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Abstract

The computations reported in this paper demonstrate the remarkable versatility of central schemes as black-box,

Jacobian-free solvers for ideal magnetohydrodynamics (MHD) equations. Here we utilize a family of high-resolution,

non-oscillatory central schemes for the approximate solution of the one- and two-dimensional MHD equations. We

present simulations based on staggered grids of several MHD prototype problems. Solution of one-dimensional

shock-tube problems is carried out using second- and third-order central schemes [Numer. Math. 79 (1998) 397; J.

Comput. Phys. 87 (2) (1990) 408], and we use the second-order central scheme [SIAM J. Sci Comput. 19 (6) (1998)

1892] which is adapted for the solution of the two-dimensional Kelvin–Helmholtz and Orszag–Tang problems. A qual-

itative comparison reveals an excellent agreement with previous results based on upwind schemes. Central schemes,

however, require little knowledge about the eigenstructure of the problem – in fact, we even avoid an explicit evaluation

of the corresponding Jacobians, while at the same time they eliminate the need for dimensional splitting.
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1. Introduction

In this paper we present second- and third-order non-oscillatory central schemes for the approximate

solution of the equations of ideal magnetohydrodynamics (MHD)
qt ¼ �r � ðqvÞ; ð1:1Þ

ðqvÞt ¼ �r � qvvT þ p þ 1

2
B2

� �
I3�3 � BBT

� �
; ð1:2Þ

Bt ¼ r� ðv� BÞ; ð1:3Þ

et ¼ �r �
c

c� 1
p þ 1

2
qv2

� �
v� ðv� BÞ � B

� �
: ð1:4Þ
Here, q and e are scalar quantities representing, respectively, the mass density and the total internal energy,

v=(vx,vy,vz)
T is the velocity field with L2-norm v2:¼jvj2, and B=(Bx,By,Bz)

T and B2:¼jBj2 represent the
magnetic field and its L2-norm. Finally, the pressure p is coupled to the internal energy, e=(1/2)qv2+(1/

2)B2+p/(c�1), where c is the (fixed) ratio of specific heats. The system is augmented by the solenoidal con-

straint $ ÆB=0; that is, if the condition $ ÆB=0 is satisfied initially at t=0, then by (1.3) it remains invariant

in time.

The intrinsic complexity of these MHD equations suggests the class of central schemes as an efficient

alternative for the class of upwind schemes, for computing approximate solutions the MHD model prob-

lems (1.1)–(1.4). The central schemes we use in this paper are based on the evolution of cell averages over

staggered grids. The staggered versions of central schemes introduced in [12,19,21] are presented in Sections
2 and 3. Central schemes eliminate the need for a detailed knowledge of the eigenstructure of the Jacobian

matrices. Instead of (approximate) Riemann solvers as building blocks for upwind schemes, simple quad-

rature formulae are used for the time evolution of central schemes. This approach not only saves the costly

characteristic decomposition of the Jacobians, but in fact, it allows us to completely avoid the costly eval-

uations of 7·7 and 8·8 Jacobian matrices in one- and two-space dimensions. Moreover, central schemes

eliminate the need for dimensional splitting which is particularly relevant for the multidimensional MHD

system. Indeed, it is known that dimensional splitting may face difficulties with the propagation of other

than genuinely nonlinear waves, e.g., in the weakly hyperbolic cases reported in [9,12,14]; we recall that
the MHD equations consist of such waves according to a main observation of [3]. The resulting central

schemes are black-box, Jacobian-free MHD solvers whose sole input is the computed MHD fluxes. The fact

that despite their simplicity these central solvers are able to resolve accurately the complexity of one- and in

particular two-dimensional MHD waves is the main issue of this paper. We demonstrate this point with a

series of numerical simulations.

