
Programming with arrays April 12-26, 2005

1

Programming with ArraysProgramming with Arrays

Larry Caretto
Computer Science 106

Computing in Engineering
and Science
Spring 2005

2

Outline

• Why do we need arrays
• Declaring and using arrays
• Writing code with arrays and for loops
• Data processing with arrays
• Passing arrays to functions
• Writing functions with arrays
• Two-dimensional arrays

3

Representing Data

DataRun

14.1

13.2

12.5

11.8

14.4

12.3

6

5

4

3

2

1
• Consider a set of

experimental data
with several runs

• How do we represent
the data in such a
way that we can
process these data
and similar data with
more values?

4

Representing Data II

x dataRun, i

x6

x5

x4

x3

x2

x1

6

5

4

3

2

1
• xi is mathematical

notation for several
cases of similar data

• Use this formula to
find the mean of N
data items

∑
=

=
N

i
ix

N
x

1

1

5

Representing Data III
• When we have a set of N data items like

xi it will occupy N memory locations
• A variable like x, declared as double x,

occupies only one memory location
• For our data on xi

– We want to call is by its name, x
– We want to have N memory locations
– We want to compute formulas like average x
– We want to refer to a specific x, say x3

6

Arrays Represent Data
• An array is a way that we can represent

the mathematical notation for xi

• We use the programming notation x[i] to
represent the general data element xi

• When we declare a variable as an
array, we reserve the memory locations
that we will need for the data
– Regular variable: double x;
– Array variable: double x[200];

Programming with arrays April 12-26, 2005

2

7

How to represent xi

• An array has a single variable name,
like x, augmented by a subscript to
identify the particular data item

• Example x[3] or x[k]
• Power of array structure is use of

variable subscript as loop index to refer
to different elements

• Arrays must be declared with maximum
size

8

One-dimensional C++ Array
C++Math

x[5]

x[4]

x[3]

x[2]

x[1]

x[0]

x5

x4

x3

x2

x1

x0

• View one-
dimensional arrays
as a column (or row)
of cells

• Start with zero
subscript

• Array shown here
has 6 elements with
subscripts from 0 to 5

9

Maximum Array Subscript
double w[4]; // 4 elements

const int MAX_SIZE = 10;

double x[MAX_SIZE]; // 10 elements

• Minimum subscript is zero
• Maximum subscript is one less than the

number of elements
• w[0], w[1], w[2], and w[3] are the four

elements of the w array
• Note different meanings of w[N]

10

Maximum Array Subscript
• Array elements are stored in contiguous

memory locations
• Program computes memory location

from subscript
• C++ does not check to see if an array

subscript is in bounds
• An incorrect subscript could affect some

other memory location

11

Subscript out of Range
y

z

x[4]

x[3]

x[2]

x[1]

x[0]
• Cells show memory locations

for y, x[] array, and z
• The x array has five elements

stored in the locations shown
• x[-1] would give the same

location as the variable y
• x[5] would give the same

location as the variable z

12

Using Arrays
• Individual components of arrays, such as

x[3] or y[k], are used in the same way as
ordinary variables

• Variable subscripts must be assigned a
value before use as in examples below

int k = 3, m = 5;
double x[5] = { 1, 3, 5, 18, 143 }, z[50], r = 1;
x[k] = 4;
z[2*k+3] = x[k-2] - 5 * r * x[3]; // = ???

z[2*3+3] = x[3-2] – 5 * r * x[3]; or z[9] = x[1] – 5 * r * x[3]
= 3 – 5 * 1 * 4 = -17

x[3] = 4

Programming with arrays April 12-26, 2005

3

13

Examples of Use

• cin >> x[k];
• cout << “y[“ << k << “] = “ << y[k];
• data[3] = <expression>
• result = 3 + voltage * current[m]
• position[m] = position[m+1]
• for (int k = 0; k < N; k++) x[k] = 0;
• r = pow(y[3], 2);
• power[i] = current[i] * voltage[i];

