Electron Transport Chain (overview)

- The NADH and FADH₂, formed during glycolysis, β -oxidation and the TCA cycle, give up their electrons to reduce molecular O₂ to H₂O.
- Electron transfer occurs through a series of protein electron carriers, the final acceptor being O₂; the pathway is called as the electron transport chain.
- ETC takes place in inner mitochondrial membrane where all of the electron carriers are present.
- The function of ETC is to facilitate the controlled release of free energy that was stored in reduced cofactors during catabolism.

- Energy is released when electrons are transported from higher energy NADH/FADH₂ to lower energy O₂.
- This energy is used to physophorylate ADP.
- This coupling of ATP synthesis to NADH/FADH₂ oxidation is called oxidative phosphorylation.
- Oxidative phosphorylation is responsible for 90 % of total ATP synthesis in the cell.

The Chemiosmotic Theory

- The chemiosmotic theory explains the mechanism of oxidative phosphorylation.
- When electrons are transported along the components of the ETC, the accompanying protons are released.
- Part of the free energy harvested during the ETC is used to pump protons out of the mitochondrial matrix.
- The resulting uneven distribution of protons generates a pH gradient and a charge gradient across the inner mitochondrial membrane.
- The electrochemical potential energy generated by these gradients is called as **Proton Motive Force**.
- The return of protons to the mitochondrial matrix is coupled to ATP synthesis.

Mitochondria are Biochemical Hubs

- The mitochondrial matrix contains enzymes of PDH, TCA cycle, β -oxidation and amino acid oxidation.
- Mitochondrial matrix is enclosed by two membranes.
- Components of the ETC are located on the inner membrane; the folded cristae provide a large surface area.
- The inner membrane is highly impermeable and requires specific transporters.
- Transporters specific for pyruvate, fatty acids, amino acids, ATP/ADP, phosphate and protons are found in the inner membrane.
- The outer membrane is permeable to small molecules and ions because of Porins: transmembrane proteins that form channels in the outer membrane.

Standard Reduction Potentials

- In oxidative phosphorylation, the electron transfer potential of NADH and FADH₂ is converted into the phosphoryl transfer potential of ATP.
- The standard reduction potential (E₀) is a quantitative measure of the ease with which a compound can be reduced; or how readily it accepts electrons.
- The more positive the E₀, the more readily the compound accepts electrons. The more negative the E₀, the more readily it gives up electrons.
- The redox potential is measured relative to that of a proton which is assigned as zero. $2H^+ + 2e^- \rightarrow H_2$. $E_0 = 0$.
- For biochemical reactions, [H⁺] of 10^{-7} is considered standard and we use E_o ' instead of E_o .

- ΔG° for transfer of 2 electrons from NADH to O₂ is 220 kJ/mol. This is sufficient to synthesize 7 molecules of ATP (ΔG° for ATP synthesis is 31 kJ/mol).
- However, a significant amount of energy is used up to pump H⁺ out of the mitochondria. Only a third is used for ATP synthesis.
- Actually, by the process of oxidative phosphorylation: oxidation of each mole of NADH = 2.5 moles of ATP

oxidation of each mole of $FADH_2 = 1.5$ moles of ATP

ATP synthase (also called complex V)

- The electrochemical potential energy generated by the proton and pH gradients across the mitochondrial inner membrane is called as Proton Motive Force and is used to drive ATP synthesis.
- Protons return to the mitochondrial matrix through an integral membrane protein (of the mitochondrial inner membrane) known as ATP synthase (sometimes called as Complex V of the ETC).
- ATP synthase is a multiple subunit complex that binds ADP and inorganic phosphate and converts them to ATP
- Proton transport is coupled to ATP synthesis. This is called as the **chemiosmotic theory** of oxidative phosphorylation. ATP is not synthesized unless there is a simultaneous transport of H⁺ across the inner mitochondrial membrane.

Uncouplers

- Uncouplers inhibit oxidative phosphorylation.
- They 'uncouple' the ETC from oxidative phosphorylation.
- The ETC remains intact and electrons are transferred to O_2 to generate H_2O . However, uncouplers carry protons across the mitochondrial membrane making it 'leaky' for H⁺. The pH and electrical gradient is not generated and ATP is not synthesized.
- In the presence of an uncoupling agent, energy released via the ETC is converted into heat.
- This mechanism is used by hibernating animals to stay warm in the winter, since they don't need ATP for anabolic processes while they are resting.
- Examples of uncouplers: Natural: Thermogenin or uncoupling protein (UCP). Synthetic: 2,4,-dinitrophenol.

Glycerol-3-Phosphate Shuttle

- Functions in the skeletal muscle and brain.
- NADH on the cytoplasmic side is oxidized to NAD⁺ with coupled reduction of DHAP to glycerol-3-phosphate. Enzyme: cytoplasmic glycerol-3-phosphate dehydrogenase.
- The oxidation of glycerol 3-phosphate back to DHAP is catalyzed by a mitochondrial membrane bound isoenzyme of glycerol-3-phosphate dehydrogenase.
- The oxidation is coupled to reduction of a FAD prosthetic group of the mitochondrial enzyme to FADH₂.
- Reduced FADH₂ transfers it electrons to CoQ via the ETC.
- Thus, in muscle and brain, even though 2 NADH are produced by glycolysis, actually, 2 FADH₂ are available for entry into the ETC.

The Malate-Aspartate Shuttle

- Functions in the heart and liver
- In the cytosol, electrons are transferred from NADH to oxaloacetate forming NAD⁺ and malate. The enzyme is malate dehydrogenase. (NAD⁺ is reduced back to NADH by glycolysis). Malate can easily enter mitochondria.
- In the mitochondrial matrix, malate is oxidized to oxaloacetate by the enzyme of the TCA cycle, malate DH. This is coupled to reduction of NAD⁺ to NADH
- Oxaloacetate is converted to aspartate by accepting an amino group from glutamate in a reaction catalyzed by an aminotransferase.
- Aspartate readily crosses the mitochondrial inner membrane to enter the cytosol. In the cytosol, aspartate donates its amino group to form oxaloacetate.
- Thus, in heart and liver, electron transfer from cytosol to mitochondria does not involve net expense of energy

		NADH	FAD	TOTAL	
Pathway	<u>ATP</u>			<u>ATP</u>	
Glycolysis	-2	2	0		
	4	-	0		
	0	2	0		
РИП	0	2	0		
TCA	2	6	2		
Glycerol-3-P shuttle	0	-2	2		
		_			
	4	8	4		
ATP Harvested	4	20	6	30	

<u>Pathway</u>	ATP	NADH		TOTAL
			FAD	
activation	-2	0	0	<u> </u>
b-oxidation	0	7	7	
TCA	8	24	8	
	6	31	15	
ATP Hanvested	6	77 5	22.5	106