In this paper we focus on five prototype MHD problems. We use second- and third-order non-oscilla-

tory central schemes to compute the approximate solution of the one-dimensional Brio–Wu shock tube

models [3]. Two different MHD shock tube problems are studied in Sections 4.1 and 4.2. The second-order
Jiang–Tadmor central scheme [12] is implemented for the approximate solution of three MHD models in

two dimensions. In Section 5.1 we consider the Kelvin–Helmholtz transverse instability problem in both

periodic and convective formulations studied earlier by e.g. [13,25], and in Section 5.2 we study the Ors-

zag–Tang MHD vortex system [22,23]. Unlike the Brio–Wu and Kelvin–Helmholtz problems, the numer-

ical solution of the Orszag–Tang vortex system does not necessarily preserve the divergence constraint,

$ ÆB=0. To enforce the latter, a Leray projection corrector is implemented at the end of each time-step,

replacing the computed magnetic field with its divergence-free projection.
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Our results are found to be in excellent agreement with previous simulations of the same problems car-

ried out with upwind-type schemes [3,6,13,25], and complement the results of Wu and Chang [27], and the

more recent results for relativistic MHD flows obtained with central-upwind schemes by Del Zanna et al.

[7,8]. These results demonstrate the ability of central schemes to detect and resolve the discontinuous

solutions that characterize these models, while retaining efficiency and simplicity. Indeed, the one- and
two-dimensional results reported in this paper demonstrate the remarkable versatility of central schemes

as black-box, Jacobian-free solvers for MHD computations. We conclude this paper with a two-page Ap-

pendix A which provides the complete 2D central code for the convective Kelvin–Helmholtz problem.
2. One-dimensional central schemes

We approximate the solution of (1.1)–(1.4) using predictor–corrector central schemes which are imple-
mented over staggered grids. The schemes have two main ingredients: #1. A non-oscillatory piecewise pol-

ynomial reconstruction of pointvalues from their cell averages; followed by #2. Realizing the evolution of

these reconstructed polynomials in terms of their staggered cell averages. Following is a description of the

one-dimensional schemes that we use for the calculations reported in Section 4.

2.1. Non-oscillatory reconstructions

The system of Eqs. (1.1)–(1.4) admits the general conservation form
ut þ f ðuÞx ¼ 0 ð2:1Þ

(see Section 4 for the explicit form of u and f(u) in the case of one-dimensional MHD equations). Starting

with this general form, we follow Godunov�s seminal idea for the approximation of discontinuous solutions

of conservation laws (see Fig. 1). Using the formulation in [19] we consider the sliding averages,
�uðx; tÞ :¼ ð1=DxÞ

R xþDx=2
x�Dx=2 uðn; tÞ dn; the conservation law (2.1) then reads
Fig. 1. Central differencing by Godunov-type scheme.
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�utðx; tÞ þ
1

Dx
f ðuðxþ Dx

2
; tÞÞ � f ðuðx� Dx

2
; tÞÞ

� �
¼ 0: ð2:2Þ
Introducing a small time step Dt, and integrating over the slab t<s< t+Dt we arrive at
�uðx; t þ DtÞ ¼ �uðx; tÞ � 1

Dx

Z tþDt

t
f u xþ Dx

2
; s

� �� �
� f u x� Dx

2
; s

� �� �� �
ds: ð2:3Þ
So far, (2.3) is exact. The solution to (2.3) is now realized at the discrete time level tn=nDt by a piecewise

polynomial approximation, w(x,tn) �u(x,tn), which takes the form
wðx; tnÞ ¼
X

pjðxÞvjðxÞ; vjðxÞ :¼ 1Ij : ð2:4Þ
Here, pj(x) are algebraic polynomials supported on the discrete cells Ij ¼ Ixj ¼ ½xjþ1
2
; xjþ1

2
� with interfacing

breakpoints at the half-integers grid points, xj�1
2
¼ ðj� 1

2
ÞDx: Sampling (2.3) at x ¼ xjþ1

2
; we arrive at the

new staggered cell averages, �wnþ1
jþ1

2

, centered at Ijþ1
2
¼ Ix

jþ1
2

;" #

�wnþ1
jþ1

2

¼ 1

Dx

Z
I
jþ1

2

wðx; tnÞ dx� 1

Dx

Z tnþ1

tn
f ðwðxjþ1; tÞÞ dt �

Z tnþ1

tn
f ðwðxj; tÞÞ dt : ð2:5Þ
The evaluation of the expressions on the right of (2.5) proceeds in two steps, which will occupy the rest of

this section.

