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Abstract. Over the past few years, several non-oscillatory central schemes
for hyperbolic conservation laws have been proposed for approximating the
solution of the Ideal MHD equations and similar astrophysical models. The
simplicity, versatility, and robustness of these black-box type schemes for sim-
ulating MHD flows suggest their further development for solving MHD models
with more complex wave structures. In this work we construct a non-oscillatory
central scheme for the Hall MHD equations and use it to conduct a study of
the magnetic reconnection phenomenon in flows governed by this model.

1. Introduction

The successful implementation of non-oscillatory central schemes for the equa-
tions of ideal magnetohydrodynamics (MHD) and similar astrophysical models (see,
for example, [3, 2, 9]), and the versatility of these balck-box type schemes, suggest
their further development for computing the approximate solutions of other MHD
models whose more complex characteristic decomposition makes the utilization of
schemes based on Riemann solvers impractical. In this work, we present a high-
resoltuion, non-oscillatory, central scheme for the the Hall MHD model
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where (1.1a), (1.1b), and (1.1d) express the conservation of mass, momentum and
energy respectively, and equation (1.1c) the evolution of the magnetic field, which
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also implies the solenoidal constraint,

(1.2) ∇ · B = 0.

The total energy, U , momentum, ρv, and magnetic field, B, are coupled through
the equation of state,

(1.3) U =
p

γ − 1
+
ρv2

2
+
B2

2
.

And the electric field, E, is expressed in the generalized Ohm’s law

E = −v × B + ηj +
δi
L0

j × B
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,(1.4a)

j = ∇× B(1.4b)

where L0 is the normalizing length unit, and δe and δi stand for the electron and
ion inertia respectively; they are related to the electron-ion mass ratio by (δe/δi)

2 =
me/mi. For the simulations considered in this work, the electron pressure tensor,

−(δi/L0)(∇
↔

p/ρ) can be ignored.
This model follows from the MHD equations after normalizing as the Geospace

Environment Modeling (GEM) challenge, preserving the unit length in the gener-
alized Ohm’s law, (1.4), for simplicity.

The scheme we propose below is built upon the semi-discrete formulation of
Kurganov and Tadmor, [14], and we employ it to investigate the role that the Hall
term, j × B, and the electron inertia term,

(1.5) Te =

(

δe
δi

)2
1

ρ

{

∂

∂t
+ (v · ∇)

}

j,

play in the magnetic reconnection process.
Our work is organized as follows: in §2 we briefly describe the physical phe-

nomena under consideration and the physical relevance of the terms on the right
hand side of equation (1.4). In §3 we describe the proposed numerical scheme and
its properties, and in §4 we present the numerical simulations calculated with the
central scheme and discuss our findings.

2. Theoretical background: Magnetic Reconnection and Hall MHD

Magnetic reconnection is an irreversible process observed in space and lab-
oratory plasma in which magnetic fields with different direction merge together
and dissipate in the diffusive region breaking the magnetic frozen-in condition and
quickly converting magnetic energy into kinetic and thermal energy. It is widely
believed that the reconnection process is the main energy converting process in
space, and most of the eruptive events are driven or associated with it.

Classic MHD theory –without the Hall term– predicts a much slower reconnec-
tion process than direct space observations suggest. Numerical simulations suggest
that the Hall effect [15, 6] –caused by ions being heavier than the electrons, could
enable fast reconnection, and both in-site space observation[10] and laboratory
experiments[17] provide evidence of the presence of the Hall effect in the reconnec-
tion process. In addition, recent particle in cell (PIC) simulations [4, 8, 11] suggest
that electron’s kinetic effect might also be important in the reconnection process.
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In view of these results, we investigate the ability of the model (1.1) – (1.4)
to describe the reconnection phenomenon by simulating flows with different typical
scales L0. When this is of the same order as δi, but still much larger than δe, the
electron inertia term, (1.5) in the generalized Ohm law, (1.4a), may be ignored,
but not the Hall term, j × B. The magnetic frozen-in condition can no longer be
satisfied where the Hall term becomes large. In this region, fluid elements don’t
flow along the magnetic field, instead they may move across the field lines. For
those flows, we write the electric field as

(2.1) E = −v × B +
j × B

ρ
+ η j + ηj∆ j.

When the typical scale L0 approaches the electron inertia length δe, the electron’s
behavior can no longer be ignored and the electron inertia term in the generalized
Ohm’s law, (1.4) should be include in the simulation. The electric field for this
flows reads

(2.2) E = −v × B +
j × B

ρ
+ η j + ηj ∆ j + Te.

