
Proceedings of Symposia in Applied Mathematics

Non-oscillatory Central Schemes for 3D Hyperbolic

Conservation Laws

Jorge Balbás and Xin Qian

Abstract. We present a family of high-resolution, semi-discrete central schemes
for hyperbolic systems of conservation laws in three space dimensions. The pro-
posed schemes require minimal characteristic information to approximate the
solutions of hyperbolic conservation laws, resulting in simple black box type
solvers. Along with a description of the schemes and an overview of their
implementation, we present numerical simulation of a cloud-shock interaction
modeled by Euler equations of gas dynamics. This demonstrates the versatility
and robustness of the semi-discrete central formulation for solving hyperbolic
models.

1. Introduction

In this paper we present a new family of high-resolution central schemes for hy-
perbolic conservation laws and related time dependent problems. We are interested
in hyperbolic PDEs of the form

(1.1) ut + f(u)x + g(u)y + h(u)z = 0,

subject to the initial conditions,

(1.2) u(x, y, z, 0) = u0(x, y, z),

where u ∈ R
d represents the conserved quantities, and f , g, and h are nonlinear

fluxes.

Approximate solutions for this type of problems have been traditionally com-
puted with Godunov schemes, [God59]. These evolve the solution of (1.1) –and
their one- and two-dimensional counterparts– according to the speed and direction
of propagation of the characteristic waves of the system. While upwind schemes
require a Riemann solver to identify these directions and speeds at cell interfaces,
central schemes integrate the solution over staggered cells, resulting in black-box

type solvers which avoid the costly computation of the characteristic decomposi-
tion of the Jacobian matrices of f , g, and h.
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The paper is structured as follows:

In §2, we provide a full discretisation (in time and space) of (1.1) that allows
us to evolve its solution over a staggered grid, essentially an extension of the cel-
ebrated one-dimensional Nessayahu-Tadmor central scheme, [NT90], and its two
dimensional extension by Jiang and Tadmor, [JT98]. From the fully-discrete formu-
lation, following the modified central staggered evolution and reprojection approach
introduced by Kurganov and Tadmor in [KT00], and its two-dimensional exten-
sion by Kurganov and Petrova, [KP01], we arrive at a genuenly three-dimensional,
non-staggered, central semi-discrete formulation for (1.1). In §3, we discuss the
various options for the actual implementation of this more versatile semi-discrete
formulation. The performance of the proposed scheme is validated in §4, where we
present the simulation of the interaction of a gas cloud with a shock wave.

2. Semi-discrete Central Formulation for 3D Conservation Laws

In this section we outline the derivation of a semi-discrete central formulation
for the hyperbolic conservation law (1.1). We first introduce a fully-discrete, stag-
gered central formulation for approximating the solutions of the conservation law.
This formulation leads to a family of black-box type numerical schemes, and serves
as the building block of the semi-discrete formulation that we seek.

2.1. Fully-discrete Formulation. As in the 1D and 2D cases, the semi-
discrete formulation we seek for 3D conservation laws follows from a fully-discrete
central staggered discretization of (1.1). First, we fix spatial scales ∆x, ∆y, and
∆z, and define the averages of u at time t = tn over the mesh cell centered at
(xi, yj , zk) and size ∆x × ∆y × ∆z,

(2.1) un
i,j,k :=

1

|∆x∆y∆z|

∫ xi+
∆x
2

xi−
∆x
2

∫ yj+
∆y

2

yj−
∆y

2

∫ zk+∆z
2

zk−
∆z
2

u(x, y, z, tn) dx dy dz.

The conservation law is integrated over the staggered control volume Vi+ 1
2
,j+ 1

2
,k+ 1

2
×

[tn, tn + ∆t], where Vi+ 1
2
,j+ 1

2
,k+ 1

2
denotes the cell centered at (xi+ 1

2
, yj+ 1

2
, zk+ 1

2
).

Omitting the variables of integration in the flux integrals (i.e., ui = u(xi, y, z, t),
uj = u(x, yj , z, t), etc.) and dropping the subscripts of Vi+ 1

2
,j+ 1

2
,k+ 1

2
, for brevity,

we obtain an integral equation equivalent to (1.1),

un+1
i+ 1

2
.j+ 1

2
,k+ 1

2

= un
i+ 1

2
.j+ 1

2
,k+ 1

2

−
1

|V |

[∫ yj+1

yj

∫ zk+1

zk

∫ tn+∆t

tn

(f(ui+1) − f(ui)) dt dz dy

(2.2)