The first step starts with the known cell averages, f�wn
jgj, which are used to reconstruct a non-oscillatory

piecewise polynomial approximation wðx; tnÞ ¼
P

jpjðxÞvjðxÞ. We use piecewise linear functions in the sec-

ond-order case,
pjðxÞ ¼ �wn
j þ w0j

x� xj
Dx

� �
; ð2:6Þ
and piecewise quadratic functions in the third-order case,
pjðxÞ ¼ wn
j þ w0j

x� xj
Dx

� �
þ 1

2
w00j

x� xj
Dx

� �2

: ð2:7Þ
Here, wn
j ;w

0
j=Dx; and w00j =ðDxÞ

2
are the approximate point values and the first and second derivatives of

w(x,tn) at x=xj, which are reconstructed from the given cell averages, f�wn
jgj. Several approximations for

these numerical derivatives are available within the accuracy constraints of the schemes. It should be noted

that the procedure for reconstruction of point values and couple of numerical derivatives from the given cell

averages is at the heart of high-resolution, non-oscillatory central schemes. In particular, such reconstruc-
tions should satisfy the following three essential properties:

� P1 – Conservation of cell averages: �pjðxÞjx¼xj ¼ �wn
j

� P2 – Accuracy: wðx; tnÞ ¼ uðx; tnÞ þ OððDxÞrÞ for r-order accurate method, wherever u(Æ,t) is sufficiently

smooth.

� P3 – Non-oscillatory behavior of
P

jpjðxÞvjðxÞ which is characterized in different ways for different re-

constructions.

2.1.1. Second-order reconstruction

For the second-order results presented in Section 4, the numerical derivative in (2.6), w0j, is given by 1
w0j ¼MinModðaDþ�wj;D0�wj; aD��wjÞ; 16 a < 4: ð2:8Þ
here D± and D0 stand for the usual differences, D±wj=±(wj±1�wj), and D0 ¼ 1
2
ðDþ þ D�Þ.



J. Balbás et al. / Journal of Computational Physics 201 (2004) 261–285 265
Here, MinMod stands for van-Leer�s limiter, cf. [17], where MinMod(a,b,c)=sign(a)min(jaj,jbj,jcj) if sig-
n(a)=sign(b)=sign(c), and it vanishes otherwise. It follows that this reconstruction procedure is non-oscil-

latory in the sense of satisfying a maximum principle, supx j
P

jpjðxÞvjðxÞ j 6 supx j
P

j�w
n
jvjðxÞ j. Moreover,

for a restricted set of a-values, this MinMod-based reconstruction is total-variation diminishing (TVD)
k
X
j

pjðxÞvjðxÞjTV 6 k
X
j

�wn
jvjðxÞjTV ;
and hence the corresponding central scheme is TVD [21].
2.1.2. Third-order reconstruction

In order to guarantee properties P1–P3 in the case of the piecewise quadratic reconstruction (2.7), we

first construct a polynomial using the non-limited version of the point values and numerical derivatives that

we obtain from the cell averages f�wn
jgj,
~pjðxÞ ¼ �wn
j �

1

24
DþD��wn

j þ D0�wn
j

x� xj
Dx

� �
þ 1

2
DþD��wn

j

x� xj
Dx

� �2

ð2:9Þ
(we shall point out that starting with third-order, the point value wn
j no longer coincides with the cell av-

erage �wn
j ). This polynomial, (2.9), satisfies properties P1 and P2, and an also important shape preserving

property that guarantees that ~pj has the same shape as
Pi¼j�1

i¼j�1�w
n
i vi; and therefore no new extrema is created

within the cell Ij. However, interface jumps appear when signð~pj þ 1ðxjþ1
2
Þ � ~pjðxjþ1

