
Node Clustering Based on Link Delay in P2P Networks

Wei Zheng
∗

, Sheng Zhang, Yi Ouyang, Fillia Makedon, James Ford
Department of Computer Science

Dartmouth College
6211 Sudikoff Laboratory

Hanover, NH 03755-3510, USA

{Wei.Zheng, Sheng.Zhang, Yi.Ouyang, Fillia.S.Makedon, James.C.Ford}@Dartmouth.EDU

ABSTRACT
Peer-to-peer (P2P) has become an important computing
model because of its adaptation, self-organization and au-
tonomy etc. But efficient organization of the nodes in P2P
networks is still a challenge needs to be addressed. Node
clustering is a mechanism that aims to provide an optimal
infrastructure to organize the nodes in a P2P network. This
paper describes an approach to implement node clustering
based on link delay of node communications in the P2P net-
work. This approach is completely distributed, in which
each node only depends on its neighbors to implement node
clustering. In this approach, we propose two distributed
algorithms: T -closure algorithm and hierarchical node clus-
tering algorithm to find node clusters automatically in a
P2P network. We explore the node connectivity together
with the connection quality. As a result, the link delay of
communication between the super-node and the peer-node
in node clustering can be limited, which will improve the
overall performance of P2P networks.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems

General Terms
Algorithms

Keywords
Peer-to-Peer, node clustering, link delay, hierarchical clus-
tering

1. INTRODUCTION
In a peer-to-peer(P2P) network, two or more peers use

appropriate information and communication systems to col-

∗Supported by NSF grant IDM-0308229

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

laborate spontaneously without requiring central coordina-
tion [1][2]. In addition to the benefits as adaptation, self-
organization, peer autonomy, load balancing, fault-tolerance
through massive replication [3], P2P networks also introduce
certain challenges that limit their usages. One challenge is
the organization of peer nodes in P2P networks. The or-
ganization adopted by most existing systems are costly in
terms of communication messages, which will result in mes-
sage flooding[4][5][6]. Currently researchers propose to con-
struct a super-peer network to improve the P2P network
infrastructure using node clustering [7]. In a super-peer
network, each node cluster is a set of nodes in the P2P net-
work, in which the super-node handles communications of
its peer-nodes and manages the node cluster. By this way,
the management of the whole P2P network is distributed
over the super-nodes and the overall performance will be
improved[7][8][9]. For example, with node clusters, we can
decrease the communication messages and limit the length
of routing paths in P2P networks[10].

Although node clustering has been utilized to improve sys-
tem performance such as KaZaA [11], discovering of node
clusters in P2P networks is still a challenge that needs to
be addressed [8][12]. In previous works, Connectivity-based
Distributed Node Clustering(CDC) [10] implements node
clustering based on the node connectivity in P2P networks.
Through random routing of weighted messages, CDC tries
to create node clusters based on the highly connected node
set. In CDC, inappropriate choice of initiators may cause
bad clustering result. Max-Min D-Cluster Formation [13]
proposes to find node clustering based on d-hop dominat-
ing set, which is similar to k-hop clustering algorithm [14].
As proved in [13], the minimum d-hop dominating set prob-
lem is NP-complete, Max-Min D-Cluster algorithm is used
as an approximation of the optimal solution for the min-
imum d-hop dominating set problem. In [15], MCL algo-
rithm assumes that the global information about the entire
P2P network such as the number of nodes, the number of
node connections etc, is available in a central location. In
[16], node clustering is constructed according to the com-
plete connected set graph in the P2P network.

In previous works, node clustering is mainly focused on
node connectivity, sometimes requiring the global knowl-
edge such as MCL. In this paper, we propose a new node
clustering approach, node clustering based on link delay, for
P2P networks. In addition to node connectivity, our ap-
proach also studies the quality of node connection, which is
not addressed in previous works. In a super-peer network,
peer-nodes may communicate very often with super-nodes,

744

2005 ACM Symposium on Applied Computing

consequently the quality of node connection in a node clus-
ter will affect the performance of the whole P2P network.
In our approach, the link delay of communications between
peer-nodes and super-nodes can be restricted to a time limit
T . Our approach is implemented in a completely distributed
way without the requirement of global knowledge. Another
issue not addressed in previous works is the number of node
clusters. If the number is too large, the performance of
super-peer networks is nearly the same as that of P2P net-
works without node clusters. In our approach, the number
of node clusters can also be restricted. It is a constant ap-
proximation of the optimal solution with high probability,
which guarantees the overall performance of P2P networks.

