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A CENTRAL SCHEME FOR SHALLOW WATER FLOWS ALONG CHANNELS
WITH IRREGULAR GEOMETRY
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Abstract. We present a new semi-discrete central scheme for one-dimensional shallow water flows
along channels with non-uniform rectangular cross sections and bottom topography. The scheme
preserves the positivity of the water height, and it is preserves steady-states of rest (i.e., it is well-
balanced). Along with a detailed description of the scheme, numerous numerical examples are presented
for unsteady and steady flows. Comparison with exact solutions illustrate the accuracy and robustness
of the numerical algorithm.
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1. The shallow-water model

We consider the shallow water equations along channels with non-uniform rectangular cross sections and
bottom topography. The model describes flows that are nearly horizontal and can be obtained by averaging the
Euler equations over the channel cross section [7], resulting in the balance law

∂A

∂t
+

∂Q

∂x
= 0 (1.1a)

∂Q

∂t
+

∂

∂x

(Q2

A
+

1
2
gσh2

)
=

1
2
gh2σ′ − gσhB′, (1.1b)

where h and σ(x) are, respectively, the height of the fluid above the bottom of the channel, and the channel
breadth, A = σh is the wet cross-section, Q = Au is the discharge, with u denoting the (depth average) fluid
velocity, B(x) describes the bottom topography of the channel, and g is the acceleration of gravity (see Fig. 1).
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334 J. BALBÁS AND S. KARNI

1.1. Properties of the system

The system (1.1) is strictly hyperbolic for h > 0 and has eigenvalues

λ1 = u −
√

g h and λ2 = u +
√

g h, (1.2)

with corresponding eigenvectors

�e1 =
(

1
u −√

gh

)
and �e2 =

(
1

u +
√

gh

)
. (1.3)

It is endowed with an entropy function

E(x, t) = σh

(
1
2

u2 +
1
2

gh + gB

)
, (1.4)

and satisfies the entropy inequality

∂E
∂t

+
∂

∂x

[
u

(
E +

1
2

g σh2

)]
≤ 0. (1.5)

Smooth steady state solutions to (1.1) satisfy

Q = σ h u = const. (1.6a)

E =
1
2

u2 + g (h + B) = const., (1.6b)

where, for example, one readily recognizes the trivial steady state of rest

u(x) = 0 and w(x) = h(x) + B(x) = const. (1.7)

The parameters Q and E (together with the topography B(x) and channel geometry σ(x)) determine the steady-
state solution as the root of a nonlinear equation. A useful relation for smooth steady solutions is obtained by
differentiating (1.6)

(1 − F 2)hx =
hF 2

σ
σ′ − B′, (1.8)

where

F =
|u|√
gh

(1.9)

is the Froude number. Flows with Froude number F < 1 are said to be subcritical or fluvial, and flows with
Froude number F > 1 supercritical or torrential. The interplay between the geometry of the channel, σ(x), and
the topography, B(x), controls the flow. Equation (1.8) implies, for example, that if the crest of the topography
(B′(x) = 0) and the throat of the channel (σ′(x) = 0) occur at the same point, then at that point either the
solution is symmetric, hx(x) = 0, or the flow reaches criticality, i.e., F = 1. If the crest and throat occur at
different points in the domain, the flow reaches criticality at some intermediate point where the right hand side
of (1.8) vanishes.
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Figure 1. Three views of the flow. Flow profile (left), flow cross section (center) and overview
of flow (right).

1.2. Numerical simulation of shallow-water flows

Numerical approximations of the solutions of (1.1) face numerous challenges: the system (1.1) admits dis-
continuous solutions, and require robust numerical schemes that are suitable for discontinuous flows.

Time changes in the solution of (1.1) arise when flux gradients are out of balance with the geometric source
terms. Numerical schemes that are able to recognize and respect such a balance often give superior results
when computing near steady-state flows [2]. Perfectly recognizing such a balance may not always be possible,
and schemes that respect steady-state solutions either exactly or to the order of the numerical approximation
are often called ‘well-balanced’. Recent years have seen growing interest in developing well-balanced schemes
in various numerical frameworks (see, for example, [6,10,12–14,17,19,21,22]). See also the recent book [5] and
references cited therein.

Another challenge arises when computing near dry-state solutions (e.g., flooding or drainage flows) as sys-
tem (1.1) loses strict hyperbolicity if h = 0. In such cases, the truncation error of the numerical scheme may
cause the layer depth h to become negative, causing the computation to fail. Positivity preserving schemes
have the desirable property that if the data has positive (non-negative) depth, so does the numerical solution.
Positive schemes enjoy enhanced stability near dry states.