14

Array Questions

• Write statements to do the following
– to declare a double array, x, that can have

20 elements
– to set element 3 of the slide array equal to

the value of element 2
– Assign element k of the power array a value

of the product of element k of the current
array times element k of the voltage array

double x[20]

slide[3] = slide[2]

power[k] = current[k] * voltage[k]

15

Arrays and for Loops
• Perhaps the most important array code

uses a for loop where the loop index
becomes the array subscript

const int MAX = 10;

double x[MAX], sum = 0;

// code to input x array goes here

for (int k = 0; k < MAX; k++)

sum += x[k];

16

General Array Processing
• To process each element in an array

with N elements, starting with the initial
element, use a for loop with index k
– k starts at zero
– The continuation condition, k < N, will

process elements 0, 1, 2, … , N-1
– Increment k by 1

• for (int k = 0; k < N; k++)

17

General Array Processing II
• On the previous chart N means the

number of elements defined, not the
total number of elements that can be
stored in the array

• Sometimes it is more convenient to
refer to the subscripts than to the
number of elements

• E. g., array whose first and last defined
elements have subscripts F and L

• for (k = F, k <= L; k++)

18

General Array Processing III
• In the examples that follow, we will

generally assume that an array has N
elements, whose first subscript is zero

• The for loop command to process each
element in such an array is
for (k = 0; k < N; k++)

• We can use different increments (e.g. k
+= 3) to skip elements

Programming with arrays April 12-26, 2005

4

19

Array Input and Output
const int MAX_SIZE = 100;

double z[MAX_SIZE];

ifstream infile(“array.dat”);

for (int i = 0; i < MAX_SIZE; i++)

{

infile >> z[i];

cout << “z[“ << i << “] = ”

<< z[i];

}

20

Defined Elements

• The number of elements defined may
be less then the array size

• You may declare an array to be the
maximum size expected but actually
specify a value for fewer elements

double x[10];
for (int j = 1; j < 5; j++)

x[j] = 1 / double(j);

21

Computing the Mean

sum = 0;

for(i = 0; i < N; i++)

{ sum += x[i]; }

average = sum / N;

∑∑
−

==

==
1

01

11 N

i
i

N

i
i x

N
x

N
x • N data items

to average
• Subscripts

starts at 0
• Last data item

is element N-
1 in array

• {} not needed

22

Finding the Maximum
• How do you find the maximum or

minimum in a set of numbers?
• E. g.: 13 74 -3 12 91 0 -17 88 -4
• Now that you found the maximum and

minimum, how would you explain what
you did so a computer can understand?

• Scan the list and remember the largest
(smallest) number you have seen and
replace if you find one larger (smaller)

23

• Store the current maximum in a variable
(e.g., max) and compare max to new
array values

• If a new value is greater than max
replace max by that value

double max = x[0];// initialize max
for (int i = 1; i < N; i++)
{ if (x[i] > max)

{ max = x[i]; }
}

Finding the Maximum

• Can omit both
sets of braces

24

Initializing Arrays

• We can initialize an array by placing all
the data values in braces following the
array declaration

int x[5] = { 12, 17, -22, 4, 12 };

int x[] = { 12, 17, -22, 4, 12 };

• Note that the maximum size is not
required when we initialize an array

Programming with arrays April 12-26, 2005

5

25

Data Processing with Arrays
• You have taken data from a circuit that

gives the current and voltage
• There are N pairs of data
• Current is stored as the amps[k] array

and voltage as the volts[k] array
• Write the code to compute the average

power if N, volts[] and amps[] are
defined

26

Average Power One
double sum = 0
for (int k = 0; k < N; k++)
{

power[k] = amps[k] * volts[k];
sum += power[k];

}
double averagePower = sum / N;
cout << “Power = “ << averagePower
<< “ watts”;

27

Average Power Two
double sum = 0
for (int k = 0; k < N; k++)
{

power = amps[k] * volts[k];
sum += power;

}
double averagePower = sum / N;
cout << “Power = “ << averagePower
<< “ watts”;