The rest of the paper is organized as: section two de-
scribes the problem of node clustering based on link delay
and the terminologies; section three describes and analyzes
two algorithms used in our approach: T -closure algorithm
and hierarchical node clustering algorithm; section four de-
scribes experiments to show the effectiveness of T -closure
computation and tolerance of our approach to changes in
P2P networks.

2. PROBLEM DESCRIPTION AND TERMI-
NOLOGIES

With the link delay of communications among different
nodes, a P2P network can be represented by a connected and
weighted graph. Here we define the graph as G = (V, E, W).
Any vertex v ∈ V represents an actual node in a P2P net-
work; for two vertices u and v if the corresponding nodes
in the P2P network know the existence of each other(i.e.,
logically connected), then there is an edge (u, v) ∈ E be-
tween them and the edge weight W (u, v) is the link delay of
communication between u and v. In the graph G, the sum
weight of all the edges in a path is called the path distance.
{V1, V2, V3, . . . , Vk}(Vi ⊆ V, 1 ≤ i ≤ k) is a vertices cover-
ing of G, which satisfies V1 ∪ V2 ∪ V3 ∪ . . . ∪ Vk = V and
Vi ∩ Vj = ∅(i 6= j).

In a P2P network represented by the graph G, the nodes
set corresponding to Vi(1 ≤ i ≤ k) is called a node clus-
ter. In a node cluster, there is a node that will be in charge
of all the other nodes, which is called super-node(i.e., clus-
ter head). The other nodes in the node cluster are called
peer-node. In order to guarantee the connection quality, a
parameter T (T > 0) is defined to be the limit of link delay
for the communication between peer-node and super-node
in a node cluster. The problem of node clustering based
on link delay in a P2P network is: find a vertices covering
{V1, V2, V3, . . . , Vk} with the minimum value of k and in each
Vi(1 ≤ i ≤ k), the distance of path between vi, v

′
i ∈ Vi(vi

is the vertex corresponding to the super-node of the node
cluster represented by Vi, v′

i is the vertex corresponding to
the peer-node) is not larger than the parameter T .

3. NODE CLUSTERING BASED ON LINK
DELAY

In [13], it is proved that the d-hop dominating set prob-
lem in a graph is NP-complete. The d-hop dominating set
problem can be easily reduced to the problem of node clus-
tering with the link delay limit as d. So the problem of node
clustering based on link delay is also NP-complete and the
objective of our approach is to find an approximation of the
optimal solution.

Node clustering based on link delay includes two parts: T -
closure computation and hierarchical node clustering. Cor-
respondingly the T -closure algorithm and the hierarchical
node clustering algorithm are proposed. In fact, the result of
T -closure computation is a preparation for hierarchical node
clustering. Both of these two algorithms are completely dis-
tributed algorithms. In node clustering based on link delay,
we assume that each node has a unique identification num-
ber arbitrarily assigned in the P2P network.

3.1 T -closure Computation
The objective of T -closure computation is: given the con-

nected and weighted graph G = (V, E, W) for a P2P network
and the limit T . For two vertices u, v ∈ V in the graph G,
if the distance of the shortest path between u and v is not
larger than T , then we make the nodes represented by u, v

in the P2P network know the existence of each other and
set the link delay of communication between them as the
distance of the shortest path in G. After T -closure compu-
tation, we construct a new graph G′ = (V ′, E′, W ′). In G′,
we have: V ′ = V , E ⊆ E′ and for any two vertices u and
v, if the distance of the shortest path between u, v is not
larger than T in G, there must be an edge (u, v) ∈ E′ and
W ′(u, v) is the distance of the shortest path in G.