2
ÞÞ 6¼ signð�wn

jþ1 � �wn
j Þ, re-

sulting on the onset of spurious oscillations. To prevent such interface jumps, we seek a third-order limiter,
hj (with 0<hj6 1), along the lines of those specified in [19]. The limiters are calculated in terms of the cell

quantities
Mj ¼ max
x2Ij

~pjðxÞ; mj ¼ min
x2Ij

~pjðxÞ; ð2:10Þ
and
Mj�1
2
¼ max 1

2
ð�wn

j þ �wn
j�1Þ; ~pj�1ðxj�1

2
Þ

n o
;

mj�1
2
¼ min 1

2
ð�wn

j þ �wn
j�1Þ; ~pj�1ðxj�1

2
Þ

n o
:

8><
>: ð2:11Þ
The limiter hj is then given by
hj ¼

min
M

jþ1
2
��wn

j

Mj��wn
j
;
m
j�1

2
��wn

j

mj��wn
j
; 1

� �
if �wn

j�1 < �wn
j < �wn

jþ1;

min
M

j�1
2
��wn

j

Mj��wn
j
;
m
jþ1

2
��wn

j

mj��wn
j
; 1

� �
if �wn

j�1 > �wn
j > �wn

jþ1;

0 otherwise ðif Dþ�wn
j � D��wn

j < 0Þ:

8>>>>><
>>>>>:

ð2:12Þ
The new piecewise quadratic polynomials are then written as the convex combination
pjðxÞ ¼ �wn
j þ hjð~pjðxÞ � �wn

j Þ; ð2:13Þ
which still satisfies properties P1 and P2 and the shape preserving property mentioned above, and avoids

the spurious interface extrema, i.e., signðpjþ1ðxjþ1
2
Þ � pjðxjþ1

2
ÞÞ ¼ signð�wn

jþ1 � �wn
j Þ. This is known as number

of extrema diminishing (NED) property, and characterizes, together with the shape preserving property, the

non-oscillatory behavior of the scheme, i.e. property P3 [19,20].
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Remarks

1. The values Mj and mj in (2.10) do not need to be calculated explicitly as they only enter the calculation

of the limiter, hj, when the sequence f�wn
i g

i¼jþ1
i¼j�1 is monotone and they coincide, respectively, with the in-

terface values ~pjðxj�1
2
Þ in the increasing case and ~pjðxj�1

2
Þ in the decreasing case.

2. The monotonicity of f�wn
i g

i¼jþ1
i¼j�1 also guarantees that the differences Mj�1

2
�Mj and mj�1

2
� mj are of order

OððDxÞ3Þ and, consequently hj is a third-order limiter and 1� hj ¼ OððDxÞ3Þ:
3. In the case of MHD equations, the value of hj in the extrema cells ði:e:;Dþ�wn

j � D��wn
j < 0Þ needs to be set

to 0 to produce the so-called clipping phenomena that avoids the onset of spurious oscillations at the

expense of reducing to the first order version of Lax–Friedrichs [19].

4. The polynomials (2.13) are equivalent to (2.7) with the point values and numerical derivatives given by
w0j ¼ hjD0�wn
j ; ð2:14Þ

w00j ¼ hjDþD��wn
j ; ð2:15Þ

wn
j ¼ �wn

j �
w00j
24

: ð2:16Þ
Once w(x,tn) is realized as a piecewise polynomial, w(x,tn)=
P

pj(x) vj(x), it is integrated exactly over the
interval Ijþ1

2
to compute the staggered cell averages on the right of (2.5)
1

Dx

Z
I
jþ1

2

wðx; tnÞ dx ¼ 1

Dx

Z xjþ1
2

xj

pjðxÞ dxþ
Z xjþ1

x
jþ1

2

pjþ1ðxÞ dx

2
4

3
5 ¼ 1

2
½�wn

j þ �wn
jþ1� þ

1

8
½w0j � w0jþ1�: ð2:17Þ
Remark. Higher order non-oscillatory extensions of these reconstruction algorithms are offered by the Es-
sentially non-oscillatory (ENO) reconstructions of Harten et al. e.g. [10], and their implementation with

central schemes can be found in e.g. [18].