In this paper, we introduce a semi-discrete central scheme for the solution of (1.1). The scheme is second order
accurate, well-balanced and positive. Nonoscillatory schemes based on central differencing offer a robust, yet
simple, approach for computing the discontinuous solutions of hyperbolic problems, (see, for example, [3,15,18]).
Several central schemes for hyperbolic conservation laws have been extended to handle systems with geometric
source terms, in [23] Russo introduces a fully-discrete, well-balanced central scheme for flows along channels of
constant width, and in [13,14] several semi-discrete central schemes for one- and two-dimensional shallow water
flows are presented. Higher order ENO/WENO based algorithms are given in [8,28] and more recently in [19,20]
using the equilibrium variables Q and E. Upwind schemes for the treatment of balance laws include [4,6,17,21],
and kinetic approaches include [2,22]. The central scheme described in this work extends the work in [13,14,23]
to flows in variable geometry. Not many works address shallow water systems in variable geometries. Among
those we note the work in [27] using an upwind scheme for single layer shallow water, and [7] where the two-layer
shallow water system is solved using the Q-scheme [6], the scheme in [8,28], based on a CWENO reconstruction,
and the relaxation scheme for two-layer shallow-water presented in [1].

The proposed scheme is described in Section 2, and is established to preserve positivity of water height and
to be well-balanced. Numerical solutions are presented in Section 3 for a variety of flow regimes, illustrating
the scheme’s accuracy and robustness and demonstrating its ability to simulate a wide range of flows.

2. A Central scheme for one-dimensional shallow water flows

In this section we construct a central scheme for the accurate simulation of shallow water flows described
by the balance law (1.1). In particular, we seek a scheme that is positivity preserving and well-balanced. The
scheme extends previous works in [13,14,23] to shallow water flows in variable geometry. This extension is not
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trivial; in the constant channel width model (σ ≡ 1), well-balancing may be accomplished solely by choosing
an appropriate discretization of the source term. In the variable geometry case, the conserved variables σh and
σhu depend on the geometry σ, which renders steady state preservation and positivity more strongly coupled
with, for example, the reconstruction of the conserved variables.

Following [23], we reformulate (1.1) in terms of the total water elevation w = h + B and the total area,
AT = A + σB = σw,

∂AT

∂t
+

∂Q

∂x
= 0 (2.1a)

∂ Q

∂t
+

∂

∂x

( Q2

AT − σB
+

1
2
g σ(w − B)2

)
=

1
2
gσ′(w − B)2 − gσ(w − B)B′. (2.1b)

This formulation allows the numerical scheme to detect changes (or the lack of them) in the total water eleva-
tion w, which in turn, facilitates ensuring preservation of steady states of rest.

2.1. Semi-discrete central formulation

We begin by describing the semi-discrete central scheme framework for approximating solutions for hyperbolic
conservation laws (consult [15,16] for further details),

vt + f(v)x = 0. (2.2)

For a fixed spatial scale Δx, we consider the partition of the solution domain into the grid cells Ij := [xj −
Δx/2, xj + Δx/2], and denote by vj(t) the cell average of v(x, t) over the cell Ij ,

vj(t) =
1

Δx

∫ x
j+ 1

2

x
j− 1

2

v(x, t) dx.

Integrating (2.2) over each Ij results in the equivalent semi-discrete formulation

d
dt

vj(t) = − 1
Δx

(
f(v(xj+ 1

2
, t)) − f(v(xj− 1

2
, t))

)
. (2.3)

Equation (2.3) is approximated by the collection of (semi-discrete) ODEs:

d
dt

vj(t) = −
Hj+ 1

2
(t) − Hj− 1

2
(t)

Δx
, (2.4)

where the flux at cell interfaces, f(v(xj± 1
2
, t)), is approximated by the numerical flux Hj± 1

2
(t) given by

Hj± 1
2
(t) =

f
(
v+

j± 1
2
(t)

)
+ f

(
v−

j± 1
2
(t)

)
2

−
aj± 1

2

2

(
v+

j± 1
2
(t) − v−

j± 1
2
(t)

)
. (2.5)

Here, the interface point-values of the solution, v±
j± 1

2
(t), are recovered from the cell averages {vj(t)} via a

non-oscillatory polynomial reconstruction v(x, t) ≈ R(x; t) =
∑

j pj(x; t) · 1Ij , i.e.,

v−
j+ 1

2
:= pj(xj+ 1

2
) and v+

j+ 1
2

:= pj+1(xj+ 1
2
), (2.6)

and aj+ 1
2

stands for (an estimate of) the maximum wave speed of the conservation law, (2.2), at the cell interface
xj+ 1

2
, given by the spectral radius of the Jacobian matrix of f(v), ∂f/∂v.
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This semi-discrete formulation, (2.4), and its central-upwind sequel, [16], provide a general framework for
non-oscillatory central schemes, requiring for their actual implementation two ingredients: (i) a non-oscillatory
polynomial reconstruction of the interface values {v±

j± 1
2
}j from their cell averages {vj(t)}j , and (ii) an evolution

routine (i.e., an ODE solver) to update these cell averages according to (2.4).

