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* Schedule

* Review systems of ODEs
— Spring-mass-damper problem with two
masses as example

» Using ODE solvers in MATLAB
+ Other approaches for solving the initial
value problem
— Multistep methods
— Implicit methods
— Extrapolation methods
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Remaining Course Schedule

April 28 (today) — More on ODEs;

programming assignment six due

* April 30 — Last quiz (on ODEs). Final
lecture on numerical solutions of ODEs

* May 5 — Review for final and program-
ming exams; programming assignment
seven due

* May 7 — Programming exam

* May 12 - Final exam, 8 — 10 pm

California State Dniversity

Northridge

Review Systems of ODEs

« Can convert nt" order ODE into n first-
order ODEs

» Can apply algorithms for one first-order

ODE to systems of first-order ODEs

— Must have initial conditions on all variables

— Converting an n" order ODE to n first-order
ODEs gives n — 1 derivative ODEs whose
initial values we need

— Must apply each step of algorithms to all
ODEs before going on to next step

California State Dnigersity
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== m. Example

X1, Xy

» Two masses joined by a spring/damper

. (O _dx _
« Original ODEs ™ ”(dt dt)”‘(x‘ %)=F
for each mass o d X7+c[%7%]+k(x Cx)F

2 dt? dt dt 2

+ Define velocities %, %:VZ

* Rewrite original %*mi(vrvzﬁl(xrxz):%
ODEs using " "
velocities df**(vz )= (Xz x)=1+

2

k = spring constant (N/m)

California State Dniversity

Northridge ¢ = damping coefficient (kg/s)
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Example Continued

. Replac Vv, in equations below
by Y1 yz‘)ys);i)/

—L = dv, k F,
dt =\ d7t1+7(V1_V2)+E(X1_X2):711
dxz dv.

—= =V 272, > =2
dt 2 dt +m (Vz V1)+ (Xz Xl)

* Result is standard-form system. dyk/dt =fy
dy. %: f :i,i _ ,L _
==y, i Tmm (Ys—¥a) o (V.- v2)
dy, dy, F_c k

Pz~ a2 F (y oy )= (y, —

Cals I'E‘tx:lSMh'”uir«vluyA dt ) m2 m2 (y4 ya) m2 (y2 Y1)

Northridge °
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MATLAB Derivative Function

function f = springMassbDamper(t, y)
ml=1l; m2=2; c = 0.5; k = 1;
f = zeros(4,1);

f( = y3);
f(2) = y@;
f(3) = (c*(y(@)-y(3))+k*(y(2)-y(1)))/ml;
f(4) = (c*(y(3)-y(@))+k*(y (1) -y(2)))/m2;
End
>>[t y] = ode45(@springMassDamper, [0 1], ..
[1-100D
Northridge '

General System Form

« Have N ODEs with common form:dditmz f

» Each f,,may depend on t and all y,,
Equations for f, (in terms of t and all y
values) depend on problem description
* Apply usual algorithms y,,; =y; + hf,,, to
each equation: Y ir1 = Ym; + hfaygm
—Ymi iS value of y, att =t (or x = x)
» Must do each step/substep to all
equations before taking next step/substep

N‘&-ﬁ'&;ﬁrgz o Gy G Gy by tig 8
e —o—o oo

How to Code This

For any algorithm, each step must be
done for all equations

+ All equations have the form dy, /dt = f,

+ User-defined function, f = fSub(t, y),
computes all f values for input t, y

» Each step, in each algorithm, is a loop
over all equations getting appropriate
updates
— Common time value for all y, to compute f,

California State Dniversity 9
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Fourth-order Runge Kutta (RK4)

+ Uses four derivative evaluations per step

y|+1 yl L;kgﬁ_k‘t ti+1 = ti + h

k =hf(t,y) Look at code for
_ h k, this algorithm,

k, =t (t' +A’ i+ é) then see changes
K to apply to a

k; = hf (ti +h 50 Y+ %j system of

K, =hf(t +h,y +k,) equations

G Gg b G G G

——0— 00— 00—
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RK4 Code, one ODE

