Other Algorithms for Ordinary Differential Equations

Larry Caretto
Mechanical Engineering 309
Numerical Analysis of Engineering Systems

April 28, 2014
Northridge

Remaining Course Schedule

- April 28 (today) - More on ODEs; programming assignment six due
- April 30 - Last quiz (on ODEs). Final lecture on numerical solutions of ODEs
- May 5 - Review for final and programming exams; programming assignment seven due
- May 7 - Programming exam
- May 12 - Final exam, 8-10 pm Northridge

Outline

- Schedule
- Review systems of ODEs
- Spring-mass-damper problem with two masses as example
- Using ODE solvers in MATLAB
- Other approaches for solving the initial value problem
- Multistep methods
- Implicit methods
- Extrapolation methods

Nort

Review Systems of ODEs

- Can convert $\mathrm{n}^{\text {th }}$ order ODE into n firstorder ODEs
- Can apply algorithms for one first-order ODE to systems of first-order ODEs
- Must have initial conditions on all variables
- Converting an $\mathrm{n}^{\text {th }}$ order ODE to n first-order ODEs gives $\mathrm{n}-1$ derivative ODEs whose initial values we need
- Must apply each step of algorithms to all ODEs before going on to next step Northridge

Example Continued

- Replace $x_{1}, x_{2}, v_{1}, v_{2}$ in equations below by $y_{1}, y_{2}, y_{3}^{2}, y_{4}^{2}$
$\begin{aligned} \frac{d x_{1}}{d t} & =v_{1} & \frac{d v_{1}}{d t}+\frac{c}{m_{1}}\left(v_{1}-v_{2}\right)+\frac{k}{m_{1}}\left(x_{1}-x_{2}\right)=\frac{F_{1}}{m_{1}} \\ \frac{d x_{2}}{d t} & =v_{2} & \frac{d v_{2}}{d t}+\frac{c}{m_{2}}\left(v_{2}-v_{1}\right)+\frac{k}{m_{2}}\left(x_{2}-x_{1}\right)=\frac{F_{2}}{m_{2}}\end{aligned}$
- Result is standard-form system: $\mathrm{dy}_{\mathrm{k}} / \mathrm{dt}=\mathrm{f}_{\mathrm{k}}$ $\frac{d y_{1}}{d t}=f_{1}=y_{3} \quad \frac{d y_{3}}{d t}=f_{3}=\frac{F_{1}}{m_{1}}-\frac{c}{m_{1}}\left(y_{3}-y_{4}\right)-\frac{k}{m_{1}}\left(y_{1}-y_{2}\right)$ $\frac{d y_{2}}{d t}=f_{2}=y_{4} \quad \frac{d y_{4}}{d t}=f_{4}=\frac{F_{2}}{m_{2}}-\frac{c}{m_{2}}\left(y_{4}-y_{3}\right)-\frac{k}{m_{2}}\left(y_{2}-y_{1}\right)$ Northridge
- Define velocities $\frac{d x_{1}}{d t}=v_{1} \quad \frac{d x_{2}}{d t}=v_{2}$ ODEs using velocities

- Two masses joined by a spring/damper
- Original ODEs $\quad m_{1} \frac{d^{2} x_{1}}{d t^{2}}+c\left(\frac{d x_{1}}{d t}-\frac{d x_{2}}{d t}\right)+k\left(x_{1}-x_{2}\right)=F_{1}$ for each mass $\quad m_{2} \frac{d^{2} x_{2}}{d t^{2}}+c\left(\frac{d x_{2}}{d t}-\frac{d x_{1}}{d t}\right)+k\left(x_{2}-x_{1}\right)=F_{2}$
- Rewrite original $\frac{d v_{1}}{d t}+\frac{c}{m_{1}}\left(v_{1}-v_{2}\right)+\frac{k}{m_{1}}\left(x_{1}-x_{2}\right)=\frac{F_{1}}{m_{1}}$
$\frac{d v_{1}}{d t}+\frac{c}{m_{1}}\left(v_{1}-v_{2}\right)+\frac{k}{m_{1}}\left(x_{1}-x_{2}\right)=\frac{F_{1}}{m_{1}}$
$\frac{d v_{2}}{d t}+\frac{c}{m_{2}}\left(v_{2}-v_{1}\right)+\frac{k}{m_{2}}\left(x_{2}-x_{1}\right)=\frac{F_{2}}{m_{2}}$
$k=$ spring constant (N / m) $=$ damping coefficient $(\mathrm{kg} / \mathrm{s})$