2.2. Staggered evolution

We turn to the second step in the construction of the central scheme. Here we follow the evolution of the

reconstructed point values, {w(xj,sP tn)}j, along the midcells, x=xj, which are governed by
wt þ f ðwÞx ¼ 0; sP tn; wðx; tnÞ ¼ pjðxÞ; x 2 Ij: ð2:18Þ
If {ak(u)}k are the eigenvalues of the Jacobian A(u) :¼of/ou, then by hyperbolicity, information regarding

the interfacing discontinuities at ðxj�1
2
; tnÞ propagates no faster than maxkjak(u)j. Hence, the midcell values,

{w(xj,sP tn)}j, remain free of discontinuities as long as the CFL condition, Dt6 1
2
�maxk j akðuÞ j, is met.

Therefore, the flux integrals in the right of (2.5) involve only smooth integrands and can be evaluated with

appropriate quadrature rules to any desired degree of accuracy. In particular, the second-order Nessyahu–

Tadmor scheme [21] makes use of the midpoint rule
Z tnþ1

tn
f ðwðxj; sÞÞ ds 	 Dtf ðwnþ1

2
j Þ;
while the third-order Liu–Tadmor scheme, [19], makes use of Simpson�s rule
Z tnþ1

f ðwðxj; sÞÞ ds 	
Dt

f ðwn
j Þ þ 4f ðwnþ1

2
j Þ þ f ðwnþ1

j Þ
h i

:

tn 6
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These quadrature formulae require the computation of the intermediate point values wnþb
j ; b ¼ 0; 1=2; 1.

A natural approach for computing these point values employs Taylor�s expansion and the differential equa-

tion (2.1), wt=�f(w)x. The resulting predictor step in the second-order case reads
w
nþ1

2
j ¼ �wn

j �
k
2
f 0j ; fj ¼ f ðwn

j Þ: ð2:19Þ
Here k=Dt/Dx is the fixed mesh ratio and f 0j is an approximate numerical derivative – an approximation to

the spatial derivative f 0j=Dx 	 f ðwn
j Þx. Different recipes for numerical derivatives are available within the ac-

curacy constraints of our calculations. We shall mention two of them which retain the overall second-order

accuracy, consult [21]. In the first approach we utilize the chain rule, f(w)x=A(w)wx. With Aðwn
j Þ standing

for the computed Jacobian and w0j denoting the reconstructed numerical derivative, w0j=Dx 	 wðxj; tnÞx, we
have
f 0j ¼ Aðwn
j Þw0j; w0j ¼MinModðaDþ�wj;D0�wj; aD��wjÞ: ð2:20Þ
Alternatively, we can implement a spatial MinMod limiter directly for numerical differentiation of the grid

function ffj ¼ f ðwn
j Þgj;
f 0j ¼MinModðaDþfj;D0fj; aD�fjÞ; fj ¼ f ðwn
j Þ: ð2:21Þ
Remark. The resulting predictor-step (2.19) and (2.21) completely avoids the evaluation of the Jacobian

Aðwn
j Þ:
Similar recipes are available for the third-order predictor,
wnþb
j ¼ wn

j � kb f wn
j �

kb
2
f 0j

� �� �0
; b ¼ 1

2
; 1: ð2:22Þ
As before, the evaluation of the expression on the right of (2.22) can utilize the chain rule
f w� kb
2
f ðwÞx