3.1.1 T -closure Algorithm
For T -closure computation, we propose the T -closure al-

gorithm. The intuition of T -closure algorithm is based on
one observation of the shortest path: assume we create a
list of the shortest paths originating from the vertex u with
their distances in the ascending order, then any one of these
shortest paths must be an extension of some previous one
in the list. So for each vertex u in the T -closure algorithm,
we search for the shortest paths beginning from u with their
distances in the ascending order. And in the T -closure al-
gorithm, each vertex u has variables as:

SL: a sorted list stores the information of the shortest
paths beginning from u with their distances in the ascending
order and not larger than T . For a shortest path (u, v1, v2, . . .

, vn, v), there is an entry (dv, dt, pass ver) in SL. dv is the
destination node v of the shortest path; dt(dt ≤ T) is the
distance of the shortest path; pass ver is the nearest vertex
v1 to u in the path.

EL: a sorted list stores the information of the candidates
for the shortest paths beginning from u with their distances
in the ascending order. Each entry in EL has the same ele-
ments as the entry in SL except that the path corresponding
to the entry in EL is only a candidate of the shortest path
and the real shortest paths will be chosen from EL.

SC : the counter of the shortest paths beginning from u

already added in SL.
EC : the counter of the candidates for the shortest paths

beginning from u already added into EL.
VS : the set of nodes that for any node v ∈ V S, the short-

est path from u to v has been added to SL.
Flag : Flag = 1 indicate that all the shortest paths from u

with distance not larger than T have been found, otherwise
Flag = 0.

Following is the details of T -closure algorithm for vertex
u, which includes three processes: P1, P2 and P3. P1 is the
initialization of the algorithm; P2 is the process that will
deal with the incoming requests; P3 is the process that will
deal with the replies from the neighbors. In the algorithm

745

description and the following discussion, for a vertex u we
use u.variable to represent variable of u; we use SLi.dv,
SLi.dt and SLi.pass ver to represent the fields of the ith
entry in SL, which is the same for EL. So u.SLi.dv means
the field dv of u.SL’s ith entry.

P1: {Initialization of the T -closure algorithm}

1: SL ⇐ null
2: EL ⇐ null
3: V S ⇐ null
4: Flag ⇐ 0
5: EC ⇐ 0
6: for any vertex v ∈ neighbors of node u do

7: if W (u, v) ≤ T then

8: add an entry (v, W (u, v), v) into EL
9: EC ⇐ EC + 1
10: end if

11: end for

12: if EL = null then

13: SC ⇐ 1
14: add the entry (u, 0, u) into SL
15: Flag ⇐ 1
16: else

17: SC ⇐ 2
18: V S ⇐ {u, EL1.dv}
19: add the entry (u, 0, u) into SL {the first shortest path}
20: add the entry (EL1.dv, EL1.dt, EL1.pass ver) into SL {the

second shortest path}
21: send a request (tell me your shortest path after EL1.dv) to

the neighbor EL1.pass ver
22: delete EL1 from EL
23: EC ⇐ EC − 1
24: end if

25: wait

P2: {processing a request (tell me your shortest path after ver)
from the neighbor v}

1: if cannot find SLk in SL(2 ≤ k ≤ SC) such that SLk−1.dv = ver
then

2: if Flag = 1 then

3: send the reply (all shortest paths have been found) to v
4: else

5: put the request into request queue
6: wait

7: end if

8: else

9: send the reply (SLk, SLk+1, . . . , SLSC , EL1, EL2, . . . , ELEC)
to v

10: end if

P3: {processing a reply RP from the neighbor v}

1: if RP 6= (all shortest paths have been found) then

2: assume there are n entries in RP
3: for i = 1 to n do

4: if there is an entry ELk in EL(1 ≤ k ≤ EC) such that
ELk.dv = RPi.dv then

5: if ELk.dt > W (u, v) + RPi.dt then

6: create a new entry E = (ELk.dv, W (u, v) + RPi.dt, v)
7: delete ELk from EL
8: add the new entry E into EL
9: end if

10: else if RPi.dv /∈ V S and W (u, v) + RPi.dt ≤ T then

11: add into EL the entry (RPi.dv, W (u, v) + RPi.dt, v)
12: EC ⇐ EC + 1
13: end if