Example

5

MATLAB Derivative Function

function $f=$ springMassDamper (t, y)
$\mathrm{m} 1=1$; $\mathrm{m} 2=2$; $\mathrm{c}=0.5$; $\mathrm{k}=1$;
$\mathrm{f}=\operatorname{zeros}(4,1)$;
$f(1)=y(3)$;
$f(2)=y(4)$;
$f(3)=(c *(y(4)-y(3))+k *(y(2)-y(1))) / m 1$;
$f(4)=(c *(y(3)-y(4))+k *(y(1)-y(2))) / m 2$;
End
>>[t y] = ode45(@springMassDamper, [0 1], ... $\left.\left[\begin{array}{cccc}1 & -1 & 0 & 0\end{array}\right]\right)$

Northridge

How to Code This

- For any algorithm, each step must be done for all equations
- All equations have the form $d y_{m} / d t=f_{m}$
- User-defined function, $f=f S u b(t, y)$, computes all f values for input t, y
- Each step, in each algorithm, is a loop over all equations getting appropriate updates
- Common time value for all y_{k} to compute f_{k} Northridge

General System Form

- Have N ODEs with common form: $\frac{d y_{m}}{d t}=f_{m}$
- Each f_{m} may depend on t and all y_{m}
- Equations for f_{m} (in terms of t and all y values) depend on problem description
- Apply usual algorithms $y_{i+1}=y_{i}+h_{\text {avg }}$ to each equation: $y_{m, i+1}=y_{m, i}+h_{\text {avg, }}$ $-y_{m, i}$ is value of y_{m} at $t=t_{i}\left(\right.$ or $\left.x=x_{i}\right)$
- Must do each step/substep to all equations before taking next step/substep Cultamanathuster

Fourth-order Runge Kutta (RK4)

- Uses four derivative evaluations per step

$$
y_{i+1}=y_{i}+\frac{k_{1}+2 k_{2}+2 k_{3}+k_{4}}{6} \quad t_{i+1}=t_{i}+h
$$

$k_{1}=h f\left(t_{i}, y_{i}\right)$
Look at code for
$k_{2}=h f\left(t_{1}+h / 2, y_{1}+k_{1} / 2\right) \quad$ this algorithm, then see changes to apply to a system of
$k_{4}=h f\left(t_{i}+h, y_{i}+k_{3}\right)$
equations
equations

RK4 for N ODEs

$\mathrm{h}=$ (tEnd -tStart$) / \mathrm{nSteps} \quad t=$ independent vari-
For step $=1$ To nSteps able at start of step $=t_{i}$
$\mathrm{t}=\mathrm{tStart}+\mathrm{h} *($ step -1$)$
$f=$ fFct (t, y) "initial y values
$\mathrm{k} 1=\mathrm{h} * \mathrm{f}$ Use Application.Run("fFct",t,y) in VBA
$f=\operatorname{fFct}(t+h / 2, y+k 1 / 2)$
$\mathrm{k} 2=\mathrm{h} * \mathrm{f}$
$f=\operatorname{fFct}(t+h / 2, y+k 2 / 2)$
$\mathrm{k} 3=\mathrm{h} * \mathrm{f}$
$f=f F c t(t+h, y+k 3)$
$y=y+(k 1+2 * k 2+2 * k 3+h * f) / 6$
Next step Use same program vari-
Calliomisuatingustly
Northridge \quad able, y, for y_{i+1} and y_{i}
11

