Oxygen-Binding Proteins

- Myoglobin, Hemoglobin, Cytochromes bind O₂.
- Oxygen is transported from lungs to various tissues via blood in association with hemoglobin
- In muscle, hemoglobin gives up O_2 to myoglobin which has a higher affinity for O_2 than hemoglobin.
- Oxygen-binding curve for hemoglobin is sigmoidal whereas for myoglobin it is hyperbolic. This facilitates transfer of O₂ to myoglobin.
- Cytochromes participate is redox reactions and are components of the electron transport chain.

Hemoglobin Structure

- Hemoglobin is a O₂ transport protein found in the RBCs
- Hemoglobin is an oligomeric protein made up of 2 $\alpha\beta$ dimers, a total of 4 polypeptide chains: $\alpha_1\beta_1\alpha_2\beta_2$.
- Total M_r of hemoglobin is 64,500.
- The α (141 aa) and β (146 aa) subunits have < 50 % identity.
- The 3D- structures of α (141 aa) and β (146 aa) subunits of hemoglobin and the single polypeptide of myoglobin are very similar; all three are members of the globin family.
- Each Hb subunit consists of 7 (α) or 8 (β) alpha helices and several bends and loops folded into a single globin domain.
- Each subunit has a heme-binding pocket.

The Prosthetic Heme Group

- The heme group is responsible for the O₂-binding capacity of hemoglobin.
- The heme group consists of the planar aromatic protoporphyrin made up of four pyrrole rings linked by methane bridges.
- A Fe atom in its ferrous state (Fe⁺²) is at the center of protoporphyrin.
- Fe⁺² has 6 coordination bonds, four bonded to the 4 pyrrole N atoms. The nucleophilic N prevent oxidation of Fe⁺².
- The two additional binding sites are one on either side of the heme plane.
- One of these is occupied by the imidazole group of His.
- The second site can be reversibly occupied by O_2 , which is hydrogen-bonded to another His.

Different forms of Hemoglobin

- When hemoglobin is bound to O_2 , it is called oxyhemoglobin. This is the relaxed (R) state.
- The form with a vacant O₂ binding site is called deoxy-hemoglobin and corresponds to the tense (T) state.
- If iron is in the oxidized state as Fe⁺³, it is unable to bind O₂ and this form is called as methemoglobin
- CO and NO have higher affinity for heme Fe^{+2} than O_2 and can displace O_2 from Hb, accounting for their toxicity.

T and R states of Hemoglobin

- Hemoglobin exists in two major conformational states: Relaxed (R) and Tense (T)
- R state has a higher affinity for O₂.
- In the absence of O_2 , T state is more stable; when O_2 binds, R state is more stable, so hemoglobin undergoes a conformational change to the R state.
- The structural change involves readjustment of interactions between subunits.

Changes Induced by O₂ Binding

- O_2 binding rearranges electrons within Fe⁺² making it more compact so that it fits snugly within the plane of porphyrin.
- Since Fe is bound to histidine of the globin domain, when Fe moves, the entire subunit undergoes a conformational change.
- This causes hemoglobin to transition from the tense (T) state to the relaxed (R) state.
- The $\alpha_1\beta_1$ and $\alpha_2\beta_2$ dimers rearrange and rotate approximately 15 degrees with respect to each other
- Inter-subunit interactions influence O₂ binding to all 4 subunits resulting in cooperativity.

O₂-binding kinetics

- Four subunits, so four O₂-binding sites
- O_2 binding is cooperative meaning that each subsequent O_2 binds with a higher affinity than the previous one
- Similarly, when one O₂ is dissociated, the other three will dissociate at a sequentially faster rate.
- Due to positive cooperativity, a single molecule is very rarely partially oxygenated.
- There is always a combination of oxygenated and deoxygenated hemoglobin molecules. The percentage of hemoglobin molecules that remain oxygenated is represented by its oxygen saturation.
- O_2 -binding curves show hemoglobin saturation as a function of the partial pressure for O_2 .

Oxygen Saturation Curve

- Saturation is maximum at very high O_2 pressure in the lungs (p $O_2 = \sim 100$ torr).
- As hemoglobin moves to peripheral organs and the O_2 pressure drops (p $O_2 = \sim 20$ torr), saturation also drops allowing O_2 to be supplied to the tissues.
- Due to co-operative binding of O_2 to hemoglobin, its oxygen saturation curve is sigmoid.
- Such a curve ensures that at lower pO₂, small differences in O₂ pressure result in big changes in O₂ saturation of hemoglobin. This facilitates dissociation of O₂ in peripheral tissues.

Effectors of O₂ binding

- Small molecules that influence the O_2 -binding capacity of hemoglobin are called effectors (allosteric regulation).
- Effectors may be positive or negative; homotropic or heterotropic effectors.
- Oxygen is a homotropic positive effector.
- Positive effectors shift the O₂-binding curve to the left, negative effectors shift the curve to the right.
- From a physiological view, negative effectors are beneficial since they increase the supply of oxygen to the tissues.

The Bohr Effect

- The regulation of O₂-binding to hemoglobin by H⁺ and CO₂ is called the Bohr effect
- Both H⁺ and CO₂ are negative effectors of O₂-binding.
- Addition of a proton to His imidazole group at C-terminus of β-subunit facilitates formation of salt bridge between His and Asp and stabilization of the T quaternary structure of deoxyhemoglobin.
- CO₂ reduces O₂ affinity by reacting with terminal –NH₂ to form negatively charged carbamate groups
- Metabolically active tissues need more O₂; they generate more CO₂ and H⁺ which causes hemoglobin to release its O₂.

2,3-Bisphosphoglycerate

- 2,3-Bisphosphoglycerate is a negative effector.
- A single 2,3-BPG binds to a central pocket of deoxyhemoglobin and stabilizes it by interacting with three positively charged aa of each β-chain.
- 2,3-BPG is normally present in RBCs and shifts the O_2 -saturation curve to the right
- Thus, 2,3-BPG favors oxygen dissociation and therefore its supply to tissues
- In the event of hypoxia, the body adapts by increasing the concentration of 2,3-BPG in the RBC

Fetal Hemoglobin

- Fetal hemoglobin has 2α and 2γ chains
- The g chain is 72% identical to the b chain.
- A His involved in binding to 2,3-BPG is replaced with Ser. Thus, fetal Hb has two less + charge than adult Hb.
- The binding affinity of fetal hemoglobin for 2,3-BPG is significantly lower than that of adult hemoglobin
- Thus, the O₂ saturation capacity of fetal hemoglobin is greater than that of adult hemoglobin
- This allows for the transfer of maternal O_2 to the developing fetus