14: end for

15: end if

16: if EL = null then

17: Flag ⇐ 1
18: Find all the requests in the request queue. Assume the request

is from the neighbor v, send to v the reply (all shortest paths

have been found)
19: else

20: add an entry (EL1.dv, EL1.dt, EL1.pass ver) into SL;
21: V S ⇐ V S + {EL1.dv}
22: SC ⇐ SC + 1
23: Find all the requests (tell me your shortest path after ver)

in the request queue such that we can find the entry SLk in
SL(2 ≤ k ≤ SC) satisfying SLk−1.dv = ver. Assume the re-
quest is from node v, send to v the reply (SLk, SLk+1, . . . , SLSC

, EL1, EL2, . . . , ELEC)
24: send the request (tell me your shortest path after EL1.dv) to

the neighbor EL1.pass ver
25: delete the entry EL1 from EL
26: EC ⇐ EC − 1
27: wait

28: end if

In fact, T -closure algorithm is a controlled depth-first
search algorithm for the shortest paths. Every time T -
closure algorithm extends the shortest path found most lat-
terly and compares the distance of the extension with those
of all the candidates. Based on the comparison, T -closure
algorithm decides whether to go on with the extension or
to choose a candidate as the new shortest path. In the
T -closure algorithm, every time vertex u chooses the first
entry EL1 in EL, adds (EL1.dv, EL1.dt, EL1.pass ver) as
a new entry into SL. Then u sends a request to its neigh-
bor EL1.pass ver(extension of the shortest path found most
recently). When u gets the reply from EL1.pass ver, u up-
dates its EL(comparing the distance of the extension with
that of the candidates) and repeats the computation. When
u gets a request from its neighbor, if the request can be pro-
cessed, u sends the reply including the corresponding entries
in SL and all the entries in EL to the neighbor, otherwise
the request is put into the request queue. There is one thing
needs to be mentioned that when u finds that its Flag is 1, u

will send finish message to all the vertices that the shortest
paths distances between u and these vertices are not larger
than T . When u gets finish message from all these vertices,
it will terminate the T -closure algorithm. Then the entries
stored in u.SL give the information for all the shortest paths
beginning from u with distance not larger than T .

3.1.2 Analysis of theT -closure Algorithm

Theorem 1. There is no deadlock in the T -closure algo-
rithm.

Proof. Suppose there is a deadlock when the T -closure
algorithm is executed for a graph G = (V, E, W). Let
u1, u2, u3, . . . , un be the sequence of nodes involved in the
deadlock. According to the T -closure algorithm, ui must be
waiting for a reply from ui⊕1(1 ≤ i ≤ n, ⊕ is the modulo n

addition operator) and ui⊕1 is the neighbor of ui. Assume
for ui, its request for ui⊕1 is (tell me your shortest path after
vi).

Because ui sends the request (tell me your shortest path
after vi) to ui⊕1, the entry (vi, di, ui⊕1) is the most resent
entry added into ui.SL and di = W (ui, ui⊕1)+ distance
from ui⊕1 to vi. Correspondingly (vi⊕1, di⊕1, ui⊕2) is the
most resent entry added into ui⊕1.SL. Because the re-
quest of ui cannot be processed by ui⊕1, then we must have
distance from ui⊕1 to vi ≥ di⊕1. As a result, di > di⊕1 and
we have d1 > d2 > . . . > dn > d1. It is contradictory. So
the deadlock sequence u1, u2, u3, . . . , uk cannot happen.

Theorem 2. When the T -closure algorithm terminates
for a graph G = (V, E, W), for any node u, v ∈ V , if the
distance of the shortest path from u to v is not larger than
T , u must know the existence of v and the distance of the
shortest path.

Proof. Assume there is a shortest path from v1 to vk

(v1, v2, . . . , vk) and the distance is not larger than T . We

746

prove that when the T -closure algorithm terminates, v1 must
be able to know vk and the distance of (v1, v2, . . . , vk).