+

∫ xi+1

xi

∫ zk+1

zk

∫ tn+∆t

tn

(g(uj+1) − g(uj)) dt dz dx

+

∫ xi+1

xi

∫ yj+1

yj

∫ tn+∆t

tn

(h(uk+1) − h(uk)) dt dy dx

]
.
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In order to obtain a full discretization of this integral equation, we proceed in
two steps: First, we compute un

i+ 1
2
,j+ 1

2
,k+ 1

2

by averaging over the staggered cells

Vi+ 1
2

,j+ 1
2
,k+ 1

2
a piecewise non-oscillatory polynomial R(x, y, z; un) that interpolates

the point values of u(x, y, z, tn) in each cell Vi,j,k,

(2.3) R(x, y, z; un) =
∑

i

∑

j

∑

k

pn
i,j,k(x, y, z) · 1Vi,j,k

(x, y, z).

That is, letting Vq,r,s = Vi+ 1
2

,j+ 1
2
,k+ 1

2
∩ Vi+q,j+r,k+s for q, r, s = 0, 1, the staggered

cell averages are given by

(2.4) un
i+ 1

2
,j+ 1

2
,k+ 1

2

:=
1

|V |

1∑

q=0

1∑

r=0

1∑

s=0

∫∫∫

Vq,r,s

pn
i+q,j+r,k+s(x, y, z) dV.

Second, we note that under the appropriate CFL conditions the fluxes f , g, and
h remain smooth over the staggered cells, so that the three interface flux integrals
on the right hand side of (2.2) can be approximated with simple quadrature rules
(e.g., midpoint, Simpson’s, Gaussian quadrature, etc.) both in space and time.

Denoting these approximations respectively by the differences F
n+ 1

2

i+1,j,k − F
n+ 1

2

i,j,k ,

G
n+ 1

2

i,j+1,k−G
n+ 1

2

i,j,k , and H
n+ 1

2

i,j,k+1−H
n+ 1

2

i,j,k , results in the 3D NT type predictor-corrector
formulation:

(2.5) u
n+ 1

2

i,j,k = un
i,j,k −

λ

2
(fx)i,j,k −

µ

2
(gy)i,j,k −

η

2
(hz)i,j,k

where λ = ∆x
∆t , µ = ∆y

∆t , and η = ∆z
∆t , and the symbols (fx)i,j,k, (gy)i,j,k, and

(hz)i,j,k stand for suitable non-oscillatory numerical derivatives of the flux func-
tions; followed by

un+1
i+ 1

2
,j+ 1

2
,k+ 1

2

= un
i+ 1

2
,j+ 1

2
,k+ 1

2

− λ
[
F

n+ 1
2

i+1,j,k −F
n+ 1

2

i,j,k

]

(2.6)

−µ
[
G

n+ 1
2

i,j+1,k − G
n+ 1

2

i,j,k

]
− η

[
H

n+ 1
2

i,j,k+1 −H
n+ 1

2

i,j,k

]
.

In essence, the implementation of the predictor-corrector scheme (2.5) - (2.6)
requires two main ingredients: # 1 a non-oscillatory reconstruction to recover the
staggered cell averages un

i+ 1
2
,j+ 1

2
,k+ 1

2

from the cell averages un
i+q,j+r,k+s, (q, r, s, =

0, 1), and # 2 an appropriate combination of quadrature rules for the spatial and
temporal flux integrals, including an appropriate time evolution routine to calculate
the intermediate time values un+β as required by the quadrature rule used for time
integration.

2.2. Modified Staggering. While robust and simple, the schemes resulting
from (2.5) - (2.6) still require the calculation of a considerable number of staggered
cell averages, numerical derivatives, flux integrals and approximations of u at inter-
mediate time values, making their implementation impractical. Following [KT00]
and [KP01], we introduce the information provided by the maximum speed of
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Figure 2.1: Staggered central mesh for 3D scheme: staggered cell average over the
dark cell, un+1

i+ 1
2
,j+ 1

2
,k+ 1

2

, evolved from the cell averages un
i,j,k –clear cells.

propagation across the cell interfaces xi± 1
2
, yj± 1

2
, and zk± 1

2
,

ax
i± 1

2
,j,k = max

u∈Sx

i± 1
2

ρ

(
∂f

∂u
(u)

)

a
y

i,j± 1
2
,k

= max
u∈S

y

j± 1
2

ρ

(
∂g

∂u
(u)

)
(2.7)

az
i,j,k± 1

2

= max
u∈Sz

k± 1
2

ρ

(
∂h

∂u
(u)

)
,

where ρ(A) denotes the spectral radius of A, and Sx,y,z stands for the surface
connecting the two states of the solution across the corresponding interface.