� �
x

¼ f w� kb
2
AðwÞwx

� �
x

¼ AðwÞwx �
kb
2

A2ðwÞwx

	 

x
þ OðkÞ2:
Using the third-order accurate numerical derivative in (2.14), we end up with two possible recipes for com-
puting the third-order accurate predicted mid-values, ff ðwn

j � ðkb=2Þf 0j Þg
0
in (2.22)
f ðwn
j �

kb
2
f 0j Þ

� �0
¼ h

b�1
2

j D0 f ðwn
j �

kb
2
Aðwn

j Þw0jÞ
� �

; b ¼ 1

2
; 1; w0j ¼ h

b�1
2

j D0wj; ð2:23Þ

f ðwn
j �

kb
2
f 0j Þ

� �0
¼ Aðwn

j Þw0j �
kb
2
h
b�1

2
j D0 Aðwn

j Þ
2w0j

n o
; b ¼ 1

2
; 1; w0j ¼ h

b�1
2

j D0wj: ð2:24Þ
A third possibility, a so-called Jacobian-free form (JFF) alternative is provided by
f ðwn
j �

kb
2
f 0j Þ

� �0
¼ h

b�1
2

j D0 f wn
j �

kb
2
D0ðf ðwn

j ÞÞ
� �� �

; b ¼ 1

2
; 1; ð2:25Þ
where the superscript b� 1
2
in the hj limiter indicates that it is calculated using the grid function f�wnþb�1

2
j g.

We notice, however, that although the results presented in Section 4 include this intermediate update of the

limiter, calculations performed with a single limiter calculated at the beginning of each time step do not

differ significantly from those reported below. Again, the computation of the intermediate values wnþb
j in

(2.25) avoids the explicit evaluation of the Jacobians, Aðwn
j Þ. The high-resolution of these Jacobian-free ver-

sions (2.21) and (2.25) is evident in the numerical results reported in Section 4. The intermediate values wnþb
j

can also be approximated by Runge–Kutta solvers of the ODE ws ¼ f̂ xjx¼xj ; wðxj; 0Þ ¼ wn
j ; s > tn, where f̂ x
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stands for the numerical derivative of f. This approach offers yet another avenue for the time evolution of

central schemes: in particular, we mention in this context the efficient evolution procedure based on higher

order Runge–Kutta natural continuous extensions, e.g. [4,18], which significantly reduces the number of

computations per grid point.

Equipped with the predicted point values, we are set to evaluate the integrals on the right-hand side of
(2.5). They are approximated by the midpoint rule in the second-order case
Z tnþ1

tn
f ðwðxj; sÞÞ ds 	 Dtf ðwnþ1

2
j Þ ¼: Dtf

nþ1
2

j ; ð2:26Þ
and by Simpson�s rule in the third-order case
Z tnþ1

tn
f ðwðxj; sÞÞ ds 	

Dt
6
½f ðwn

j Þ þ 4f ðwnþ1
2

j Þ þ f ðwnþ1
j Þ� ¼: Dtf

nþ1
2

j : ð2:27Þ
Denoting these approximate values of the flux integrals by f
nþ1

2
j , the corrector step for both the second- and

third-order central schemes amount to the same statement
�wnþ1
jþ1

2

¼ 1

2
½�wn

j þ �wn
jþ1� þ

1

8
½w0j � w0jþ1� � k f

nþ1
2

jþ1 � f
nþ1

2
j

h i
: ð2:28Þ
3. Two-dimensional central schemes

As in the one-dimensional case, we begin the description of the two-dimensional scheme by writing (1.1)–

(1.4) in conservation form
ut þ f ðuÞx þ gðuÞz ¼ 0: ð3:1Þ

Introducing space scales Dx and Dz, we consider the sliding averages of (3.1) over two-dimensional cells
½x� Dx

2
; xþ Dx

2
� � ½z� Dz

2
; zþ Dz

2
�

�utðx; z; tÞ þ
1

DxDz

Z zþDz
2

z�Dz
2

f u xþ Dx
2
; g; t

� �� �
� f u x� Dx

2
; g; t

� �� �� �
dg

þ 1

DxDz

Z xþDz
2

x�Dx
2

g u n; zþ Dz
2
; t

� �� �
� g u n; z� Dz

2
; t

� �� �� �
dn ¼ 0: ð3:2Þ
We proceed along the same lines of the one-dimensional case; integration over the slab t 6 s 6 t+Dt is per-
formed, and the solution of the resulting equation is approximated at time level tn=nDt by a piecewise bi-