It is obvious that when doing initialization, the entry (v2,

W (v1, v2), v2) is added to v1.EL or v1.SL directly. If the
entry is added into v1.EL, because (v1, v2) is also the short-
est path, the entry will never be changed afterward and
added to v1.SL finally. Then v1 know the existence of v2

and the distance of (v1, v2). Assume for the shortest path
(v1, v2, . . . , vi)(1 < i ≤ k − 1), v1 knows the existence of
vi and distance of (v1, v2, . . . , vi), we prove that v1 must
be able to know the existence of vi+1 and the distance of
(v1, v2, . . . , vi, vi+1).

Because v1 knows the existence of vi and the correspond-
ing shortest path distance, then when the entry (vi, distance
of (v1, v2, . . . , vi), v

′
1) is added to v1.SL, v1 sends a request

to v′
1 according to vi. When v1 gets the reply, in v′

1.SL

there should be an entry (vi, dist, v′
2) and v′

1 gets reply from
v′
2 according to vi. Use the same deduction, when v1 gets the

reply, we get a sequence of vertices v′
1, v

′
2, . . . , v

′
p, vi(1 ≤ p).

v′
j sends request to v′

j+1(1 ≤ j ≤ p−1) according to vi and v′
p

sends the request to vi. It is obvious that when v1 gets reply
from v′

1, v′
j must get reply from v′

j+1(1 ≤ j ≤ p − 1) and v′
p

gets reply from vi. The distance of (v1, v
′
1, v

′
2, . . . , v

′
p, vi) is

equal to the distance of (v1, v2, . . . , vi), otherwise there can
not be the entry (vi, distance of (v1, v2, . . . , vi), v

′
1) in v1.SL.

Then (v1, v
′
1), (v

′
j , v

′
j+1)(1 ≤ j ≤ p − 1) and (v′

p, vi) must all
be the shortest paths. Because in initialization, the entry
(vi, W (vi, vi+1), vi+1) is added to vi.EL or vi.SL directly. So
when v′

p gets the reply, v′
p must be able to know the existence

of vi+1 and the distance of (v′
p, vi, vi+1), which will not be

changed because (v′
p, vi, vi+1) is the shortest path between

v′
p and vi+1. Use the same deduction, we can get when v1

gets reply from v′
1, the entry (vi+1, distance of (v1, v

′
1, v

′
2, . . . ,

v′
p, vi, vi+1), v

′′) can be created in v1.EL. Because the dis-
tance of (v1, v

′
1, v

′
2, . . . , v

′
p, vi) is equal to the distance of

(v1, v2, . . . , vi), then the distance of (v1, v
′
1, v

′
2, . . . , v

′
p, vi, vi+1)

is equal to the distance of (v1, v2, . . . , vi, vi+1). As a result,
the entry (vi+1, distance of (v1, v

′
1, v

′
2, . . . , v

′
p, vi, vi+1), v

′′)
won’t be changed and added to v1.SL finally. Then v1 knows
the existence of vk and the distance of (v1, v2, . . . , vi, vk).

It is obvious for any vertex u ∈ V , there are at most
N − 1 shortest paths beginning from u with the distance
not larger than T (N is the number of vertices in the graph
G). In the T -closure algorithm, for any u ∈ V , after each
round of communication with the neighbors, a shortest path
from u can be added correctly. So for any vertex u ∈ V , u

only needs communicate with it neighbors at most N − 1
times to know all the shortest paths beginning from u with
the distance not larger than T . So the total number of
communication messages needed in T -closure algorithm is
O(N2).

3.2 Hierarchical Node Clustering
In [17], hierarchical clustering algorithm is proposed to

find discrete mobile centers in a wireless network that can
be represented by a graph. In the graph, there is an edge
between two vertices if and only if a disk of radius R cen-
tered at one node contains the other one. The weight of
each edge is the distance of the corresponding two nodes in
space. The discrete mobile centers problem is equal to find-
ing the minimal dominating set with visible range radius

as R in the graph, which is a NP-complete problem. With
the hierarchical clustering algorithm, the number of discrete
mobile centers we get will be a constant approximation of
the optimal solution with high probability [17]. Because of
this property, we adopt the hierarchical clustering algorithm
in node clustering based on link delay to control the number
of node clusters. The graph in [17] is not a general graph,
in which if there is a path (v1, v2, . . . , vn) such that the path
distance is not larger than the visible range radius R, there
must be an edge between v1 and vn and the edge’s weight
must be no larger than R. It is obvious that the original
graph G = (V, E, W) we use to represent a P2P network
may not satisfy this requirement. So we propose the T -
closure algorithm. After T -closure computation, if we take
the visible range radius as T , the graph G′ = (V ′, E′, W ′)
we get can satisfy the requirement. Now node clustering
based on link delay in G′ with the limit T is equal to the
discrete mobile centers problem with visible range radius T .