RK4 Code - Multiple ODEs

```
h = (xEnd - xStart) / nsteps
For step = 1 To nsteps
    x = xStart + h * (step - 1)
    f = fFct(x, y) 'initial y values
    For m = 1 To N UseApplication.
        k1(m)= h * f(m) Run("fFct",t,y) in VBA
        yTemp(m) = y(m) + 0.5*k1(m)
    Next m
    f = fFct (x + h / 2, yTemp)
    For m = 1 To N
        k2(m) = h * f(m)
Northridge. yTemp (m)=y(m)+0.5*k2(m)
```

```
Example: 4'th-order Runge-Kutta
    Ca11 fFct(x + h / 2, yTemp, f)
    For m = 1 To N
        k2(m) = h * f(m)
    yTemp(m) = y(m) + 0.5 * k2(m)
    Next m
    f= fFct(x + h / 2, yTemp)
    For m = 1 To N
        k3(m) = h * f(m)
        yTemp(m) = y(m) + k3(m)
    Next m
    f = fFct(x + h, yTemp)
Northridge
```


ODE Solvers in MATLAB

- Several different solvers
- For initial value problems the general function call is $[\mathrm{t}, \mathrm{y}]=$ solverName(derivativeF, tSpan, y0, options), where
- t is a column vector of "time" points output by the calculation
$-y$ is the output matrix for the solution
- Column k of y is the solution for variable y_{k}
- Each row of y is the solution of all y_{k} for the "time" point in the same row of t

```
Northridge
```


ODE Solvers in MATLAB II

- derivativeF is the handle for a function that evaluates the derivatives, $f(t, y)$
- In derivative $F(\mathrm{t}, \mathrm{y})$, t is a scalar time, and y is a column vector of the dependent variables
- The function returns a column vector for f
- The user has to write this function to define the problem being solved
- The tSpan argument is a row matrix that must give at least the initial and final time
- MATLAB uses time is as the name of the independent variable, which can be any quantity Northridge

ODE Solvers in MATLAB III

- If there are only the minimum of two points (start and end) solvers will give output for each time (independent variable) used in calculation - Voluminous output good for smooth plots
- If three or more points are used in input, only these input times will appear in output
- The y_{0} argument is a vector for initial conditions of the dependent y variables
- $\mathrm{Y} 0=[1512-32]$ gives $\mathrm{y}_{1}(0)=1, \mathrm{y}_{2}(0)=5, \ldots$
- The options argument allows the user to override normal defaults in the solver
- See MATLAB help for more options information Northridge

ODE Solvers in MATLAB

- Solver names: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
- ode45 should be first choice
- This is a Runge-Kutta procedure that uses a fourth and fifth order expressions, called the Dormand-Prince pair, to adjust step size, h
- ode113 is a multistep algorithm based on the Adams-Bashfort-Moulton approach
- Application information for solvers from MATLAB help on next slide