28

Average Power Three
double sum = 0
for (int k = 0; k < N; k++)
{

sum += amps[k] * volts[k];
}
double averagePower = sum / N;
cout << “Power = “ << averagePower
<< “ watts”;

29

Differences in Power Codes

• Used three ways to compute power
• Only one used a power[k] array
• Code works with power not an array or

not even a variable
• Usually define arrays when we want to

save results of a computation for use in
subsequent computations

30

Passing Arrays to Functions
• We can pass an array element to a

function as we pass any variable
• y = pow(x[k], 3);
• Here the pow function returns the cube

of element k of the x array
• This is no different from passing a

single variable to a function
• We can also pass whole arrays, like x,

to functions: getAverage(x, first, last)

Programming with arrays April 12-26, 2005

6

31

getAverage
• Computes the average of elements of the x

array from x[first] to x[last] (inclusive)
• Header: double getAverage (double x[], int

first, int last)
• Prototypes:

– double getAverage (double x[], int first, int last);
– double getAverage (double [], int, int);

• Note use of [] to specify an array as a
function argument

32

getAverage
double getAverage (double x[],

int first, int last)

{

double sum = 0;

for (int i = first; i <= last; i++)

sum += x[i];

return sum / (last – first + 1);

}

33

Use of getAverage

• double x[22], power[50], density[30];
• // code to get input data on x and power
• double mean = getAverage(x, 0, 10)
• double average = getAverage(power,

12, 24)
• How would you compute the average of

all elements of the density array?

getAverage(density, 0, 29)

34

Standard Deviation
• Measure of spread around mean

() ()

1

1

11

21

0

1

0

22
1

0

2
1

0

2

−

⎟
⎠

⎞
⎜
⎝

⎛
−⎟
⎠

⎞
⎜
⎝

⎛

=
−

−⎟
⎠

⎞
⎜
⎝

⎛

=
−

−
=

∑∑∑∑
−

=

−

=

−

=

−

=

N

x
N

x

N

xNx

N

xx
s

N

i
i

N

i
i

N

i
i

N

i
i

• First term is definition; others are
computational forms

• How would we write a function to com-
pute s for all the elements in an N-
element array?

35

double getStdDev(double x[],int N)
{

double sum = 0, sum2 = 0, sumxy =
0;

for (int k = 0; k < N; k++)
{

sum += x[k];
sum2 += x[k] * x[k];
sumxy += x[k] * y[k];

}
return sqrt((sum2 – sum *

sum / N) / (N – 1));
}

getStdDev

36

Arrays Passed by Reference
double mystery(double x[], int N)
{

for (int k = 0, k < N; k++)
{ x[k] = 0; }
return 0;

}

• A call, double y = mystery(c, M) would
zero the first M elements of the c array

• Pass by reference occurs by default
without the need for an &

Programming with arrays April 12-26, 2005

7

37

Two-dimensional Arrays
• One-dimensional arrays refer to a

variable that has multiple entries with a
single classification

• Two-dimensional arrays are used to
represent data with two classifications
– Example: an experiment on manufacturing

productivity measures daily output of four
machines with six operators

38

Two-dimensional Arrays

• One-dimensional variable
– mathematical notation xi

– C++ array notation x[i]
• Two-dimensional

– mathematical notation xik

– C++ array notation x[i][k]
• One-way versus two-way classification

39

One-dimensional Array

[etc.]

[4]

[3]

[2]

[1]

[0]
• View one-

dimensional arrays
as a column (or row)
of cells

• Start will subscript [0]
and increase by 1 for
each new cell

40

Two-Dimensional Array

[6][4]

[5][4]

[4][4]

[3][4]

[2][4]

[1][4]

[0][4]

[6][3]

[5][3]

[4][3]

[3][3]

[2][3]

[1][3]

[0][3]

[6][2]

[5][2]

[4][2]

[3][2]

[2][2]

[1][2]

[0][2]

[6][1]

[5][1]

[4][1]

[3][1]

[2][1]

[1][1]

