Math 490, Chapter 1 Homework (DRAFT)

1. In the figure below, prove $\alpha=\frac{1}{2} \beta$ where $\alpha=m(\angle A B C)$ and $\beta=m(\angle A D C)$. Point D is the center of the circle. You must show all details!

b. (4 pts) Suppose that in the figure above, where D is the center of the circle, $\alpha=30^{\circ}$ and $A D=4$. Find $A C$.
2. In the following figure, point D is the center of the circle. Find the missing angles. That is, find $\alpha=m(\angle C B A)$ and $\delta=m(\angle A E C)$.

3. Use the figure below to prove $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$. Note: point A is the center of the circle and the circle's diameter has length $B D=1$. For full credit, be sure to show all steps and justify them! (Hint: Ptolemy's theorem should be useful.)

4. Determine whether the following statement is TRUE or FALSE. If the statement is true, prove it. If it is false, give a counterexample.

In $\triangle A B C$ with side lengths a, b, and c, if $a^{2}+b^{2}=c^{2}$, then $\triangle A B C$ is a right triangle and the right angle is opposite the side with length c.
5. (6 pts) Find the area of pentagon $A B C D E$ shown below. The following information is given: point F is the center of the circle, $B C=C D=D E=D F=26$ and $A E=48$.

6a. (6 pts) In the following figure, compute the length $C D$ two different ways. (Hint: Use the Law of Cosines and the distance formula.) The following lengths are given: $A D=A C=1$. The measure of $\angle D A E$ is δ, the measure of $\angle C A E$ is α, and the measure of $\angle D A C$ is $\delta-\alpha$.

b. (3 pts) Use your work in part (a) to find a formula for $\cos (\delta-\alpha)$, where $\delta-\alpha$ is the measure of $\angle D A C$.