MATLAB ode45 Example

```
>> type odeF.m
function f}=\operatorname{odeF}(t,y
%odeF -- sample ode derivative routine
    f = zeros(3,1);
    f(1) = -y(2)*y(2)/y(3); %Use semi-
    f(2) = -2*y(2)*y(3)/y(1)^3; %colons
    f(3) = -3*y(1)*y(2); %to avoid prints
end
>> tS = [0 .1 .2 .4 .6 .8 1]; %Time data
>> y0 = [lllll
>> [t y] = ode45(@odeF,tS,y0) %use solver
%Output time, t, and solution, y on next
%slide
Northridge

\section*{Numerical ODE Approaches}
- Have seen explicit, single-step, methods, like Runge-Kutta, that solve for \(\mathrm{y}_{\mathrm{n}+1}\) using only values at step n
- Implicit methods use information about point \(\mathrm{n}+1\) in algorithm for \(\mathrm{y}_{\mathrm{n}+1}\); some sort of approximation required
- Multistep methods use information from steps \(\mathrm{n}-1, \mathrm{n}-2\), etc.
- Extrapolation methods

\footnotetext{
Northridge
}

\section*{Implicit Methods}
- Methods discussed previously are called explicit
- Can find \(y_{n+1}\) in terms of values at \(n\)
- Use predictors to estimate y values between \(y_{n}\) and \(y_{n+1}\)
- Implicit methods use \(\mathrm{f}_{\mathrm{n}+1}\) in algorithm
- Usually require approximate solution
- Can use larger h values with more work per step compared to explicit methods
- Trapezoid method is an example Northridge

\section*{Trapezoid Method I}
- Basic implicit result for this method
\[
y_{n+1}-y_{n}=\left(f_{n+1}+f_{n}\right) \frac{h}{2}+O\left(h^{3}\right)
\]
- Need way to compute \(f_{n+1}\) when we do not know \(\mathrm{y}_{\mathrm{n}+1}\)
- First approach: replace \(f_{n+1}\) by Taylor series
\(y_{n+1}-y_{n}=\frac{h}{2}\left[f_{n}+f_{n}+\left.\frac{\partial f}{\partial x}\right|_{n} h+\left.\frac{\partial f}{\partial y_{n}}\right|_{n}\left(y_{n+1}-y_{n}\right]\right]\)
- Have to compute \(\left(y_{n+1}-y_{n}\right)=\frac{h f_{n}+\left.\frac{\partial f}{\partial x}\right|_{n} \frac{h^{2}}{2}}{1-\left.\frac{h}{2} \frac{\partial f}{\partial y}\right|_{n 25}} \begin{aligned} & \text { f(x,y) partial derivatives } \\ & \text { Northridge }\end{aligned}\)

\section*{Trapezoid Method III}
- Use Newton-Raphson iteration for \(\mathrm{y}_{\mathrm{n}+1}\)
-Solve \(g(x)=0\) by iteration \(x^{(m+1)}=x^{(m)}-\) \(g\left(x^{(m)}\right) / g^{\prime}\left(x^{(m)}\right)\)
\(-g\left(y_{n+1}\right)=y_{n+1}-y_{n}-h f_{n} / 2-h f\left(x_{n+1}, y_{n+1}\right) / 2\)
\(-g^{\prime}\left(y_{n+1}\right)=f_{n+1}-0-0-h(\partial f / \partial y) / 2\)
\(y_{n+1}^{(m+1)}=y_{n+1}^{(m)}-\frac{y_{n+1}^{(m)}-y_{n}-\frac{h f_{n}}{2}-\frac{h f\left(x_{n+1}, y_{n+1}^{(m)}\right)}{2}}{f\left(x_{n+1}, y_{n+1}^{(m)}\right)-\frac{h}{2}\left(\frac{\partial f}{\partial y}\right)_{n+1}^{(m)}}\)
Northridge

\section*{Trapezoid Method Derivation}
- Subtract series expansion for \(\mathrm{y}_{\mathrm{n}}\) about \(y_{n+1}\) from series for \(y_{n+1}\) about \(y_{n}\)
\[
\begin{aligned}
y_{n+1} & =y_{n}+f_{n} h+\frac{h^{2} y_{n}{ }^{\prime \prime}}{2}+O\left(h^{3}\right) \\
y_{n}= & y_{n+1}-f_{n+1} h+\frac{h^{2} y_{n+1}^{\prime \prime}}{2}+O\left(h^{3}\right) \\
y_{n+1} & -y_{n}=y_{n}-y_{n+1}+f_{n} h+f_{n+1} h \\
& +\frac{h^{2}\left(y_{n}{ }^{\prime \prime}-y_{n+1} 1^{\prime}\right)}{2}+O\left(h^{3}\right)