[0][1]

[6][0]

[5][0]

[4][0]

[3][0]

[2][0]

[1][0]

[0][0]
• View two-

dimensional
arrays as a
table with
rows and
columns of
cells

41

Two-dimensional Example
• In the example of a manufacturing

process measuring the output of four
machines with six operators
– Array named output depending on integer

subscripts machine and operator
– First subscript is for operator and second is

for machine
const int maxOp = 6, maxMach = 4;
int output[maxOp][maxMach];
cout << output[3][2];

42

Two-Dimensional Array Data

991202265316208M tot
158
187
143
170
172
161

Op tot

28
42
25
40
36
31
M 3

48
48
39
45
42
43
M 2

49
59
48
52
55
53
M 1

33
38
31
33
39
34
M 0

Op 5
Op 4
Op 3
Op 2
Op 1
Op 0

Individual
data plus
totals for
operators
and
machines

output[3][2]

Array data

Programming with arrays April 12-26, 2005

8

43

Two-dimensional array Code
const int maxOp = 6, maxMach = 4
int output[maxOp][maxMach];
for (int op = 0; op < maxOp; op++)
{

for (int mach = 0; mach <
maxMach; mach++)

cout << output[op] [mach] <<
“ units produced at machine “
<< mach << “ with operator “
<< op;

} 44

Other Code

• How would you compute the total units
produced by each machine?

• How would you compute the total units
produced by each operator?

• How would you compute the average
and standard deviation for all the units
produced by the operators?

45

Units for Each Machine
• This sum is the total output of each machine

from all operators (column sum)

int outMach[maxMach];
for (int mac = 0; mac < maxMach; mac++)
{

outMach[mac] = 0;
for (int op = 0; op < maxOp; op++)
{outMach[mac] += output[op][mac];}
cout << “Total machine “ << mac <<

<< “ output is “<<outMach[mac];
}

46

Units for Each Operator
• This sum is the total output of each

operator from all machines (row sum)

int outOp[maxOp];
for (int op = 0; op < maxOp; op++)
{

outOp[op] = 0;
for (int m = 0; m < maxMach; m++)
{ outOp[op] += output[op][m]; }

cout << “Total operator “ << op
<< “ output is “ << outOp[op];

}

47

Comments on this Code

• Note that we use one-dimensional
arrays to store row (operator) and
column (machine) sums

• Note that order of subscripts is always
[operator][machine]

• Conventional, but not required, to write
tables as arrays with subscript ordered
as [row][column]

48

Simultaneous Linear Equations

• Example of 3 equations (3 unknowns)
3x + 7y – 3z = 8
2x – 4y + z = -3
8x + 6y – 2z = 14

• How can we develop a general notation
for N equations in N unknowns?
– Call variables x0, x1, x2, etc.
– Call right hand side b0, b1, b2, etc.
– Call top row coefficients a00, a01, a02, etc.

Programming with arrays April 12-26, 2005

9

49

Standard Form

a00x0 + a01x1 + a02x2 +...+ a0N-1xN-1 + a0NxN = b0
a10x0 + a11x1 + a12x2 +...+ a1N-1xN-1 + a1NxN = b1
a20x0 + a21x1 + a22x2 +...+ a2N-1xN-1 + a2NxN = b2
...
aN-1,0x0 + aN-1,1x1 ++ aN-1,NxN = bN-1
aN0x0 + aN1x1 + aN2x2 +...+ aNNxN = bN

• Note that subscripts on a are arow,columnwhere
row is equation and column is unknown

50

Compact Standard Form

• Set of equations defined by N and data
on aij and bi

• Functions to solve this problem take 2D
a array and 1D b array to find array x

1,,0

,,1

1

0

1

−==

==

∑

∑
−

=

=

Nibxa

Nibxa

N

j
ijij

N

j
ijij

K

K

51

Example in Standard Form

• Previous example 3 equations (N = 3)
3x + 7y – 3z = 8
2x – 4y + z = -3
8x + 6y – 2z = 14