linear polynomial wðx; z; tnÞ ¼
P

pjkðx; zÞvjkðx; zÞ, where vjkðx; zÞ ¼ 1Ixj�Izk is the characteristic function of

the control volume Ixj � Izk . Choosing x ¼ xjþ1
2
, and z ¼ zkþ1

2
as the interfacing boundaries, the two-dimen-

sional version of Eq. (2.5) reads (see Fig. 2)
�wnþ1
jþ1

2
;kþ1

2

¼ �wn
jþ1

2
;kþ1

2
� 1

DxDz

Z tnþ1

tn

Z zkþ1

zk

½f ðwðxjþ1; z; tÞÞ � f ðwðxj; z; tÞÞ� dz dt

� 1

DxDz

Z tnþ1

tn

Z xjþ1

xj

½gðwðx; zkþ1; tÞÞ � gðwðx; zk; tÞÞ� dx dt: ð3:3Þ
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The reconstruction of the point values w(x,z,tn) is carried out using piecewise bilinear functions

pjkðx; zÞ ¼ �wn
jk þ w0jkð

x�xj
Dx Þ þ �wjkðz�zkDz Þ, with the approximate numerical derivatives in the x and z directions

given by
w0jk ¼MinModðaDþx�wn
jk;D0x�wn

jk; aD�x�w
n
jkÞ; ð3:4Þ

w
8

jk ¼MinModðaDþz�wn
jk;D0z�wn

jk; aD�z�w
n
jkÞ: ð3:5Þ
These piecewise polynomials admit the following cell averages on the right of (3.3):
�wn
jþ1

2
;kþ1

2
¼ 1

DxDz

Z x
jþ1

2

xj

Z z
kþ1

2

zk

pjkðx; zÞ dz dxþ
Z xjþ1

x
jþ1

2

Z z
kþ1

2

zk

pjþ1;kðx; zÞ dz dx

þ 1

DxDz

Z x
jþ1

2

xj

Z zkþ1

z
kþ1

2

pj;kþ1ðx; zÞ dz dxþ
Z xjþ1

x
jþ1

2

Z zkþ1

z
kþ1

2

pjþ1;kþ1ðx; zÞ dz dx

¼ 1

4
ð�wn

jk þ �wn
jþ1;k þ �wn

j;kþ1 þ �wn
jþ1;kþ1Þ

þ 1

16
ðw0jk � w0jþ1;kÞ þ ðw0j;kþ1 � w0jþ1;kþ1Þ þ ðw

8

jk � w
8

j;kþ1Þ þ ðw
8

jþ1;k � w
8

jþ1;kþ1Þ
h i

: ð3:6Þ
The reconstruction procedure described above enjoys the conservation, accuracy and non-oscillatory prop-

erties, P1–P3, analogous to those listed for one-dimensional schemes in Section 2. In particular, the non-

oscillatory property in this case is characterized by the scalar maximum principle, consult [12].

To approximate the flux integrals on the right of (3.3), we first predict the midpoint values
w
nþ1

2

jk ¼ �wn
jk �

k
2
f 0jk �

l
2
g

8

jk; ð3:7Þ
where k=Dt/Dx and l=Dt/Dz are the (fixed) mesh ratios in the x and z directions, and f 0jk and g
8

jk stand for

the numerical slopes of f(w) and g(w). In this case, we choose the JFF
f 0jk ¼MinModðaDþxfjk;D0xfjk; aD�xfjkÞ; ð3:8Þ
g