\end{aligned}
\]
\[
\begin{aligned}
& \text { Naraminnidges } \\
& \text { Northridge }
\end{aligned}
\]

\section*{Trapezoid Method Example}
- Look at sample equation \(d y / d x=f=-a y\)
- Here, \(\mathrm{f}_{\mathrm{n}}=-\mathrm{ay}_{\mathrm{n}}, \partial \mathrm{f} / \partial \mathrm{x}=0\) and \(\partial \mathrm{f} / \partial \mathrm{y}=-\mathrm{a}\)
\[
\begin{aligned}
y_{n+1} & =y_{n}+\frac{2 h f_{n}+\left.\frac{\partial f}{\partial x}\right|_{n} h^{2}}{2-\left.h \frac{\partial f}{\partial y}\right|_{n}}=y_{n}+\frac{-2 h a y_{n}+0}{2-h(-a)} \\
& =\frac{y_{n}(2+h a)-2 h a y_{n}}{2+h a}=\frac{(2-h a) y_{n}}{2+h a}
\end{aligned}
\]
- So \(y_{n+1}=G y_{n}\) with \(G=(2-h a) /(2+h a)\)
- Will use this later in stability discussion Northridge

\section*{Multistep Methods}
- Previous methods used only information from most recent step ( \(\mathrm{y}_{\mathrm{n}}\) and \(\mathrm{f}_{\mathrm{n}}\) )
- Took intermediate steps between \(\mathrm{x}_{\mathrm{n}}\) and \(x_{n+1}\) to improve accuracy
- Multistep methods use information from previous steps for improved accuracy with less work than single step methods
- Need starting procedure that is a single step method

Northridge

\section*{Adams-Bashforth-Moulton}
- Predictor corrector method
- Predictor equation uses derivative values from four points
\[
y_{n+1}^{P}=y_{n}+\frac{h}{24}\left(55 f_{n}-59 f_{n-1}+37 f_{n-2}-9 f_{n-3}\right)
\]
- Corrector equation uses four points including point \(\mathrm{n}+1\) with predicted \(\mathrm{y}^{\mathrm{P}}\)
\(y_{n+1}^{c}=y_{n}+\frac{h}{24}\left[9 f\left(x_{n+1}, y_{n+1}^{P}\right)+19 f_{n}-5 f_{n-1}+f_{n-2}\right]\) Northridge

\section*{Derive Error Equation}
- From an error analysis of the integrated interpolation polynomials we can find
\(y\left(x_{n+1}\right)=y_{n+1}^{P}+\frac{251}{720} h^{5} y^{(v)}\left(\xi_{p}\right)\)
1. Subtract equations
2. Subtract and add \(\mathrm{y}^{(v)}\left(\xi_{\mathrm{c}}\right)\) term
\(y\left(x_{n+1}\right)=y_{n+1}^{c}-\frac{19}{720} h^{5} y^{(\nu)}\left(\xi_{c}\right)\)
\(\left.0=y_{n+1}^{p}-y_{n+1}^{c}+\left(\frac{1251}{1720} i^{-}+\frac{19}{720}\right) h^{5} y^{(v)}\left(\xi_{c}\right)+\frac{251}{720} h^{5}\left[y^{(v)}\left(\xi_{p}\right)-y^{(v)}\left(\xi_{C}\right)\right] \right\rvert\,\)
- Neglect \(y^{(v)}\left(\xi_{p}\right)-\eta^{(v)}\left(\xi_{C}\right) ; y_{n+1}^{c}-y_{n+1}^{p}=\left(\frac{251}{720}+\frac{19}{720}\right)^{h^{s} y^{(v)}\left(\xi_{c}\right)}\) Northridge

\section*{Multistep Method Derivation}
- Uses interpolation polynomial that passes through previous points
- Polynomial is integrated from \(x_{n}\) to \(x_{n+1}\)
- Resulting expression gives \(\mathrm{y}_{\mathrm{n}+1}\) in terms of values and derivatives of previous steps
- Leads to process known as predictorcorrector with two expressions for \(\mathrm{y}_{\mathrm{n}+1}\) and an error control expression

Nort
32

\section*{Adams-Bashforth-Moulton II}
- Use difference between predictor and corrector results to get error estimate
\(y_{n+1}^{p}=y_{n}+\frac{h}{24}\left(55 f_{n}-59 f_{n-1}+37 f_{n-2}-9 f_{n-3}\right)\)
\(y_{n+1}^{c}=y_{n}+\frac{h}{24}\left[9 f\left(x_{n+1}, y_{n+1}^{P}\right)+19 f_{n}-5 f_{n-1}+f_{n-2}\right]\)