In analogy, the semi-discrete formulation for the balance law

vt + f(v)x = S(v, x), (2.7)

yields the semi-discrete system

d
dt

vj(t) = −
Hj+ 1

2
(t) − Hj− 1

2
(t)

Δx
+

1
Δx

∫ x
j+ 1

2

x
j− 1

2

S(v, x) dx. (2.8)

For the shallow water system, (2.1),

v =

(
AT

Q

)
=

(
σw

σ(w − B)u

)
, f(v) =

(
σ(w − B)u

σ(w − B)u2 + 1
2g σ(w − B)2

)
, (2.9)

and

S(v, x) =

(
0

1
2g σ′(w − B)2 − gσ(w − B)B′

)
. (2.10)

In addition to the non-oscillatory polynomial reconstruction and the evolution routine needed for the imple-
mentation of (2.4), the approximation of balance laws requires the discretization of the source term, S(v, x),
in (2.8).

2.2. Non-oscillatory second-order reconstruction

In order to recover the interface values v±
j± 1

2
(t) in (2.5) from the cell averages vj(t), we employ a piece-wise

linear reconstruction,

v(x, t) = R (x; u(t)) :=
∑

j

pj(x) · 1Ij (x). (2.11)

This reconstruction procedure is at the heart of high-resolution non-oscillatory central schemes, and requires the
coefficients of the polynomials {pj(x)} to be determined so that R(x; v(t)) satisfies the following three essential
properties:

• P1 – Conservation of cell averages: pj(x) = vj(t);
• P2 – Accuracy: R(x; v(t)) = v(x, t) + O((Δx)2);
• P3 – Non-oscillatory behavior of

∑
j pj(x).

For the shallow water system, (2.1) we also require that the reconstructed values of the total area, AT , and the
corresponding values of the total water height, w, satisfy the following properties:

• P4 – Flux gradient and source balancing: for steady-sates of rest, the interface values of the water
height, h, must satisfy

h−
j+ 1

2
− h+

j− 1
2

= −(B(xj+ 1
2
) − B(xj− 1

2
)). (2.12)

• P5 – Positivity: the reconstructed values w±
j± 1

2
(t) must yield h±

j± 1
2
(t) ≥ 0, so as to ensure the positivity

of hj(t + Δt).
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2.2.1. Minmod reconstruction: properties P1–P3

To guarantee properties P1–P3, we employ a second-order minmod reconstruction [11,26]. The total area,
AT , and the discharge, Q, are reconstructed from their cell averages as the piecewise linear functions (the
reconstruction is applied to values at time t, thus we can avoid the explicit reference to the time variable for its
description)

pj(x) = vj + v′j(x − xj), (2.13)
with the slopes v′j calculated as

v′j =
1

Δx
minmod (αΔ−vj , Δ0vj , αΔ+vj), (2.14)

where 1 ≤ α < 2, and

minmod(x1, x2, x3, . . . , xk) =

⎧⎪⎨
⎪⎩

minj(xj) if xj > 0 ∀ j

maxj(xj) if xj < 0 ∀ j

0 otherwise.

(2.15)

2.2.2. Reconstruction of height: properties P4 and P5

In order to enforce property P4 and obtain a well-balanced scheme, we first recover the cell averages of w
from those of AT as

wj :=
A

T

j

σj
· (2.16)

For the flows calculated in Section 3 below, the initial conditions are given for u (or Q) and w, allowing us
to define A

T

j := σ(xj)wj . Other values can be chosen within the second order accuracy of the scheme (e.g.,
σj = σj).

The interface values w∓
j± 1

2
are then obtained using the minmod reconstruction (2.13)–(2.15).

To ensure the positivity of h∓
j± 1

2
, we follow [14], and limit the slope of the reconstructed values of w as follows

(see Fig. 2):

if w+
j− 1

2
< B(xj− 1

2
), then set w′

j := 2(wj − B(xj− 1
2
)),

(2.17)

⇒ w+
j− 1

2
= B(xj− 1

2
), and w−

j+ 1
2

= wj +
1
2
w′

j ,

or

if w−
j+ 1

2
< B(xj+ 1

2
), then set w′

j := 2(B(xj+ 1
2
) − wj),

(2.18)

⇒ w−
j+ 1

2
= B(xj+ 1

2
), and w+

j− 1
2

= wj − 1
2
w′

j .