In both cases, the hyperresistivity, ηj∆j –mainly a numerical artifact– helps smooth-
ing the structure around the grid scale without strongly diffusing the longer scale
lengths.

3. Numerical Scheme

Both Hall and the electron inertia terms in (2.1) and (2.2) pose significant
numerical challenges for simulating MHD flows. Unlike in classical MHD where the
characteristic speeds remain constant with respect to the wave frequency, the Alvén
mode wave in Hall MHD satisfies the dispersion relation v ∼ k (where k is related
to the wave frequency by ω ∼ k2, [5]). Thus, the Alvén wave speed increases when
the wave length becomes small, v ∼ 1/λ, and the maximum wave speed increases
as the grid is refined, vmax ∼ 1/△x, requiring extremely small time steps that may
result in too much numerical dissipation.

Results previously obtained with central schemes for Ideal MHD flows, [3, 2],
and the minimal characteristic information from the underlying PDE they required,
suggest these as the building block for new schemes to solve more complex MHD
flows. In particular, we turn our attention to the semi-discrete central formulation of
Kurganov and Tadmor, [14], whose numerical viscosity does not increase as the time
step decreases –in contrast with fully-discrete central schemes whose viscosity is of
order O((∆x)2r/∆t), the viscosity of semi-discrete schemes is of order O((∆x)2r−1).

In order to construct our central scheme, we begin by re-writting the system
(1.1) in conservation form,

(3.1) ut + f(u)x + g(u)y = 0,
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with

u =(ρ, ρvx, ρvy, ρvz, Bx, By, Bz, U)⊤(3.2a)

f(u) =
(

ρvx, ρv
2
x + p+

B2

2
−B2

x, ρvxvy −BxBy, ρvxvz −BxBz,(3.2b)
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,

where

(3.3) U ′ = U + p−
B2

2
and p = (γ − 1)

(

U −
ρv2

2
−
B2

2

)

,

and the electric field given by (2.1) or (2.2).

3.1. Central Schemes for Hyperbolic Conservation Laws. To approx-
imate the solution of the Hall MHD model, we construct a semi-disrete central
scheme based on the formulation of Kurganov and Tadmor for hyperbolic conser-
vation laws in 2D, [14]. A formulation that we describe here briefly for the shake
of completeness.

Central schemes realized the solution of the hyperbolic conservation law in
terms of the cell average of u over the control volume Ii,j = [xi− 1

2
, xi+ 1

2
]×[yj− 1

2
, yj+ 1

2
],

(3.4) ui,j(t) =
1
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2

xi−
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2

∫ yj+
∆y

2

yj−
∆y

2

u(x, y, t) dydx.

Integrating (3.1) over Ii,j and dividing by the space scales ∆x and ∆y, yields the
equivalent formulation

(3.5)
d
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which we write in the more compact form

(3.6)
d

dt
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where the numerical fluxesHx
i± 1

2
,j

andHy

i,j± 1
2

approximate the integrals on the right

of (3.5) and are calculated so as to account for the propagation of discontinuities
at the cell interfaces x = xi± 1

2
and y = yj± 1

2
. For the results we presented below,

we chose the midpoint rule for approximating the integrals, which results in the
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fluxes,

Hx
i+ 1

2
,j =

f(uW
i+1,j) + f(uE

i,j)

2
−
ax

i+ 1
2
,j

2

(

uW
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)

(3.7a)

Hy
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2
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−
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2

2

(
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i,j

)

.(3.7b)

For the actual implementation of the scheme, the values of u(x, y, t) at the cell

interfaces, u
N/S,E/W
i,j (t) are recovered via a non-oscillatory, piece-wise polynomial

reconstruction R(x, y;u(t)) =
∑

i,j pi,j(x, y) · 1Ii,j
(x, y), and defined as

uE
i,j := pi,j(xi+ 1

2
, yj) uW

i,j := pi,j(xi− 1
2
, yj)(3.8a)

uN
i,j := pi,j(xi, yj+ 1

2
) uS

i,j := pi,j(xi, yj− 1
2
),(3.8b)

and ax
i+ 1

2

and ay

i,j+ 1
2

stand for the maximum speeds of propagation at the cell

interfaces in the x and y directions respectively; we approximate these by

(3.9) ax
i+ 1

2
,j = max

{

ρ
(

uW
i+1,j

)

, ρ
(

uE
i,j

)}

, ay

i,j+ 1
2

= max
{

σ
(

uS
i,j+1

)

, σ
(

uN
i,j

)}

,

where ρ and σ stand for the spectral radius of the jacobian matrices of f(u) and
g(u) respectively. These values will, indeed, be exact if f(u) and g(u) are convex.
For the second order scheme that we propose, the interface values are reconstructed
from the cell averages via the bi-linear functions

