• Will use this later in stability discussion
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Multistep Methods

• Previous methods used only information 
from most recent step (yn and fn)

• Took intermediate steps between xn and 
xn+1 to improve accuracy

• Multistep methods use information from 
previous steps for improved accuracy 
with less work than single step methods

• Need starting procedure that is a single 
step method

32

Multistep Method Derivation

• Uses interpolation polynomial that 
passes through previous points

• Polynomial is integrated from xn to xn+1

• Resulting expression gives yn+1 in terms 
of values and derivatives of previous 
steps

• Leads to process known as predictor-
corrector with two expressions for yn+1

and an error control expression

33

Adams-Bashforth-Moulton

• Predictor corrector method

• Predictor equation uses derivative 

values from four points
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Adams-Bashforth-Moulton II

• Use difference between predictor and 

corrector results to get error estimate
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• Derivation result (next two slides) gives 

error estimate in terms of (yP – yC)n+1
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Derive Error Equation

• From an error analysis of the integrated 

interpolation polynomials we can find
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• Neglect y(v)(P) - y(v)(C) 

1. Subtract equations 
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2. Subtract and 

add y(v)(C) term
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Derive Error Equation

• Solve for EC, the 
corrector error
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• Error estimate gives step size control

• How to change h in multistep method?
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Step Size Control

• Establish emin and emax to achieve 

desired problem accuracy

• If emin ≤ EC ≤ emax, do not change h

• If EC < emin double step size, h

• If EC > emax half step size, h

• Carry extra steps to be ready for step-

size doubling

• Interpolate data if h is cut in half

38

Grid halving if error too large

• Normal operation, no step size change

i-3       i-2         i-1          i          i+1 (old step)

●---------●---------●---------●---------●---------●

(new)  i-3         i-2         i-1          i           i+1

• Error too large: Half grid size and repeat step

i-3        i-2         i-1           i            i+1 (old step)

●----o----●----o----●----o----●----o----●

(repeated) i-3   i-2   i-1    i    i+1 

(interpolated points)

39

Grid doubling for very small error

• Normal operation, no step size change

i-5    i-4 i-3    i-2     i-1     i     i+1 (old step) 

o-----o-----o-----o-----o-----o-----o-----o

i-5    i-4 i-3    i-2   i-1      i      i+1 (new)

• Error very small: Double grid size

i-5    i-4 i-3    i-2     i-1     i      i+1 (old step) 

●-----o-----●-----o-----●-----o-----●-----------●

i-3           i-2             i-1             i              i+1  

(Retained to use for doubling) 40

Grid Halving and Doubling

• Keep extra values fi-4 and fi-5 in memory to 

be ready for grid doubling

– fi-3,new = fi-5; fi-2,new = fi-3; fi-1,new = fi-1; fi,new = fi+1

• Grid halving requires interpolation for 

missing values in old grid

– fi-2,new = fi-1; fi,new = fi

 iiiiinewi ffffff 3514070285
128

1
1234,1  

 iiiiinewi ffffff   1234,3 2454163
64

1
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Use of Multistep Methods

• Many different equations possible with 

different orders and errors

• Used for high accuracy computation 

requirements with less computer time

• Used in high-accuracy MATLAB solver 

ode113

• Runge-Kutta type methods easier to 

apply, and can have error control for 

lower accuracy requirements
42

Extrapolation Methods

• Use Richardson extrapolation for better 
estimate from results on two values of h

– Construct large step, H, between two x 

values, x and x + H

• Subdivide H into n smaller steps, h = H/n 

• Compute intermediate approximations to y, 

called zm for the substep index, m

• Use Richardson extrapolation for different m’s

– Bulirsch-Stoer method uses extrapolation 

and rational function approximation