= (tEnd - tStart)/nSteps = independent vari-
For step = 1 To nSteps
t = tStart + h * (step - 1)
f = FFct(t y) “initial y values
k1l = h * f UseApplication.Run(“fFct”ty)in VBA
f=fFfFct(t + h /2,y + k1/2)
k2 = h * f
f =fFct(t + h / 2, y + k2/2)
k3 =h * f

k4
f = fFct(t + h, y + k3)
Yy =y + (k1+2*k2+2*k3+ / 6

Next step Use same program vari-

California State Dniversity

Northridge able, y, for y;,; and y; u

able at start of step = t;

RK4 for N ODEs

* Ymiis is value of mth y variable at t;

+2Kk, , +2k;,, +k
ym i+l ym i el 2m n A ti-¢-1 = ti + h

6
Ky =N (6, Y3) Vector notation for y
3 and k shows that (1)
= hf [ +/ it /j f,,can depend on all
Y, values and (2)
Kom = hfm(ti +%’yi + %) each f,, calculation
i I |
K, =hf,(t +hy, +K,) requires all y values to

be updated

California §tate Unigessity ti-2 ti-1 ti ti+1 ti+2 ti+3
NOI’thl‘ldgC ——0—0— 00—

12
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RK4 Code — Multiple ODEs

h = (xEnd - xStart) / nSteps
For step = 1 To nSteps
X = xStart + h * (step - 1)

For m =1 To N
ki(m) = h * f(m)

Next m

f = frct(x, y) ‘initial y values
Use Application.
Run(“fFct”,ty) in VBA

yTemp(m) = y(m) + 0.5 * k1(m)

f = fFct(x + h / 2, yTemp)
For m =1 To N
k2(m) = h * f(m)

California ftate [nipersity

Northridge yTemp(m) = y(m) + 0.5 * k2(m)
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Example: 4-order Runge-Kutta

call frct(x + h / 2, yTemp, f)
For m = 1 To N

k2(m) = h * f(m)

yTemp(m) = y(m) + 0.5 * k2(m)
Next. m
f= fFct(x + h / 2, yTemp)
For m = 1 To N

k3(m) = h * f(m)

yTemp(m) = y(m) + k3(m)
Next m
Cf = fFct(x + h, yTemp)

California State Onigersiy 14
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f = fFct(x + h, yTemp)

For m = 1 To N
Use same kd(m) = h = £(m)

gg;gf;g:gi:;; y(m = y(m) + (k1(p

Ymit1 and Ym,i
Next m

Next step

L2
+ 2 % k3(m) +|h * f(m

loop to begin next step

values for y(m)

California State University

Northridge

— Same statements handle function input

Example: 4-order Runge-Kutta

2 * k2(m) _
)/ 6

» These new y values are used at start of

15

ODE Solvers in MATLAB

» Several different solvers

* For initial value problems the general
function call is [t, y] = solverName(
derivativeF, tSpan, y0, options), where
—tis a column vector of “time” points output

by the calculation
—y is the output matrix for the solution
» Column k of y is the solution for variable y,

» Each row of y is the solution of all y, for the
“time” point in the same row of t

California State Oniyessity 16
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ODE Solvers in MATLAB I

evaluates the derivatives, f(t,y)

column vector of the dependent variables
« The function returns a column vector for f

problem being solved

give at least the initial and final time
* MATLAB uses time is as the name of the

California State Dniversity
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— derivativeF is the handle for a function that

« In derivativeF(t,y), t is a scalar time, and y is a

« The user has to write this function to define the

independent variable, which can be any quantity

— The tSpan argument is a row matrix that must

17
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ODE Solvers in MATLAB llI

« If there are only the minimum of two points
(start and end) solvers will give output for each
time (independent variable) used in calculation

— Voluminous output good for smooth plots

« If three or more points are used in input, only

these input times will appear in output
— The y, argument is a vector for initial
conditions of the dependent y variables

* YO =[1512-32] gives y,(0) =1, y,(0) =5, ...