• In standard form:
– x is x0, y is x1, and z is x2

– a00 = 3, a01 = 7, a02 = -3, b0, = 8
– a10 = 2, a11 = -4, a12 = 1, b1, = -3
– a20 = 8, a21 = 6, a22 = -2, b2, = 14

52

Standard Form in C++

• Equations represent unknowns as xi,
the right hand sides as bi, and the left
hand side coefficients as aij

• In C++ we use arrays x[col] for the
unknowns, b[row] for the right hand
sides, and a[row][col] for the coefficients
on the left hand side

• Project three will use library program to
solve this system of equations

53

Passing 2D Arrays to Functions

• Execution of array code based on
computing memory location from
address of first array member plus
subscript for particular element

• For one-dimensional array we only need
the address of the first element to find
the location of x[i]

• What about two-dimensional arrays?

54

Passing 2D Arrays to Functions II
• Consider an array x with declared as

x[maxFirst][maxSecond]
• The location of x[i][j] is computed as i +

j*maxSecond locations from the start of
the array

• We must know the second dimension to
compute the location

• We must pass this to the function that
has a two-dimensional array as a
parameter

Programming with arrays April 12-26, 2005

10

55

Passing 2D Arrays to Functions III
• Global constant: const int maxSecond = 20

• Function header
double getSum (double x[][maxSecond],…

• Function prototype (semicolon at end)
double getSum (double x[][maxSecond],…
double getSum (double [][maxSecond],…

• Calling program
const int maxFirst = 20;
double x[20][maxSecond];
// other code assigns values to x array
double result = getSum(x, ….

56

Passing 2D Arrays to Functions IV
• Global constant not required, but helpful

to accommodate changes to size of
second dimension

• The second dimension must be the same
in the following three statements:
– The function prototype
– The function header
– The declaration of the array passed to the

function
• Final project uses two-dimensional arrays

57

Passing 2D Arrays to Functions V
• Example: write a function that accepts a

two-dimensional array, output, used in
the previous example and computes and
returns the row sums and columns sums
as well as the total

• How to pass information?
– Pass 2D output array into function
– Return 1D arrays with row and column sums
– Return total in function name
– Pass number of machines and operators,

which can be less than the maximum array
sizes, into function

58

Example of 2D Array Function
int getSums(int output[][maxMach],

int opSum[], int machSum[],
int Nop, int Nmach)

{
int total = 0;
for (int op = 0; op < Nop; op++)
{

opSum[op] = 0;
for (int m = 0; m < Nmach; m++)

opSum[op] += output[op][m];

total += opSum[op];
}

// continues on next chart

59

2D Array Function Concluded
for (int m = 0; m < Nmach; m++)
{

machSum[m] = 0;
for (int op = 0; op < Nop; op++)

machSum[op] += output[op][m];
}
return total;

} // closes function opening brace

• How do we use this function?
• What is its prototype?

60

Using the 2D Array Function
• Start with global constants for common

array dimensions in various locations
const int maxMach = 10, maxOp = 10;

• Prototype is just header with a semicolon
int getSums(int output[][maxMach],

int opSum[], int machSum[],
int Nop, int Nmach);

• Use global constants as array dimensions in
calling program
int output[maxOp][maxMach],
opSum[maxOp], machSum[maxMach];

Programming with arrays April 12-26, 2005

11

61

Using the 2D Array Function
• Get data in calling program (usually from

file)
ifstream inFile(“production.dat”);
inFile >> Nop >> Nmach;
for (op = 0; op < Nop; op++)
{ for (m = 0; m < Nmach; m++)

infile >> output[op][m]; }

• Call function
int total = getSums(output, opSum,
machSum, Nop, Nmach);

• Output results Array call has only
array names

62

Input Data Files for Arrays
• Must match input statements in code
for (i = 0; i < N; i++) cin >> x[i];
for (i = 0; i < N; i++) cin >> y[i];

• Compare above statements with code below
for (i = 0; i < N; i++)
{ cin >> x[i] >> y[i]; }