These allow us to differentiate the regions within each mesh cell where the
solution of (1.1) remains smooth from those where discontinuities propagate in one
or more directions (see figure 2.2), and calculate four different sets of staggered
solutions within these smaller regions:

(1) At the cell corners discontinuities propagate in all three directions. There,
we calculate (eight) solutions wn+1

i± 1
2

,j± 1
2
,k± 1

2

over the reduced staggered

cells centered at (xi± 1
2
, yj± 1

2
, zk± 1

2
) of size

(∏
s=x,y,z A

s
i± 1

2
,j± 1

2
,k± 1

2

)
(∆t)3,

where, for instance, Ax
i+ 1

2
,j± 1

2
,k± 1

2

:= max±{ai+ 1
2

,j± 1
2
,k± 1

2
} stands for

the maximum speed of propagation in the x direction at that cell corner
(xi+ 1

2
, yj+ 1

2
, zk+ 1

2
), figure 2.2(a).

(2) Along the edges of the original cell, discontinuities propagate in two
directions. Three sets of solutions (twelve total) are calculated there:
wn+1

i± 1
2
,j± 1

2
,k

, wn+1
i± 1

2
,j,k± 1

2

, and wn+1
i,j± 1

2
,k± 1

2

. The size of these cells along the

edges are of order (∆t)2, figure 2.2(b).
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(3) Across the faces of the original cell, xi± 1
2
, yj± 1

2
, and zk± 1

2
, six more

solutions are calculated: wn+1
i± 1

2
,j,k

, wn+1
i,j± 1

2
,k

, and wn+1
i,j,k± 1

2

. In this case,

the size of the staggered cells is of order ∆t, figure 2.2(c).

(4) Within the interior of the cell, Di,j,k, where the solution remains smooth,

we simply integrate the conservation law and obtain wn+1
i,j,k, figure 2.2(d).

These 27 solutions are then reprojected onto the original mesh so as to recover
the non-staggered cell averages of u at time t = tn+1. To this end, we first calculate
a non-oscillatory polynomial,

(2.8) w̃n+1
i,j,k(x, y, z) :=

∑

i,j,k

(
w̃n+1

i,j,k χ̃i,j,k + w̃n+1
i+ 1

2
,j,k

χ̃i+ 1
2
,j,k + w̃n+1

i,j+ 1
2
,k

χ̃i,j+ 1
2
,k

+ w̃n+1
i,j,k+ 1

2

χ̃i,j,k+ 1
2

+ w̃n+1
i+ 1

2
,i+ 1

2
,k

χ̃i+ 1
2
,j+ 1

2
,k + w̃n+1

i+ 1
2
,j,k+ 1

2

χ̃i+ 1
2
,j,k+ 1

2

+ w̃n+1
i,j+ 1

2
,k+ 1

2

χ̃i,j+ 1
2
,k+ 1

2
+ w̃n+1

i+ 1
2

,j+ 1
2
,k+ 1

2

χ̃i+ 1
2
,j+ 1

2
,k+ 1

2

)
,

in order to approximate u(x, y, z, tn+1); where each of the polynomial pieces on
the write interpolate the corresponding cell average, wn+1, described above. This
polynomial is then averaged over the original grid to obtain the new cell averages,

(2.9) un+1
i,j,k =

1

|∆x∆y∆z|

∫ xi+
∆x
2

xi−
∆x
2

∫ yj+
∆y

2

yj−
∆y

2

∫ zk+∆z
2

zk−
∆z
2

w̃n+1
i,j,k(x, y, z) dx dy dz.

This process, originally introduced for 1D conservation laws in [JLL+98], ren-
ders a new family of non-staggered fully-discrete central schemes. In higher space
dimensions, however, has no practical use as the number of non-smooth solutions
to interpolate and reproject makes it implementation overly complicated.

Instead, we only consider these collection of smooth and non-smooth solutions
and the reprojected cell averages un+1

i,j,k formally, and investigate their asymptotic
expansions as we evaluate the limit

(2.10)
d

dt
ui,j,k(t) := lim

∆t→0

ui,j,k(tn + ∆t) − ui,j,k(tn)

∆t

to obtain a consisitent discretization of the time derivative of the cell averages.