This linear reconstruction of w clearly satisfies property P5, w±
j+ 1

2
≥ B(xj+ 1

2
), which in turn will guarantee the

positivity of hj(t + Δt), whose interface values are defined as

h−
j+ 1

2
:= w−

j+ 1
2
− B(xj+ 1

2
)

(2.19)
h+

j− 1
2

:= w+
j− 1

2
− B(xj− 1

2
),

which satisfy (2.12) when w+
j− 1

2
= w−

j+ 1
2

= w as required for well balance.
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Figure 2. Modified reconstruction of total water height, w, over the piecewise linear approxi-
mation of bottom topography (dashed line). The minmod reconstruction is depicted by dotted
lines over cell averages (black dots), the modified reconstruction is depicted by a black solid
line, the interface pointvalues of w, wj± 1

2
, are depicted by black squares.

2.3. Balance: discretization of the source term and preservation of steady state

In the context of shallow water systems, a useful guiding principle in the discretization of the source term
in (1.1b) and its cell average in (2.8) is that the resulting scheme is able to recognize and respect steady state
solutions. Analytically, such solutions are characterized by a perfect balance between the flux gradient and the
source term. Ideally, this property should be inherited by the scheme. In practice, a discrete perfect balance
may not be possible to achieve for general steady states, the following discretization respects steady states of
rest exactly and more general steady states are respected to the order of the numerical approximation.

For steady states of rest (u = 0, h+B = const.), the second component of the numerical flux in (2.8) reduces
to

Hj± 1
2
(t) =

f
(
v+

j± 1
2

)
+ f

(
v−

j± 1
2

)
2

= f
(
vj± 1

2

)
=

1
2

g σj± 1
2
h2

j± 1
2

(2.20)

and the flux difference term in (2.8) reads

−
Hj+ 1

2
(t) − Hj− 1

2
(t)

Δx
=

g

2 Δx

(
σj+ 1

2
h2

j+ 1
2
(t) − σj− 1

2
h2

j− 1
2
(t)

)
. (2.21)

We write the right hand side of (2.21) as

g

2 Δx

(
σj+ 1

2
h2

j+ 1
2
− σj− 1

2
h2

j− 1
2

)
=

(2.22)
g

2 Δx

[
1
2

(
σj+ 1

2
− σj− 1

2

)(
h2

j+ 1
2

+ h2
j− 1

2

)
+

1
2

(
σj+ 1

2
+ σj− 1

2

)(
h2

j+ 1
2
− h2

j− 1
2

)]
.
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And, in view of this, discretize the cell average of the source term, (2.10), with the approximations

g

Δx

∫ x
j+ 1

2

x
j− 1

2

1
2
σ′ h2 dx ≈ g

2

σj+ 1
2
− σj− 1

2

Δx

(h−
j+ 1

2
)2 + (h+

j− 1
2
)2

2
, (2.23)

and

− g

Δx

∫ x
j+ 1

2

x
j− 1

2

σ h B′ dx ≈ −g
σj+ 1

2
+ σj− 1

2

2

h−
j+ 1

2
+ h+

j− 1
2

2

B(xj+ 1
2
) − B(xj− 1

2
)

Δx
· (2.24)

We observe that the approximation (2.23) exactly balances the first product on the right hand side of (2.22) and,
with the interface pointvalues of the water height reconstructed as (2.19), (2.24) exactly balances the second
product on the right hand side of (2.22). With this discretization, the right hand side (RHS) of the momentum
balance in (2.8) vanishes for steady state of rest.

To ensure preservation of total water height w remains constant over time, i.e., the first component of the
numerical fluxes, Hj± 1

2
, must be calculated so that their difference yields

dA
T

j

dt
= 0 (2.25)

when w = const. and u ≡ 0.

We approximate the interface jump of the total area in the numerical flux of the total area in (2.8) by

AT,+

j+ 1
2
− AT,−

j+ 1
2
≡ σ(xj+ 1

2
)(w(x+

j+ 1
2
, t) − w(x−

j+ 1
2
, t)) ≈ σj+ 1

2
(w+

j+ 1
2
− w−

j+ 1
2
), (2.26)

where
σj+ 1

2
= max{σ−

j+ 1
2
, σ+

j+ 1
2
}, (2.27)

with

σ−
j+ 1

2
:=

AT,−
j+ 1

2

w−
j+ 1

2

and σ+
j+ 1

2
:=

AT,+

j+ 1
2

w+
j+ 1

2

· (2.28)

Remarks.
1. Approximating AT,+

j+ 1
2
− AT,−

j+ 1
2

by (2.26) ensures that this term vanishes for steady states of rest as
required.