• First example read all x data then all y data.
Second reads x and y data in pairs

• Usually write code to determine number of
array elements by testing for end of file

63

Input Data File for 1D Arrays

12
20
32
55
43
19
27
88

12 20 32 55 43 19 27 88

12 20
32 55
43 19
27 88

• How the code below
read x and y from each
file on this page?

for (i = 0; i < 3; i++)
cin >> x[i] >> y[i];

• What about this code?
for (i = 0; i < 3; i++)
cin >> x[i];

for (i = 0; i < 3; i++)
cin >> y[i];

64

Input Data Files for 2D Arrays
• Recall input code from example of passing

2D arrays to functions
ifstream inFile(“production.dat”);

inFile >> Nop >> Nmach;

for (op = 0; op < Nop; op++)

{ for (m = 0; m < Nmach; m++)

{ infile >> output[op][m]; }

}

• How would you prepare the data file?

Braces not needed

65

Input Data File for 2D Arrays
• Usually prepare data file for 2D arrays

to look like row and column data
6 4
34 53 43 31
39 55 42 36
33 52 45 40
31 48 39 25
38 59 48 42
33 49 48 28

66

Is There Life After 2D Arrays
• Yes, we can have arrays with three or

more dimensions
• A program to compute emissions of

different species, different vehicle types,
different model years could use

emissions[species][vehType][modelYear]
• Code structures are similar with use of

nested for loops on array subscripts
• Will not cover in this course

Programming with arrays April 12-26, 2005

12

67

Summary of Arrays

• Used to represent data of one kind with
multiple occurrences

• Can have one-way, two-way, etc.,
classifications of the data

• Math symbols aij and xj become C++
arrays a[i][j] and x[i]

• Declaring array size; maximum
subscript; no subscript checking

68

Array Summary Continued

• Use for loops where loop index is array
subscript to access array elements

• Array elements like ordinary variables
• Passing whole arrays to functions

(header, prototype, call, 1D vs. 2D)
• Nested loops for 2D array code
• Input files for arrays must match input

statements

69

Representing Data

DataRun

14.1

13.2

12.5

11.8

14.4

12.3

5

4

3

2

1

0

C++Math

x[5]

x[4]

x[3]

x[2]

x[1]

x[0]

x5

x4

x3

x2

x1

x0

• C++ array,
x[i] used to
represent
data for
which xi is
used in
mathe-
matical
notation

70

Using Arrays
• Declare arrays in typical way, but add

maximum elements, e.g. int v[100];
• Refer to arrays as to any other variable

using subscript v[3] or v[k]
– Must assign value to k before using it as

variable subscipt
– Major tool in arrays is using variable subscript

that is for loop index
const int N = 200; double a[N];

for (int j = 0; j < N; j++) a[j] = 0;

71

Maximum Array Subscript
• Array subscripts start at zero
• A declaration double y[N] declares a y

array with N elements numbered from
y[0] to y[N-1]

• For loop to handle all elements is
for (int k = 0; k < N; k++)

• C++ does not check to see if an array
subscript is in bounds -- an incorrect
subscript could affect some other
memory location

72

Arrays and for Loops
• Perhaps the most important array code

uses a for loop where the loop index
becomes the array subscript

const int MAX = 10;

double x[MAX], sum = 0;

// code to input x array goes here

for (int k = 0; k < MAX; k++)

sum += x[k];

Programming with arrays April 12-26, 2005

13

73

General Array Processing
• To process each element in an array

with N elements, starting with the initial
element, use a for loop with index k
starting at zero and < N

for (int k = 0; k < N; k++)

• To process a subset of elements in the
array starting at element F and ending
with (and including) element L

for (int k = F; k <= L; k++)

74

Array Input and Output
const int MAX_SIZE = 100;

double z[MAX_SIZE];

ifstream infile(“array.dat”);

for (int i = 0; i < MAX_SIZE; i++)

{

infile >> z[i];

cout << “z[“ << i << “] = ”

<< z[i];

}