2.3. The Semi-discrete Limit. In order to evaluate the limit (2.10), we
re-write it in terms of the interpolating polynomial (2.3)

(2.11)
d

dt
ui,j,k(t) = lim

∆t→0

1

∆t


 1

|V |

∫ x
i+ 1

2

x
i− 1

2

∫ y
j+ 1

2

y
j− 1

2

∫ z
k+1

2

z
k− 1

2

w̃n+1 dz dy dx − un
i,j,k


 ,

and observe that

w̃n+1
i± 1

2
,j± 1

2
,k± 1

2

(x, y, z) = wn+1
i± 1

2
,j± 1

2
,k± 1

2

+ O((∆t)3)(2.12a)

w̃n+1
i± 1

2
,j± 1

2
,k

(x, y, z) = wn+1
i+ 1

2
,j+ 1

2
,k

+ O((∆t)2)(2.12b)

w̃n+1
i± 1

2
,j,k

(x, y, z) = wn+1
i± 1

2
,j,k

+ O(∆t).(2.12c)
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Figure 2.2: Modified staggered evolution: (a) corner cell averages, (b) edges cell
averages, (c) cell interface cell averages, and (d) where solution remains smooth in
the interior of the cell.

This implies that the contributions from the staggered solution at the cell corners,
wn+1

i± 1
2
,j± 1

2
,k± 1

2

, and cell edges, wn+1
i± 1

2
,j± 1

2
,k

, wn+1
i± 1

2
,j,k± 1

2

and wn+1
i,j± 1

2
,k± 1

2

, vanish in

the limit ∆t → 0, so (2.11) reduces to

(2.13)
d

dt
ui,j,k = lim

∆t→0

1

∆t ∆x∆y∆z

[∑

±

∫∫∫

S
i± 1

2
,j,k

wn+1
i± 1

2
,j,k

dx dy dz

+
∑

±

∫∫∫

S
i,j± 1

2
,k

wn+1
i,j± 1

2
,k

dx dy dz +
∑

±

∫∫∫

S
i,j,k± 1

2

wn+1
i,j,k± 1

2

dx dy dz
]

+ lim
∆t→0

1

∆t

[
|Di,j,k|

∆x∆y∆t
wn+1

i,j,k − un
i,j,k

]
,

where Sx
i± 1

2
,j,k

, S
y

i,j± 1
2
,k

, Sz
i,j,k± 1

2

represent the cell interfaces of the original cell,

and Di,j,k its interior, where the solution remains smooth. The three sums on the
right hand side amount, respectively, to

(2.14)
ax

i+ 1
2
,j,k

∆x
lim

∆t→0
wn+1

i+ 1
2

,j,k
,

a
y

i,j± 1
2
,k

∆y
lim

∆t→0
wn+1

i,j± 1
2
,k

,
az

i,j,k± 1
2

∆z
lim

∆t→0
wn+1

i,j,k± 1
2

and the second limit, involving the smooth solution, wn+1
i,j,k, amounts to the cell

average un
i,j,k minus the integral of u along the edges of the cell, [KP01].
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Finally, we notice that he limits in (2.14) reduce to double integrals (along two
space dimensions each) that can be approximated with iterated quadrature rules,
rendering the semi-discrete formulation

(2.15)
d

dt
ui,j,k = −

1

∆x

[
Hx

i+ 1
2
,j,k − Hx

i− 1
2

,j,k

]

−
1

∆y

[
H

y

i,j+ 1
2

,k
− H

y

i,j− 1
2
,k

]
−

1

∆z

[
Hz

i,j,k+ 1
2

− Hz
i,j,k− 1

2

]
,

where the exact expression of numerical fluxes, Hx
i± 1

2
,j,k

, H
y

i,j,k± 1
2

, Hz
i,j± 1

2
,k

will

depend on the quadrature rule chosen; for our present discussion, we chose the
midpoint rule, which renders:

(2.16) Hx
i+ 1

2

=
1

2

[
f(uw

i+1,j,k) + f(ue
i,j,k)

]
−

ax
i+ 1

2
,j,k

2

[
uw

i+1,j,k − ue
i,j,k

]
,

where, ue
i,j,k and uw

i+ 1
2
,j,k

represent interface point values of u at each side of the

cell interface xi+ 1
2
, reconstructed from the original cell averages un

i,j,k. Similar

point values need to be recovered along the y direction, un
i,j,k and us

i,j+ 1
2
,k

, and z

direction, ut

i,j,k+ 1
2

and ub
i,j,k, in order to compute the corresponding fluxes H

y

i,j,k± 1
2

,

and Hz
i,j± 1

2
,k

.

3. Implementation of Multidimensional Central Schemes

The actual implementation of the semi-discrete central formulation (2.15) re-
quires two main ingredients for its implementation as a numerical scheme: #1
a piecewise non-oscillatory polynomial reconstruction like that required for the
fully-discrete formulation, (2.3), and #2 an evolution routine to solve the resulting
system of ODEs.