3.2.1 Hierarchical Node Clustering Algorithm
Similar to [17], hierarchical node clustering algorithm de-

pends on a basic clustering operation. As we discussed in
the beginning of this section, in node clustering based on
link delay, we assume that each node has an unique iden-
tification number arbitrarily assigned in the P2P network.
So each vertex v ∈ V ′ has an unique identification num-
ber. The basic clustering operation is: given the graph
G′ = (V ′, E′, W ′) and the parameter d, for each vertex
v ∈ V ′, v nominates another vertex v′ ∈ V ′ with the largest
identification number such that the edge between v and v′

is not larger than d. v can nominates itself if there are no
other vertices with larger identification number than v. As a
result, in the P2P network, the node that its corresponding
vertex v in G′ is nominated becomes the super-node, all the
nodes that their corresponding vertices nominate v become
the peer-nodes belonging to the cluster controlled by this
super-node.

In fact, the hierarchical node clustering algorithm is a re-
peated execution of the basic operation with an increasing
value for the parameter d. In node clustering based on link
delay, for simplicity we assume the link delay limit T is equal
to 2k ∗ t, t is called delay base and k is called delay exponent.
The hierarchical node clustering algorithm executes the ba-
sic operation for k − 1 rounds and in the rth(1 ≤ r ≤ k − 1)
round, the value of the parameter d is set to 2r ∗ t. The
hierarchical node clustering algorithm is executed in every
vertex v ∈ V ′ and v will store the identification numbers
of the vertices it controls(the vertices that v is nominated
by) or the identification number of the vertex it is controlled
by(the vertex that v nominates). In the rth(1 ≤ r ≤ k − 1)
round, for v ∈ V ′, if v is not nominated, v will terminate the
execution of hierarchical node clustering algorithm; for the
vertex it nominates, v will send message to tell the identifi-
cation numbers of the vertices it controls; for the vertices it
controls, v will send messages to tell the identification num-
ber of the vertex it nominates. In the r+1th(1 ≤ r ≤ k−2)
round, the hierarchical node clustering algorithm is executed
only in the vertices that are nominated in the rth round. In
each round, the nodes of the vertices that are nominated
become the super-nodes of this round. After the (k − 1)th
round, the nodes of the vertices that are nominated become
the super-nodes of the final result.

747

3.2.2 Analysis of Hierarchical Node Clustering Al-
gorithm

Theorem 3. With hierarchical node clustering algorithm,
we can get a set of node clusters such that every peer-node
is within link delay limit T from its super-node.

Proof. The proof is similar to the Lemma in [17]. We
prove that after the ith round, the link delay between a peer-
node and its super-node is not larger than 2i+1 ∗ t. When
i = 1, this is obviously true. Assuming it is true for i, we
consider the (i+1)th round. If we take a peer-node v and its
super-node v′ in the ith round, then the link delay between
v and v′ is not larger than 2i+1 ∗ t. If v′ does not nominate
any other nodes, then v’ nominate itself as super-node in
(i + 1)th round and v is still the peer-node of v′, so the link
delay between v and v′ is clearly not larger than 2i+2 ∗ t. If
v′ nominates v′′ as super-node, then the link delay between
v and v′′ is not larger than 2i+1 ∗ t + 2i+1 ∗ t = 2i+2 ∗ t. So
after (k − 1)th round, the link delay between the peer-node
and its super-node is never larger than 2k−1+1 ∗ t = T .