— The options argument allows the user to
override normal defaults in the solver

» See MATLAB help for more options information

California State Uniyeesity 18
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ODE Solvers in MATLAB

MATLAB Solver Help

* Solver names: ode45, ode23, odel13,
odel5s, ode23s, ode23t, ode23th

— ode45 should be first choice
 This is a Runge-Kutta procedure that uses a
fourth and fifth order expressions, called the
Dormand-Prince pair, to adjust step size, h
—o0dell3 is a multistep algorithm based on
the Adams-Bashfort-Moulton approach
— Application information for solvers from
MATLAB help on next slide

Califormia o Dinfyerst
California State Dnlyeesity 19
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Solver | Problem | Order of

Type Accuracy When to Use

ode45 | Nonstiff Medium | Most of the time. This should be the first
solver you try

ode23 | Nonstiff Low Problems with crude error tolerances or
for solving moderately stiff problems

odell3 | Nonstiff Lowto | Problems with stringent error tolerances
high or computationally intensive problems

odel5s Stiff Low to If ode45 is slow because the problem is
medium | stiff

ode23s Stiff Low With crude error tolerances to solve stiff
systems (mass matrix is constant)

ode23t | Modera- Low Moderately stiff problems if you need a

tely Stiff solution without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve

stiff systems. 20

NOTTITTage

MATLAB ode45 Example

MATLAB ode45 Example Il

>> type odeF.m
function f = odeF( t, y )

%odeF -- sample ode derivative routine
f = zeros(3,1);
(D = -y@*y(2)/y(3); %Use semi-
f(2) = -2*y(2)*y(3)/y(1)A3; %colons
f(3) = -3*y(1)*y(2); %to avoid prints
end
> tS=[0 .1 .2 .4 .6 .8 1]; %Time data
>y0=[1111"; %Initial y values

>> [t y] = ode45(@odeF,tS,y0) %use solver
%output time, t, and solution, y on next
%sTlide

Califormia o Dinfyerst
CaliforniaState Dniyersity ”n

Northridge

= 0 y = 1.0000 1.0000 1.0000
0.1000 0.9048 0.8187 0.7408
0.2000 0.8187 0.6703 0.5488
0.4000 0.6703 0.4493 0.3012
0.6000 0.5488 0.3012 0.1653
0.8000 0.4493 0.2019 0.0907
1.0000 0.3679 0.1353 0.0498

%Results shown only for specified times
%If t array were entered as [0 1] results
% for all times would be displayed

%If exact solution, yExact known, errors
%in numerical solutions for all times are
>> err = abs([y - yExact])

California State Oniyessity 2

Northridge

Numerical ODE Approaches

» Have seen explicit, single-step,
methods, like Runge-Kutta, that solve
for y,., using only values at step n

« Implicit methods use information about
point n+1 in algorithm for y,,,,; some
sort of approximation required

» Multistep methods use information from
stepsn—-1,n-2, etc.

+ Extrapolation methods

California tate Dnfeesi
California State Diniyersity 23
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Implicit Methods

* Methods discussed previously are

called explicit

— Can find y,,, in terms of values at n

— Use predictors to estimate y values
between y, and y,,;

Implicit methods use f,,, in algorithm

Usually require approximate solution

« Can use larger h values with more work
per step compared to explicit methods

* Trapezoid method is an example

California State Oniyessity 20

Northridge
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Trapezoid Method |
+ Basic implicit result for this method
Y= Yo =(Fra+ 1,3 +0()
* Need way to compute f,,,; when we do

not know y,,;
— First approach: replace f,,, by Taylor series

|, .o

h of of
Y, ==| f, Hf,+—=—| h+—
yrHl yﬂ 2|: n n ax‘n ayn

hZ

hf,+ S L

+ Have to compute (yos—y,)=— b 2.
f(x,y) partial derivatives p-hat

California State Zay 25
Northridge n
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Trapezoid Method II