(3.10) pi,j(x, y) = ui,j + (ux)i,j(x − xi) + (uy)i,j(y − yj)

with the numerical derivatives of u approximated with the limiter, [19],

(3.11) (ux)i,j = minmod

{

ui+1,j − ui,j

∆x
,
ui,j − ui−1,j

∆x

}

,

and similarly for (uy)i,j , where minmod{a, b} = (sgn(a)+sgn(b))min{|a|, |b|}. Once
the point values (3.8) are recovered and the speeds of propagation (3.9) estimated
so as to compute the numerical fluxes (3.7), an evolution routine can be employed to
evolve the cell averages of u. We choose a second order SSP Runge-Kutta scheme,
[12], for the simulations below,

u(1) = un + ∆t C(un),(3.12a)

un+1 = u(1) +
∆t

2

[

C(u(1)) − C(un)
]

.(3.12b)

This scheme is provided by CentPack, [1], a software package that implements
several central schemes for hyperbolic conservation laws, and we employ it as our
base scheme to evolve the solution of (1.1).

3.2. Magnetic and Electric Fields. When L0 is sufficiently large to ignore
the effects of the electron inertia term, Te, the scheme described above can be used
to evolve the solution of the system (1.1) – (1.3) provided the electric field, E, is
approximated consistently with (2.1), and the solenoidal constraint ∇ · B = 0 is
enforced. In such cases, we approximate the high-order terms in (2.1) with high-
order central finite differences. This allows us to feed back the electric field into
the fluxes and evolve the solution of (1.1) with the central scheme described above.
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The evolved magnetic field, that we denote by B∗, is then reprojected onto its
divergence free component by solving the Poisson equation,

(3.13) ∆Φ = −∇ · B∗

and writing the new magnetic field as

(3.14) Bn+1 = B∗ + ∇Φ.

Including the electron inertia term in the description of the electric field poses
additional difficulties as it involves the time derivative of j. For the numerical
experiments requiring the approximation of Te, we have followed two approaches:
the finite difference of the the previous two consecutive time values, and the method
suggested in [13], where the induction equation is re-written in non-conservative
form,

(3.15)
∂B′

∂t
= −∇×

(

v × B +
j × B′

ρ
+ η j

)

+ ηj∆j with B′ = B −
me

mi
∆B.

The first method works only when me/mi is small. For the second method, we
build a linear solver using the numerical package Portable Extensible Toolkit for
Scientific computation (PETSc).

4. Numerical Result

In order to test the validity of the proposed scheme, we run numerical tests
in both linear and non-linear regimes. In the linear regime, we test the dispersion
relationship of the system and quantitatively compare the results with analytical
solutions. In the non-linear regime, we run a typical reconnection simulation, so
that a qualitative comparison of the results obtained can be compared with previous
results.

4.1. Dispersion Relationship Test. We begin our numerical experiments
by testing the dispersion relation that follows for the linear analysis of the system
(1.1) – (1.4) under a small sinusoidal perturbation of wave length λ and amplitude
δ. After launching an oscillation with wave length λ in a periodic simulation box,
we measure the frequency of the oscillation, and compare the the computed wave
speed with the linear analytical prediction.

The linear analysis of the model shows that the wave mode corresponding to
the linear polarized Alvén wave in MHD is a circularly polarized wave known as
whistle wave (see, for example, [16]). In our numerical test, this wave propagates
in the x direction, and the density, pressure and the x components of the velocity
and magnetic field remain unperturbed by the small oscillation in both Hall MHD
and classic MHD. So the pure Alvén mode wave will be launched in the simula-
tion domain, no other MHD waves like sonic wave or magnetosonic wave will be
triggered.

We evolve the initial conditions

(4.1)
ρ = 1, vx = 0, vy = −δ cos (kx), vz = δ sin (kx)

p = 1, Bx = 1, By = δ vp cos (kx), Bz = −δ vp sin (kx)

over a solution domain of size xL = 9.6 using a uniform mesh of size ∆x = 0.05,
and a perturbation amplitude of δ = 10−5, with periodic boundary conditions. The
phase speed vp is calculated from linear analysis.
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We have tested different values of λ corresponding to m = 2, 8, 15, 24, 30. The
results corresponding to three different versions of the generalized Ohm’s law are
presented in
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Figure 1: Dispersion relationship for ideal MHD (left), Hall MHD (center), and
Hall MHD with electron inertia (right).