It is proved in [17] that in hierarchical clustering algo-
rithm, if the basic operation is executed for ⌊loglog(Nw)−1⌋
rounds (Nw is the number of nodes in the wireless network),
the discrete mobile centers in the result will be a constant
approximation of the optimal solution with high probabil-
ity. In fact, loglog(Nw) is a small value. For example, if
Nw is 230 (roughly 109), loglog(Nw) is less than 5. As we
discussed, the node clustering based on link delay problem
in G′ with the limit T is equal to the discrete mobile centers
problem with visible range radius T . So for a P2P network
with N nodes, if we set the value of k, t to satisfy: 2k ∗ t = T

and k > ⌊loglog(N)− 1⌋, then the node clusters we get will
also be a constant approximation of the optimal solution
with high probability. In a P2P network with N nodes, for
each round in the hierarchical node clustering algorithm, the
number of communication messages is O(N). So the total
number of communication messages is O(kN)

4. EXPERIMENTS AND RESULTS
The first experiment shows the effectiveness of our T -

closure computation, the second experiment shows the tol-
erance of our approach to the changes in the P2P network.

4.1 Effectiveness ofT -closure Computation
As we discussed, the original graph G for a P2P net-

work may not satisfy the requirements of hierarchical clus-
tering algorithm. So in the experiment, we execute hi-
erarchical node clustering algorithm with and without T -
closure computation to see the difference. In our exper-
iment, we modeled a P2P network with 1000 nodes and
the weight of the edge between two nodes is randomly gen-
erated. In the experiment, we have delay exponent k as
5 because ⌊loglog1000⌋ < 5. We compared the value of
numberofclusters

1000
in each round of hierarchical node cluster-

ing with and without T -closure computation respectively.
Figure 1 is the result of the experiment. As we can see
from the figure, with T -closure computation, the number of
clusters in hierarchical node clustering will decrease dramat-
ically compared with that without T -closure computation.
In fact only with T -closure algorithm, the node clusters we
get can be a constant approximation of the optimal solution
with high probability.

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

round

(n
um

be
r

of
 c

lu
st

er
s)

/1
00

0

without T−closure
with T−closure

Figure 1: Effectiveness of T -closure Computation

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10*X nodes deleted

PP=SIZE(S
p
) / SIZE(S

oc
)

UP=SIZE(S
u
) / SIZE(S

oc
)

Figure 2: Adaptation for Node Deletion

4.2 Tolerance to Changes
With this experiment, we want to see if some changes

take place in the P2P network, how the new set of super-
nodes will differ from the original set of super-nodes. In
this experiment, we also modeled a P2P network of 1000
nodes and the edge weights are randomly generated. We
firstly did node clustering in the original P2P network. After
that, we made some random changes in the P2P network,
which include changing the value of link delay between nodes
and deletion of some nodes. Then we did node clustering
again and compared these two clustering results. Assume
the set of super-nodes in the first node clustering is Soc and
the set of super-nodes in the second node clustering is Snc.
We define the preserving set Sp and the updating set Su

as: Sp = Soc ∩ Snc; Su = Snc − Soc. Consequently we
define preserving percentage PP and updating percentage
UP respectively as:

PP =
SIZE(Sp)

SIZE(Soc)
; UP = SIZE(Su)

SIZE(Soc)
.

PP describes the percentage of nodes in Soc that are still
super-nodes in the second clustering result; NP describes
the percentage of nodes that are newly added after the
changes according to Soc.

Firstly we randomly chose 10 ∗ i(i = 1, . . . , 10) nodes in
the original P2P network, deleted them from the P2P net-
work and did node clustering. The result of PP and UP is
showed in Figure 2. Secondly we randomly chose 10, 50 and
100 nodes in the original P2P network, increased their edge
weights by 2i ∗ t(i = 1, 2, 3, 4) and then did node clustering.

748

1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

increment 2x * t

U
P

=
S

IZ
E

(S
u)

/ S
IZ

E
(S

oc
)

10 nodes
50 nodes
100 nodes

Figure 3: UP according to edge increment

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

increment 2x * t

P
P

=
S

IZ
E

(S
p)

/ S
IZ

E
(S

oc
)

10 nodes
50 nodes
100 nodes

Figure 4: PP according to edge increment

The experiment results of PP and UP for each weight in-
crement are showed in Figure 3 and 4. From these figures,
we can see that when not too many changes take place in
the original P2P network, the new set of super-nodes will
not differ too much from the original one. As a result, the
original clustering result can still be used when the changes
are not dramatic.