» Another approach to using f,,; in
algorithm to solve for the unknown vy,

— Use an explicit approach to get an initial
approximation for y,,,

— lterate on implicit method
* E.g.: Euler step for first approximation of y,,,

Yot = Y +hf,
L+ fa )
2

(m+1) _

yn+l - y

California State Dnigersity
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Trapezoid Method IlI

* Use Newton-Raphson iteration for y,,,
— Solve g(x) = 0 by iteration x(m*+1) = x(m) —
9(x™) / g'(x(™)
- g(yn+1) Y1 = Yn— hfn/2 - hf(xn+1vyn+1)/2
=9’ (Yns1) = foea — 0 — 0 — h(ef/dy)/2

(m) _m _ hf (Xm—l! yr(1Tl) )
yn+1 yn 2

2

(m)
f ( n-¢-1Y yr(1T1)) g(a)

(3'}/ n+l

1
i =y -

California State Dniversity
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Trapezoid Method Derivation

» Subtract series expansion for y,, about
Yn+1 from series for y,,, abouty,

2 "
Yaa=Ya+ T+ 20 O(H)

2 "
yn = yn+l - fn+1h + hmil + O(hs)

Your = Yn=¥Yn—Yna t f h+ fn+lh
2 ll_
+ h (yn 5 yn+1 )+O(h3)

California State [nipersity
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Trapezoid Method Derivation Il

+ Collect terms is last equation and
substitute y”,,,; =y’ + hy,” + O(h?)

Yna = Yn :(fn + fn+l)2 Ln;lz'ﬂ# +O(h3)

(12
Y1~ Yn :(fn + fn+1 h M hyn O(h )J+O(_h3

h \
Yo = Yo = (fn+l + fn )E + O(hs)

Northridge %
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Trapezoid Method Example

» Look at sample equation dy/dx = f = -ay
* Here, f, = -ay,, of/ox = 0 and df/oy = -a

2hf, of h?
OX|,

—2hay, +0
=y, +
2—h(-a)

yn+1 yn
2- h—‘

_ yn(2+ ha) Zhayn _ (2_ ha)yn

2+ha 2+ha
* S0V, =Gy, with G =(2-ha)/(2 + ha)

» Will use this later in stability discussion
California State Dnigersity

Northridge
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Multistep Methods

* Previous methods used only information
from most recent step (y,, and f,)

» Took intermediate steps between x, and

X+, tO improve accuracy

Multistep methods use information from

previous steps for improved accuracy

with less work than single step methods

» Need starting procedure that is a single
step method

CaliforniaState Dniyersity 31
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Multistep Method Derivation

* Uses interpolation polynomial that
passes through previous points

» Polynomial is integrated from X, to X,

» Resulting expression gives y,,,; in terms
of values and derivatives of previous
steps

+ Leads to process known as predictor-
corrector with two expressions for y,,,,
and an error control expression

California State Dnigersity 32
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Adams-Bashforth-Moulton

* Predictor corrector method

+ Predictor equation uses derivative
values from four points

y:+1 =VYa +2L11(55 fn -59 fnfl +37 fnfz -9 fn{%)

+ Corrector equation uses four points
including point n+1 with predicted yP

yn+l [gf( n+1 yn+1)+19f 5fn 1+ fn 2]

California §tate [niyersity 33
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Adams-Bashforth-Moulton Il

+ Use difference between predictor and
corrector results to get error estimate

yn+1 Yot (55 f,—59 fn—l +37 fn72 -9 fn—3)

Yo = Yo + 24 [9 f (Xn+1, y:+1)+19 fo=5f .+ fnfz]