The numerical results from classic MHD and Hall MHD with electron inertia
simulations are in agreement with the theoretical prediction for wave lengths down
to about 6 grid points; at this level the Hall MHD test without electron inertia
already displays some discrepancy with theory.

4.2. Reconnection Simulation. Our second experiment is meant to test the
effect of the Hall term and electron inertia in the magnetic reconnection phenom-
enon. Our simulation is similar to the GEM challenge except that we use several
boundary conditions.

The initial conditions for this simulation represent a small perturbation of the
equilibrium state known as Harris current sheet without guiding field.

The magnetic field, density and pressure profiles are given by

Bx(y) = B0 tanh(y/λ) − ψ0y/Ly cos(2πx/Lx) sin(πy/Ly)(4.2a)

By(y) = ψ0 · 2π/Lx sin(2πx/Lx) cos(πy/Ly)(4.2b)

n(y) = n0sech
2(y/λ) + nb(4.2c)

p(y) =
1

2
n(y).(4.2d)

where ψ0 = 0.1 is the amplitude of the perturbation, and the velocities are set to
zero. In the simulation, we choose B0 = 1 and n0 = 1. The half-width of the
current sheet is λ = 0.5, for the resistivity and hyper-resistivity parameters we
choose η = 9 × 10−3 and ηj = 1.4 × 10−4 respectively, and electron-ion mass ratio
is set to me/mi = 1/25. The simulation cases have a system size 19.6di × 19.6di

with 639 × 639 uniform grids.
As for the boundary condition, the GEM challenge has a periodic boundary in

the x direction, and conducting wall boundary in the y direction –implemented as
in [7] with zero perpendicular current density along the conduction wall.

We also simulate open boundary problems, [8], assuming the simulation box
is a region cut from a large background plasma. In the inflow direction an open
boundary makes the unperturbed background plasma flow into the simulation do-
main. And an open boundary allows the plasma that have passed through the
reconnection diffusive region flow out the simulation domain without reflection.

In the inflow boundary along the x direction the pressure and density of
the plasma remain fixed over time and so does Bx, while Bz is calculated from
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∂Bz/∂y = 0, and By from the ∇ · B = 0 condition. The velocity components vx

and vz are set to zero and vy is calculated from ∂vy/∂y = 0. And for the out flow
boundary, the pressure, density and vx are interpolated as uj+1 = 1.3uj − 0.3uj−1,
Bx is calculated from ∇ ·B = 0 condition and Bz, By and vy, vz obey ∂u/∂x = 0.
When electron inertia is included, B′ is assigned according to the same method
that is applied on B. Figure 2 left shows some reflections from the boundary at
the beginning of the simulation.

Figures 2 (right) and 3 display the solution computed without electron inertia
at time t = 21ω−1

i . The current density profile in 3 indicates that the ratio of the
electron diffusive region is in agreement with the reconnection rate as measured
by the out of plane electric field in the center of the simulation domain. Figure 5
shows how the reconnection goes into a quasi-steady state at t = 21ω−1

i .

B Field Line and Density Profile 
3Bz

Figure 2: Left: magnetic field lines in quasi steady-state of the reconnection process
without electron inertia; Right: out of plane magnetic field at the very beginning
stage.

Figure 3: Hall MHD simulation without electron inertia. Left: Terms in the gener-
alized Ohm’s law in outflow direction; right: Terms in the generalized Ohm’s law
in inflow direction.

The simulation with electron inertia also achieves a high reconnection rate
(figure 5, right). The current sheet is wider and longer in the simulation with
electron inertia than without electron it. This is not only due to the electron
inertia term, but also to large dissipation from the large mass of the electrons 1/25.
These results are in agreement with those found in the GEM challenge, [18].
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Also, we note that in the center of the diffusive region, we can appreciate a
density depletion region, also found in space observations. This suggests that the
longitudinal wave might also be important in the Hall MHD simulation, and that
it should be included in the Hall MHD simulation both with and without electron
inertia.

Our results indicate that central schemes provide a simple, yet robust approach
for approximating the solutions of non-classical MHD models with complex wave
structures. In the linear regime, the dispersion relationship test shows agreement
with the theoretical result. In the nonlinear regime, the reconnection simulation
agrees with the previously published result. The numerical package CentPack,
[1], allows us to reliably investigate different non-classical MHD models into one
numerical code.

Figure 4: Out of plane current in Hall MHD with electron inertia run at t = 14.4ω−1

(left), t = 16.1ω−1 (center); Out of plane current in Hall MHD without electron
inertia run at t = 21ω−1(right).
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Figure 5: Reconnection rate in Hall MHD simulations. Left: without electron
inertia, right: with electron inertia
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