2. The choice of σj± 1
2

in (2.26) ensures positive values of the cell average of the water height hj(t + Δt)
(see Appendix); other choices are possible within the second order accuracy of the scheme.

2.4. Time evolution

Given the reconstructed interface values at time t as described in Section 2.2,

v±
j± 1

2
(t) =

⎛
⎜⎝

A±
j± 1

2
(t)

Q±
j± 1

2
(t)

⎞
⎟⎠ , (2.29)

we estimate the maximum interface wave speeds of (2.1) as

aj± 1
2

= max
{
|u−

j± 1
2
| +

√
gh−

j± 1
2
, |u+

j± 1
2
| +

√
gh+

j± 1
2

}
, (2.30)
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and the ODE system (2.8) is numerically integrated using the second order Strong Stability Preserving Runge-
Kutta scheme, [9,24],

v(1) = v(0) + Δt C[v(0)],

v(2) = v(1) +
Δt

2

(
C[v(1)] + C[v(0)]

)
, (2.31)

v(t + Δt) := v(2),

with the numerical fluxes

C[v(t)] = −
Hj+ 1

2
(v(t)) − Hj− 1

2
(v(t))

Δx
+ Sj(t) (2.32)

where Hj± 1
2

is given by (2.5), using (2.26), and the cell average of the source term, Sj , approximated by
(2.23)–(2.24).

2.5. Properties of the scheme and additional remarks

To conclude this section, we summarize the two main properties of the semi-discrete central scheme resulting
from applying the discretization of the source term (2.23)–(2.24), along with the reconstruction (2.13)–(2.19),
and the SSP Runge-Kutta solver (2.31)–(2.32) to the semi-discrete central formulation (2.8). (We defer the
proofs of the following theorems to Appendix.)

Theorem 2.1. Consider the balance law (2.1) and the semi-discrete central formulation (2.8) with the spatial
integral of the source term approximated by (2.23)–(2.24), the interface pointvalues of w(x, t) and h(x, t), given
respectively by (2.17)–(2.18) and (2.19), those of AT (x, t), Q(x, t) recovered by the minmod reconstruction
(2.13)–(2.15), and the jump of the total area across the cell interfaces approximated by (2.26)–(2.27). Then

(i) the system of ODEs (2.8) satisfies

d
dt

⎛
⎝A

T

j (t)

Qj(t)

⎞
⎠ = 0 ∀ j, (2.33)

for w = const. and u ≡ 0, i.e., the central scheme is well-balanced, and
(ii) if the cell averages A

T
(t) are such that

wj(t) − 1
2

(
B(xj− 1

2
) + B(xj+ 1

2
)
)
≥ 0, ∀ j, (2.34)

then, the cell averages A
T
(t + Δt) as evolved with (2.31)–(2.32) under the CFL limitation,

Δt

Δx
<

σj

2aj
∀ j, (2.35)

where aj = max{aj− 1
2
σj− 1

2
, aj+ 1

2
σj+ 1

2
}, will yield

wj(t + Δt) − 1
2

(
B(xj− 1

2
) + B(xj+ 1

2
)
)
≥ 0, ∀ j. (2.36)
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The fluxes f in (2.9) require the pointwise values of the flow velocity u∓
j± 1

2
. Recovering the flow velocity via

Q/A may be inaccurate when h (hence both Q and A) is very small, and may lead to instabilities. To prevent
this, we follow the de-singularization strategy proposed in [14], and compute the flow velocity, u, according to

u =
√

2AQ√
A4 + max(A4, ε)

, (2.37)

with ε = (Δx)4, and recalculate the discharge Q := A · u accordingly. When A is small, we must recalculate
the discharge as Q := A ·u so as to ensure the well balance and positivity properties (consult [14] for a detailed
discussion of this and other desingularization techniques).

3. Numerical results

In this section we present the numerical solutions for a range of problems illustrating the properties of our
central scheme in a variety of flow situations: we validate the ability of the scheme to respect steady states
of rest (1.7), and study its ability to propagate small perturbations from rest. The positivity of the scheme is
demonstrated by solving several so-called dam-break problems, where a reservoir initially at rest drains through
its boundaries. Finally, we study the convergence of transient solutions to more general steady state solutions
by comparing them to the exact solutions. As pointed out in Section 2.5, exact steady state solutions are
available. These are determined by the parameters Q and E, and are obtained by iterative root finding of (1.6)
(e.g., using Newton’s method).

The flows are calculated along channels with varying width, we have used channels with a parabolic contrac-
tion. The contraction is described by the quadratic interpolant through the points (xl, 1), (1

2 (xl + xr), σmin),
and (xr, 1), where xl, and xr are, respectively, the left and right end-points of the contraction along the x-axis,
and σmin stands for the minimum width of the channel (with σmin = 1 corresponding to a straight channel).