5. CONCLUSION
In this paper, we propose an approach implementing node

clustering based on link delay in P2P networks. With our
approach, node clustering in P2P networks is implemented
in a completely distributed way and does not require the
global knowledge of P2P networks. In our approach, not
only node connectivity but also the quality of node connec-
tion are studied. As a result, the link delay of communi-
cation between super-nodes and peer-nodes can be limited.
With hierarchical node clustering, our approach can get the
set of node clusters that is a constant approximation of the
optimal solution for node clustering based on link delay with
a high probability. Consequently the overall performance in
P2P networks can be improved.

6. REFERENCES
[1] J. Wu and I. Stojmenovic, “Ad hoc network,”

Computer:Ad Hoc Network, vol. 37, no. 2, 2004.

[2] M. Singh, V. K. Prasanna, J. Rolim, and C. S.
Raghavendra, “Collaborative and distributed

computation in mesh-like sensor arrays,” in the
IFIP-TC6 8th International Conference on Personal
Wireless Communications(PWC), 2003.

[3] N. Daswani, H. Garcia-Molina, and B. Yang, “Open
problems in data-sharing peer-to-peer systems,” in 9th
International Conference on Database Theory(ICDT),
2003.

[4] J. Li and P. Mohapatra, “A novel mechanism for
flooding based route discovery in ad hoc networks,” in
Wireless Communications Symposium, GLOBECOM,
2003.

[5] P. Mohapatra, C. Gui, and J. Li, “Group
communications in mobile ad hoc networks,” IEEE
Computer, Special Issue on Ad Hoc Networks, 2004.

[6] S.-J. Lee, J. Hsu, R. Hayashida, M. Gerla, and
R. Bagrodia, “Selecting a routing strategy for your ad
hoc network,” Computer Communications, special
issue on Advances in Computer Communications and
Networks: Algorithms and Applications, vol. 26, no. 7,
pp. 723–733, 2003.

[7] B. Yang and H. Garcia-Molina, “Designing a
super-peer network,” in the 19th International
Conference on Data Engineering (ICDE), Bangalore,
India, 2003.

[8] A. McDonald and T. Znati, “A mobility based
framework for adaptive clustering in wireless ad-hoc
networks,” IEEE Journal On Selected Area of
Communications, vol. 17, no. 8, pp. 1466–1487, 1999.

[9] B. Das and V. Bharghavan, “Routing in ad-hoc
networks using minimum connected dominating sets,”
in IEEE International Conference on Communication,
1997, pp. 376–380.

[10] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis,
“Connectivity based node clustering in decentralized
peer-to-peer networks,” in the 3rd International
Conference on Peer-to-Peer Computing, 2003.

[11] Kazaa website. [Online]. Available:
http://www.kazaa.com

[12] S.Basagni, “Distributed clustering for ad hoc
networks,” in 99’ International Symp. On Parallel
architecture, algorithms, and Networks (I-SPAN’99),
1999, pp. 310–315.

[13] A. Amis, R. Prakash, T. Vuong, and D. Huynh,
“Max-min d-cluster formation in wireless ad hoc
networks,” in IEEE INFOCOM’2000, 2000.

[14] D. Kim, S. Ha, and Y. Choi, “K-hop cluster-based
dynamic source routing in wireless ad-hoc packet
radio networks,” in IEEE Vehicular Technology
Conference, 1998, pp. 224–228.

[15] S. van Dongen, “A cluster algorithm for graphs,” in
Technical Report INS-R0010, National Research
Institute for Mathematics and Computer Science in
the Netherlands, Amsterdam, May 2000.

[16] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K.
Pradhan, “A cluster-based approach for routing in
dynamic networks,” ACM Computer Communications
Review, vol. 27, no. 2, pp. 49–64, 1997.

[17] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and
A. Zhu, “Discrete mobile centers,” in the 17th ACM
Symposium on Computational Geometry (SoCG’01),
2001, pp. 188–196.

749