+ Derivation result (next two slides) gives
error estimate in terms of (yF’ =Yt

E —_ 5 (v) ~ 7 (o}
C 72 (fc) 270 (Yn+1 yn+l)

California State [nipersity 34
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Derive Error Equation

* From an error analysis of the integrated

interpolation polynomials we can find

V(X)) = Yo, + 251h5 (V)(g) 1. Subtract equations

2. Subtract and
19 add yM(&c) term
C 5
y(Xn+1) =Y~ ——h (V)(gc)

,__________r___... _______

125117 19 ’ 1251 o o T -
0= y:ﬂ - ync+1 *(720, 720)h5y( )(gc) +‘ hs[y( )(gp) V( )(‘:c )}

___________________

720 720

. Neglect‘y“’)(&p) ym(ic),' i via=( B2 2 ]hs )

NorthrldgL
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Derive Error Equation

» Solve for Eg, the

E.= =19 sy
corrector error = Y062~ Yra 720 (&)
’ 251 19 ), yo 270 5 o)
- = hy
yn+1 yn+1 (720 720 (fc) 0 (gc)

19 ye, —yFf 19
Sy™ M
= 7"V ) = P = o b
720
« Error estimate gives step size control

» How to change h in multistep method?

yeL—yCs)

California State [nipersity 36
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Step Size Control

« Establish e, and e,,,, to achieve
desired problem accuracy

* If epin < E¢ < €00 do not change h
* If E¢ < e, double step size, h
* If E¢ > e, half step size, h

+ Carry extra steps to be ready for step-
size doubling

* Interpolate data if h is cut in half

California tate Dnfeesi
California State |'v|l‘l ity 37
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Grid halving if error too large

* Normal operation, no step size change

i-3 i-2 i-1 i i+1 (old step)

[ ] [} [ ] [} [} [ ]
(new) i-3 i-2 i-1 i i+1

» Error too large: Half grid size and repeat step
i-3 i-2 i-1 i i+1 (old step)

®----0----0----0----@----0----0----0---- @
(repeated) i-3 -2 i-1 i i+l

Northridge (interpolated points) %

Grid doubling for very small error

» Normal operation, no step size change

-5 -4 -3 -2 i1 i i+1 (old step)
Q-----0---=-0-==--0--==-0-=-=-0-==--0-----0

-5 -4 -3 -2 i1 i i+l (new)
» Error very small: Double grid size
-5 -4 -3 -2 i1 i i+1 (old step)
o-—--- 0----- ®-—--- 0----- o-—--- 0----- @ °
i-3 i-2 i-1 i i+1

Ngﬁi'{“fiﬁ'g"é (Retained to use for doubling) «

Grid Halving and Doubling

» Keep extra values f,, and f_5 in memory to
be ready for grid doubling
- fi-3,new = fi-5; fi-2,new = fi-3; fi-1,new = fi-l; fi,new = fi+1
+ Grid halving requires interpolation for
missing values in old grid

- fi-2,new = fi-l; fi,new = fi

1
Fitnew :@Hf"‘ +28f,_,—70f, ,+140f,_, +35f,]

oy = $[3fi*4 161, +54f,_, +24f 1]

California State [nipersity 20
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Use of Multistep Methods

« Many different equations possible with
different orders and errors

* Used for high accuracy computation
requirements with less computer time

» Used in high-accuracy MATLAB solver
0del13

* Runge-Kutta type methods easier to
apply, and can have error control for
lower accuracy requirements

California tate Dnfeesi
California State Dniversity m
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Extrapolation Methods

» Use Richardson extrapolation for better
estimate from results on two values of h
— Construct large step, H, between two x

values, x and x + H
» Subdivide H into n smaller steps, h = H/n

» Compute intermediate approximations to y,
called z,, for the substep index, m

» Use Richardson extrapolation for different m’'s
— Bulirsch-Stoer method uses extrapolation
and rational function approximation

California State [nipersity 2

Northridge
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