For all the results presented below the value of the acceleration of gravity is taken as g = 9.81, and the time
step, Δt, satisfies the CFL restriction

Δt ≤ c Δx

maxj aj+ 1
2

, c < 1. (3.1)

Unless otherwise mentioned, the computations below were performed using 200 grid cells and c = 0.75.

3.1. Steady-state of rest and small perturbation from rest

3.1.1. The steady-state of rest

For this problem, the initial conditions correspond to the equilibrium solution,

w(x, 0) = 1 and u(x, 0) = 0, (3.2)

with the bottom topography given by

B(x) =

{
1
4 (1 + cos π(x−0.5)

0.1 ) if x ∈ [0.4, 0.6]

0 otherwise.
(3.3)

Computed solutions are shown in Figure 3 for different channel geometries. Three cases are shown. In all cases,
the topography crest is centered at x = 0.5. In the middle example, the contraction is also centered at x = 0.5,
in the case on the left, the throat slightly precedes the crest, while on the right, the throat is slightly after the
crest (see top figures respectively). The steady state of rest is clearly respected by the scheme.
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Figure 3. Computation of steady-state of rest through contracting channels. Top: channel
longitudinal shape (σmin = 0.7 in all cases), middle: total water height, w, bottom: flow
velocity, u.

3.1.2. Small perturbations from rest

For the following problems, the initial conditions correspond to a small perturbation of the steady state of
rest,

u(x, 0) = 0 and w(x, 0) =

{
1 + ε if 0.1 ≤ x ≤ 0.2

1 otherwise.
(3.4)

Figure 4 shows the initial conditions and several snapshots of the perturbation as it propagates for the case
ε = 10−2. Figure 5 shows the solution at t = 0.25 with ε = 10−5 for a channel with a centered contraction.
Numerical methods that do not respect steady state of rest have hard time computing accurately the propagation
of perturbations of this small magnitude [17]. As can be observed, the perturbation is propagated accurately
by the numerical scheme.

3.2. Drainage following a dam break

In this problem, we consider a (symmetric) reservoir initially at rest, draining onto a dry bed through
its boundaries, leaving behind water trapped in topographical troughs. Due to the symmetry, the flow is
computed on half the domain, with open boundary conditions on the right boundary, and reflecting bc’s on the
left boundary. This flow is computationally challenging as water depth h becomes increasingly small due to
drainage, and may lead to breakdown of the solution if water depth becomes negative due to numerical error.
The positivity property of the scheme insures the water depth remains non-negative. Two bottom topographies
are considered, consisting of one or two topographical bumps. The initial conditions are, in both cases,

u(x, 0) = 0, and w(x, 0) = 0.8. (3.5)

At outflow, the boundary conditions are implemented as follows: if the flow is supercritical, both w and Q are
extrapolated from the interior of the domain, while if the flow is subcritical, the water height hout is prescribed
to dry bed, h = 0 – in fact we have used hout = 10−16 – and Q is extrapolated. Solution snapshots are presented
in Figures 6 and 7.
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Figure 4. Propagation of small disturbances from rest (3.4) through contracting channels,
ε = 10−2. Left: a channel with a left shifted contraction, right: a channel with a centered
contraction.

3.3. Lake with moving shore

The next problem, proposed in [2], simulates an oscillating lake with a non-flat bottom and non-vertical
shores, providing a valuable numerical test for inundating storm tides [25]. The lake bed extends over the
interval [0, 1] and its bottom and non-vertical shores are defined by

B(x) =
1
2

[
1 − 1

2
(
1 + cos 2π(x − 0.5)

)]
, (3.6)
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Figure 5. Propagation of small disturbances from rest, (3.4) through contracting channels,
ε = 10−5. Total water height, w, at t = 0.25 (dots) over initial conditions (solid line).
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Figure 6. Dam break and drainage through a contracting channel: initial conditions (3.5),
crest and throat coincide σ′(0.5) = B′(0.5) = 0. Total water elevation, w, at various times.

with a small – centered – parabolic contraction (σmin = 0.8). Initially, the lake is perturbed from rest by a
sinusoidal wave that affects the free surface,

w(x, 0) = max
{
B(x) + 10−16, 0.4 + 0.04 sin κ(x − 0.5)

}
, with κ = 4.0547. (3.7)

The flow oscillates over time, creating an interface between a wet cell and a dry cell on each shore of the lake
that change their location at each time step. A solution at t = 18.002 – corresponding to a time where the flow
reaches its higher level on the left shore – is presented in Figure 8. The longtime solution computed with the
proposed central scheme keeps the periodic regime and preserves the positivity of the water layer.