3.1. Polynomial Reconstruction. The reconstruction procedure is at the
heart of high-resolution, non-oscillatory central schemes, and requires the coeffi-
cients of the polynomials on the right of (2.3) to be determined so that the following
three essential properties are satisfied:

• P1 — Conservation of cell averages: pi,j,k(x, y, z) = un
i,j,k.

• P2 — Accuracy: R(x, y, z; wn+1) = u(x, y, z, t) + O((∆x)r) for rth-order
accurate scheme, wherever u(x, y, z, t) is sufficiently smooth.

• P3 — Non-oscillatory behavior.

3.2. Non-oscillatory Second-order Reconstruction. For the example pre-
sented below, we chose the polynomials

(3.1) pj(x) = uj + (ux)i,j,k(x − xi) + (uy)i,j,k(y − yj) + (uz)i,j,k(z − zk)

with the slopes (us)i,j,k, s = x, y, z, given by the limiter, [vL97, Har83],

(3.2) (us)i,j,k =
1

∆s
MinMod (α∆s

−ui,j,k, ∆s
0ui,jk, α∆s

+ui,j,k),



8 JORGE BALBÁS AND XIN QIAN

where 1 ≤ α < 2, ∆s
−/o/+ stands for the first order backward/centered/forward

difference operator in the s direction, and

(3.3) MinMod(x1, x2, x3, . . . , xk) =






minj(xj) if xj > 0 ∀ j

maxj(xj) if xj < 0 ∀ j

0 otherwise

.

Other non-oscillatory reconstruction procedures such as third-order dimension-by-
dimension Central WENO reconstructions, [LPR99], have been tested within the
scope of this work.

3.3. Time Evolution: SSP Runge-Kutta Solvers. Once equipped with
the reconstructed interface values from the cell average of the solution at time tn

as described in §3.2, we need an evolution routine to approximate the solution of
the ODEs at time tn + ∆t according to (2.15). To this end, we choose the second
order Strong Stability Preserving Runge-Kutta scheme, [SO89, GST01],

u(1) = u(0) + ∆t C[u(0)],
(3.4)

un+1 = u(1) +
∆t

2
(C[u(1)] + C[u(0)]),

with

C[u] = −
Hx

i+ 1
2
,j,k

(u) − Hx
i− 1

2
,j,k

(u)

∆x
(3.5)

−
H

y

i,j+ 1
2
,k

(u) − H
y

i,j− 1
2
,k

(u)

∆y
−

Hz
i,j,k+ 1

2

(u) − Hz
i,j,k− 1

2

(u)

∆z
.

4. Numerical Test

In order to test the ability of the proposed scheme to approximate the solution
of hyperbolic conservation law, we solve Euler equations of gas dynamics, which we
write in the form (1.1) with

u =
(
ρ, ρvx, ρvy, ρvz , E

)⊤
,

f(u) =
(
ρvx, ρv2

x + p, ρvxvy, ρvxvz, (E + p)vx

)⊤
,

(4.1)

g(u) =
(
ρvy, ρvxvy , ρv2

y + p, ρvyvz , (E + p)vy

)⊤
,

h(u) =
(
ρvz, ρvxvz, ρvyvz, ρv2

z + p, (E + p)vz

)⊤
,

and equation of state

p = (γ − 1)

(
E −

1

2
ρ (v2

x + v2
y + v2

z)

)
.

In particular, we simulate the interaction of a low density gas bubble of radius,
r = 0.2, centered at (0.5, 0, 0) with a shock wave, [LLB+08]. The shock is initially
at x = 0.2, and the initial conditions to the right of the shock and outside the
bubble are given by,

(ρ, u, v, w, p)⊤ = (1, 0, 0, 0, 1)⊤;
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inside the bubble the pressure and density are p = 1 and ρ = 0.1, and to the left
of the shock, they are determined by the Rankine-Hugoniot conditions, [LeV92].
The problem is solved in the first quadrant on a 240 × 80 × 80 mesh, using reflec-
tive boundary conditions along the right y boundary and bottom z boundary, and
free flow conditions elsewhere. We evolve the solution until the shock passes (and
sweeps) the bubble, t = 0.3, see figure 4 below.

Figure 4.1: Interaction of gas cloud and shock wave at various times, isosurfaces of
gas density, red ρ = 0.5, grey ρ = 2.4.

These results demonstrate the robustness and stability of the proposed central
scheme to evolve the solution of hyperbolic conservation laws. For additional results
and details, consult [BT06].
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