1. Find all the possible symmetry operations for 1,2-propadiene:

![image](C=CC=C)

Solution:

The operations are: $E, C_2, C_2', C_{2''}, S_4, S_4', \sigma_v, \sigma_v'.

The C_2 axis is along $C = C = C$. The C_2' and $C_{2''}$ axes are perpendicular to the C_2 axis and are located along the plane of the paper and perpendicular to the plane.

2. Derive the C_{2v} multiplication table by applying two successive symmetry operations and identifying the resulting operation. Note that C_{2v} point group is Abelian.

Note that you need to construct a multiplication table not a direct product table.

Solution:

The group is Abelian, which means that the order of multiplication does not matter, which simplifies the problem. The products can be worked out as follows:

Multiplication by OE (the identity operation) always yields O as the result (where O is one of the symmetry operations in C_{2v}). Also operations such as OO give E (rotation and reflection). The only remaining operations are between $C_2, \sigma_v(xz)$ and $\sigma_v'(yz)$. The molecule is taken to reside in yz plane. Let’s consider $C_2\sigma_v$ as an example. To visualize what is happening, think about NO$_2$ molecule and place p_x atomic orbitals on the oxygen atoms. Note that the x direction is out of the paper plane. C_2 will exchange the two oxygens and at the same time flip the p_x orbitals around. Then σ_v reflection just exchanges the oxygens again but without flipping the p_x orbitals. The
net effect was to get flip the \(p_x \) orbitals. This same effect may be obtained by \(\sigma_v' \) operation and therefore \(C_2\sigma_v = \sigma_v' \). The same method can be used to go over all the remaineng elements in the product table.

3. What are the symmetry elements and point groups for the following molecules:

\[
\begin{align*}
\text{a) CH}_2\text{FCl} & \quad \text{d) HI} \\
\text{b) Sb} & = \text{O} & \text{e) TeCl}_4^- \\
\text{c) O = C = C = C = C = O} & \quad \text{f) cyclopropene:}
\end{align*}
\]

Solution:

In a) and b) only \(C_s \) symmetry element. The point group is \(C_s \).
In c) the symmetry elements are: \(C_\infty \) axis, \(\infty \) number of perpendicular \(C_2 \) axes and \(\sigma_v \) planes and \(\sigma_h \) plane. The poing group is \(D_{\infty h} \).
In d) the symmetry elements are: \(C_\infty \) axis and \(\infty \) many \(\sigma_v \) planes. The point group is \(C_{\infty v} \).
In both e) and f) the symmetry elements are: \(C_2 \) axis and two \(\sigma_v \) planes. The point group is \(C_{2v} \).

4. What are the irreps for \(s, p \) and \(d \) atomic orbitals in \(D_{6h} \) point group?

Solution:

From the character table we can see that both \(x \) and \(y \) correspond with the \(E_{1u} \) irrep. The \(p_x \) and \(p_y \) orbitals behave the same way and belong to \(E_{1u} \) as well. By using the same logic, \(p_z \) is \(A_{2u} \). \(s \) orbitals are always spherically symmetric and hence this is \(A_{1g} \). The Cartesian components of \(d \) orbitals are: \(d_{xz}, d_{yz}, d_{x^2-y^2}, d_{xy}, d_{z^2} \). These behave spatially exactly like the spatial operations (subscripts). As such, we immediately identify these as: \(E_{1g} \).
5. The following are the normal vibration modes of water molecule:

![Normal vibration modes of water molecule](image)

Apply the C_{2v} symmetry operations for these modes and determine their irreducible representations (consider the directionality of the vectors shown).

Solution:

Mode 1 is unchanged under any symmetry operation in C_{2v} and hence it has A_1 symmetry. The mode would be labelled as a_1.

Mode 2 is unchanged under any symmetry operation and hence the label is a_1.

The arrows correspond demonstrate the direction of atomic motion in molecular vibration.

Mode 3 is unchanged with E and $\sigma'_v(yz)$ and the directions of the arrows get reversed (-1) with C_2 and $\sigma_v(xz)$. Thus the mode is labelled as b_2.

6. Consider H_2O molecule residing in yz plane (symmetry C_{2v}). Let H_1 and H_2 denote their 1s orbitals. What are the irreps for the following linear combinations: $S_1 = H_1 + H_2$ and $S_2 = H_1 - H_2$? Which oxygen atom valence orbitals may form molecular orbitals with S_1 and S_2?

Solution:

The orbitals S_1 and S_2 can be visualized as shown below (the first figure).

From this we can see that S_1 corresponds to A_1 (all operations give 1) and S_2 to B_2 (characters $1 -1 -1 1$). The symmetry labels for the orbitals are therefore a_1 and b_2, respectively. The oxygen atom orbitals are shown in the second figure below. The 2s O orbital is clearly A_1 (totally symmetric). According to the above picture, 2p_z is also A_1. p_y appears to be B_2 and p_x.

7. Function f_1 exhibits symmetry corresponding to irrep E_2 and function f_2 irrep A_1 in C_{6v} point group. Show that integral $\int f_1(x)f_2 d\tau = 0$ (x represents multiplication by x coordinate).

Solution:

Operator x belongs to E_1 in D_{6h} (the operator column). Thus the product we need to look at is $A_1 \times E_1 \times E_2$. The product table tells us that this is equal to $B_1 + B_2 + E_1$ (a sum of three characters). Since A_1 is not present in this sum, the integral is zero.

8. The ground state electronic wavefunction in H_2O has A_1 symmetry in C_{2v} point group. What are the symmetries of the excited states that can absorb
Linearly polarized light in a) x, b) y and c) z directions?

Solution:

The C_2 axis is along the z axis and the molecule is in the yz plane. The operator x belongs to B_1. The ground state is A_1 and by looking at the product table, we can see that the excited state must have B_1 symmetry ($B_1 \times B_1 = A_1$). For y (B_2) and z (A_1) the corresponding excited state symmetries must be B_2 and A_1, respectively.