3.4. Non-trivial steady-states

In this section we compute general steady states by integrating the time dependent equations (1.6) for very
long time until steady state is reached. The computed solutions are compared with exact steady state solutions.
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Figure 7. Dam break and drainage through a contracting channel with initial conditions (3.5).
Left: throat coincides with left crest σ′(0.325) = B′(0.325) = 0. Right: throat coincides with
right crest, σ′(0.675) = B′(0.675) = 0. Total water elevation, w, is shown at various times.

We study various channel configurations, and compare flows in a straight channel to flows in contracting chan-
nels. We present computed solutions for a subcritical flow, for a smooth transcritical flow, and for a non-smooth
transcritical flow.

For the flows considered here, we consider the solution domain x ∈ [−10, 10], along channels with parabolic
contractions as those described above, and with the bottom topography given by

B(x) = max{0.2 − 0.05 x2, 0}· (3.8)

The boundary conditions for these steady flows are calculated according to the eigen values of the system,
(1.2): at the (left) inflow boundary, the values of Q and AT are extrapolated from the interior of the domain if
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and bottom topography. Total water elevation, w: initial conditions (3.7) (solid line), and at
t = 18.002 (+). The deepest point in topography coincides with center of parabolic contraction,
σ′(0.5) = B′(0.5) = 0.

both eigen values are negative, the value of Q is prescribed and that of AT extrapolated if λ1 < 0 and λ2 > 0,
and both quantities are prescribed if both eigen values are positive. Correspondingly, at the outflow (right)
boundary both values are extrapolated when the eigen values are both positive, prescribed when both eigen
values are negative, and one is prescribed (hout in this case) and one extrapolated (Q) if they have opposite
signs.

3.4.1. Subcritical smooth flow

For this flow, we take as initial conditions

w(x, 0) = 2, and Q(x, 0) = 4.42, (3.9)

and compute the solution along a channel with a centered contraction (i.e., σ′(0) = B′(0) = 0). The flow will
remain subcritical provided the channel contraction is not too severe (σmin > 0.8842).

The computed large time solutions together with the exact solutions are displayed in Figure 9. To get a
sense of the effect of channel contraction on the flow, the solution is also computed in a straight channel. Also
shown are the computed solutions for the parameters Q and E, the exact values of which are constant in the
steady limit. We note that the computed values of Q and E are constant within less than 0.068% and 0.052%
respectively in the computed solution.

3.4.2. Transcritical smooth flow

The steady state solutions in the following examples correspond to flows accelerating smoothly from subcrit-
ical (F < 1) to supercritical (F > 1) through channels with a 30% contraction. The flow reaches criticality as
it runs over the bump and through the contraction at a point between the throat of the channel and the crest
of the topography.

For these flows, we take as initial conditions

w(x, 0) =

{
1.31 if x < 0

0.34 if x > 0
and Q(x, 0) = 1.53. (3.10)

Figure 10 displays the computed and exact steady state solutions. For this problem, we have used a CFL
number c = 0.6. Computed values of Q and E are constant within 1.8%.

3.4.3. Transcritical flow with a shock

In this example the initial conditions are again (3.9) but the channel has narrower contraction than those
considered in the subcritical case (σmin < 0.8842). The steady state solution corresponds to a flow accelerating
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Figure 9. Smooth (subcritical) steady-state flow. Top: straight channel (σ ≡ 1), bottom:
varying channel (σmin = 0.9). Computed solution (dots) and exact equilibrium solution (solid
line). Left: total water elevation, w = h+B and channel geometry, center: discharge, Q = σhu,
right: total energy, E.

from sub- to supercritical as it runs over the bump and through the contraction, then decelerates abruptly
to subcritical flow through a shock (hydraulic jump) in order to match the outflow boundary conditions. So-
lutions corresponding to a centered contraction and a left-shifted contraction are presented in Figure 11. The
computed values of Q and E are, respectively, within 4.0% and 3.7% of the corresponding (piecewise) constant
values.

Appendix: Proof of Theorem 2.1

Proof.
(i) Starting with the initial conditions u(x) = 0 and w(x) = W for all x, we fix a space scale Δx and

the corresponding partition of the solution domain, {Ij} := {[xj− 1
2
, xj+ 1

2
]}. We then define the cell

averages of the conserved quantities in the modified shallow water model, (2.1), as

A
T

j := σj wj = σj W, (3.11)

and

Qj :=
(

Aj − 1
2
σj

(
B(xj+ 1

2
) + B(xj− 1

2
)
))

uj ≡ 0. (3.12)

The reconstructed point values of w and Q, clearly satisfy w±
j± 1

2
= W and Q±

j± 1
2

= 0, thus the values
of the water height, (2.19), and those of the bottom topography at the cell interfaces, B(xj± 1