- Derivation result (next two slides) gives error estimate in terms of \(\left(y^{P}-y^{C}\right)_{n+1}\)
\[
E_{C}=-\frac{19}{720} h^{5} y^{(v)}\left(\xi_{C}\right) \approx \frac{19}{270}\left(y_{n+1}^{P}-y_{n+1}^{C}\right)
\]

Northridge

\section*{Derive Error Equation}
\[
\begin{aligned}
& \text { - } \text { Solve for }_{\mathrm{E}_{\mathrm{C}}} \text {, the } E_{C}=y\left(x_{n+1}\right)-y_{n+1}^{c}=-\frac{19}{720} h^{5} y^{(\nu)}\left(\xi_{C}\right)
\end{aligned}
\]
\[
y_{n+1}^{c}-y_{n+1}^{P}=\left(\frac{251}{720}+\frac{19}{720}\right) h^{5} y^{(v)}\left(\xi_{c}\right)=\frac{270}{720} h^{5} y^{(v)}\left(\xi_{c}\right)
\]
\[
E_{C}=-\frac{19}{720} h^{5} y^{(\nu)}\left(\xi_{C}\right)=-\frac{19}{720} \frac{y_{n+1}^{C}-y_{n+1}^{P}}{\frac{270}{720}}=\frac{19}{270}\left(y_{n+1}^{P}-y_{n+1}^{c}\right)
\]
- Error estimate gives step size control
- How to change h in multistep method?

\section*{Northridge}

36

\section*{Step Size Control}
- Establish \(\mathrm{e}_{\min }\) and \(\mathrm{e}_{\max }\) to achieve desired problem accuracy
- If \(e_{\min } \leq E_{C} \leq e_{\max }\), do not change \(h\)
- If \(E_{C}<e_{\text {min }}\) double step size, \(h\)
- If \(E_{C}>e_{\max }\) half step size, \(h\)
- Carry extra steps to be ready for stepsize doubling
- Interpolate data if \(h\) is cut in half


\section*{Grid halving if error too large}

- Error too large: Half grid size and repeat step

(repeated) i-3 i-2 i-1 i i+1
Callaminasandyamsily
Northridge (interpolated points)
38

\section*{Grid Halving and Doubling}
- Keep extra values \(f_{i-4}\) and \(f_{i-5}\) in memory to be ready for grid doubling
\[
-f_{i-3, \text { new }}=f_{i-5} ; f_{i-2, \text { new }}=f_{i-3} ; f_{i-1, \text { new }}=f_{i-1} ; f_{i, \text { new }}=f_{i+1}
\]
- Grid halving requires interpolation for missing values in old grid
\[
\begin{aligned}
-\mathrm{f}_{\mathrm{i}-2, \text { new }} & =\mathrm{f}_{\mathrm{i}-1} ; \mathrm{f}_{\mathrm{i}, \text { new }}=\mathrm{f}_{\mathrm{i}} \\
f_{i-1, \text { new }} & =\frac{1}{128}\left[-5 f_{i-4}+28 f_{i-3}-70 f_{i-2}+140 f_{i-1}+35 f_{i}\right] \\
f_{i-3, \text { new }} & =\frac{1}{64}\left[3 f_{i-4}-16 f_{i-3}+54 f_{i-2}+24 f_{i-1}-f_{i}\right]
\end{aligned}
\]
\[
\begin{aligned}
& \text { Northridge } \\
& \hline
\end{aligned}
\]

40

\section*{Use of Multistep Methods}
- Many different equations possible with different orders and errors
- Used for high accuracy computation requirements with less computer time
- Used in high-accuracy MATLAB solver ode113
- Runge-Kutta type methods easier to apply, and can have error control for lower accuracy requirements

\section*{Extrapolation Methods}
- Use Richardson extrapolation for better estimate from results on two values of \(h\)
- Construct large step, \(H\), between two \(x\) values, \(x\) and \(x+H\)
- Subdivide H into \(n\) smaller steps, \(h=H / n\)
- Compute intermediate approximations to \(y\), called \(z_{m}\) for the substep index, \(m\) - Use Richardson extrapolation for different m's - Bulirsch-Stoer method uses extrapolation and rational function approximation

\footnotetext{
Northridge
}```