2
), satisfy

h−
j+ 1

2
− h+

j− 1
2

= −
(
B(xj+ 1

2
) − B(xj− 1

2
)
)

.
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Figure 10. Smooth transcritical steady-state flow in a contracting channel (σmin = 0.7), com-
puted solution (dots) and exact solution (solid line). Top: channel with centered contraction,
bottom: channel with right-shifted contraction. Left: total water elevation, w = h + B, and
channel geometry, center: discharge Q = σhu, right: flow energy E.
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Figure 11. Transcritical steady-state flow in a contracting channel (σmin = 0.86), computed
solution (dots) and exact solution (solid line). Top: channel with centered contraction, bottom:
channel with left-shifted contraction. Left: total water elevation, w = h + B, and contraction,
center: discharge Q = σhu, right: flow energy E.

In view of this, the first component of the numerical fluxes Hj+ 1
2

in (2.8) reads

−
H

(1)

j+ 1
2
− H

(1)

j− 1
2

Δx
= − 1

2Δx

[
aj+ 1

2
σj+ 1

2

(
w+

j+ 1
2
− w−

j+ 1
2

)
− aj− 1

2
σj− 1

2

(
w+

j− 1
2
− w−

j− 1
2

)]
≡ 0. (3.13)
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That is,

d
dt

A
T

j (t) = 0 ⇒ A
T

j (t + Δt) = A
T

j (t), (3.14)

which allows us to recover wj(t + Δt) = W exactly from (3.11).
Noting that, according to (2.19), h+

j+ 1
2

= h−
j+ 1

2
=: hj+ 1

2
, the second component of the numerical flux

amounts to (2.20), and since (2.12) holds, it is balanced by (2.23)–(2.24), therefore

d
dt

Qj(t) = 0 ⇒ Qj(t + Δt) = Qj(t) = 0, (3.15)

and uj(t+Δt) ≡ 0 is also recovered exactly. �

(ii) We begin by writing explicitly the cell average AT
j (t+Δt) when the system (2.8) is evolved with forward

Euler’s ODE solver,

A
T

j (t + Δt) = A
T

j (t) − λ
[
H

(1)

j+ 1
2
(t) − H

(1)

j− 1
2
(t)

]
, (3.16)

where λ = Δt/Δx. This amounts to

A
T

j (t + Δt) = A
T

j (t) − λ

2

[(
Q+

j+ 1
2

+ Q−
j+ 1

2

)
− aj+ 1

2

(
AT,+

j+ 1
2
− AT,−

j+ 1
2

)
(3.17)

−
(
Q+

j− 1
2

+ Q−
j− 1

2

)
+ aj− 1

2

(
AT,+

j− 1
2
− AT,−

j+ 1
2

)]

(where all the terms on the right hand side are understood to be evaluated at time t). Using Q±
j± 1

2
=

σ±
j± 1

2
h±

j± 1
2
, we write

A
T

j (t + Δt) = A
T
(t) +

λ

2

[(
aj+ 1

2
σj+ 1

2
− u+

j+ 1
2
σ+

j+ 1
2

)
h+

j+ 1
2

+
(
aj− 1

2
σj− 1

2
+ u−

j− 1
2
σ−

j− 1
2

)
h−

j− 1
2

+ aj+ 1
2
σj+ 1

2
B(xj+ 1

2
) + aj− 1

2
σj− 1

2
B(xj− 1

2
)
]

(3.18)

− λ

2

[(
aj+ 1

2
σj+ 1

2
+ u−

j+ 1
2
σ−

j+ 1
2

)
h−

j+ 1
2

+
(
aj− 1

2
σj− 1

2
− u+

j− 1
2
σ+

j− 1
2

)
h+

j− 1
2

+ aj+ 1
2
σj+ 1

2
B(xj+ 1

2
) + aj− 1

2
σj− 1

2
B(xj− 1

2
)
]
.

The terms involving σj± 1
2
B(xj± 1

2
) on the right hand side cancel, and since aj± 1

2
σj± 1

2
≥ |u±

j± 1
2
|σ±

j± 1
2
,

(2.30), and h∓
j± 1

2
≥ 0, the CFL restriction (2.35) allows us to write

A
T

j (t + Δt) ≥ A
T

j (t) − 1
2
σj

(
h−

j+ 1
2

+ h+
j− 1

2

)
=

1
2
σj

(
B(xj+ 1

2
) + B(xj− 1

2 )

)
, (3.19)

from where (2.36) follows. And since the Runge-Kutta solver (2.31)–(2.32) consists of a convex combi-
nation of forward Euler steps, the result holds when this evolution routine is employed. �
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