8

jk ¼MinModðaDþzgjk;D0zgjk; aD�zgjkÞ: ð3:9Þ
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In the computations below we set the free parameter a=1.4. The flux integrals are then approximated by

the midpoint rule in time, and by second-order trapezoidal quadrature in space
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: ð3:11Þ
The new staggered cell averages f�wnþ1
jþ1
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In addition to reconstruction and evolution, our second-order two-dimensional scheme requires the cor-

rection of the magnetic field, B, in order to guarantee the solenoidal constraint $ ÆB=0. We satisfy this con-

straint by updating the cell averages of the magnetic field at the end of each time step, replacing the
computed B, with its divergence-free projection, Bc. To this end the so-called Leray projection is carried

out by solving the Poisson equation
D/ ¼ �r � B ð3:13Þ
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Results of Brio–Wu shock tube problem at t=0.2 computed with 800 grid points using the second-order central scheme. Here f 0j
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with the appropriate boundary conditions. Since the coplanar structure of the problem guarantees oBy/oy=0,

only the componentsBx andBzneed to be updated.Weuse a fast Poisson solver – theFishpack hwscrt code [1],

for the standard five point discretization of the potential /, and central differences for the divergence of the

magnetic field, $ ÆB. The corrected divergence-free magnetic field, Bc, is then realized as
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v y

Fig. 4.

the nu
Bc ¼ Bþr/: ð3:14Þ

Applying the divergence operator $=(o/ox, o/oz) to both sides of (3.14), one can easily verify that $ ÆBc=0.

We use here only one out of several methods to enforce the so-called �constrained transport� and we refer

the reader to [2,24] and the references therein for a general discussion and [11] for handling the solenoidal

constraint in the context of MHD schemes over staggered grids.
4. One-dimensional numerical results

Eqs. (1.1)–(1.4) admit the conservative form (2.1) with
u ¼ ðq; qvx; qvy ; qvz;By ;Bz; eÞT; ð4:1Þ

f ðuÞ ¼ ðqvx; qv2x þ p
 � B2
x ; qvxvy � BxBy ; qvxvz � BxBz;Byvx � Bxvy ;Bzvx

� Bxvz; ðeþ p
Þvx � BxðBxvx þ Byvy þ BzvzÞÞT; ð4:2Þ
where p*=p+(1/2)B2 stands for the total pressure (static plus magnetic).

In this section we present numerical simulations of the one-dimensional MHD equations (2.1)–(2.28),

(3.1)–(3.14), (4.1), (4.2). The results were obtained using different versions of the second-order Ness-
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Results of Brio–Wu shock tube problem at t=0.2 computed with 800 grid points using the second-order central scheme. Here,

merical flux, f 0j ¼ Aðwn
j Þw0j, is evaluated using the MinMod limiter (2.20) with a=1.4.
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yahu–Tadmor central scheme (2.19)–(2.21), (2.26),(2.28), based on the MinMod limiter (2.8), and third-

order Liu–Tadmor central scheme, (2.22)–(2.25), (2.27), (2.28), based on the non-oscillatory limiter

(2.14)–(2.16). The schemes are implemented for the approximate solution of two coplanar shock tube

MHD models described by Brio and Wu [3]. We use a uniform grid in the space discretization, and in both

cases we choose the time step dynamically with CFL restriction
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Fig. 5.

are co
Dt ¼ 0:4
Dx

max
k
j akðuÞ j

; ð4:3Þ
where {ak(u)}k are the eigenvalues of the Jacobian matrix of f(u).

4.1. Brio–Wu shock tube problem

The first one-dimensional Riemann problem we consider consists of a shock tube with two initial equi-

librium states, ul and ur,
ðq; vx; vy ; vz;By ;Bz; pÞT ¼
ð1:0; 0; 0; 0; 1:0; 0; 1:0ÞT for x < 0;

ð0:125; 0; 0; 0;�1:0; 0; 0:1ÞT for x > 0;

(
ð4:4Þ
and complemented with the constant values of Bx”0.75 and c=2. The problem is solved for x2 [�1,1] with
800 grid points, and numerical results are presented at t=0.2. Figs. 3–6 show the density, the x- and y-ve-

locity components, the y-magnetic field, and pressure profiles computed with different choices of numerical

derivatives f 0j and u0j:
We note that the hydrodynamical data of this problem are the same as that in Sod�s shock tube problem

of gas dynamics. The variety of MHD waves, however, poses a considerable challenge for high-resolution
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Results of Brio–Wu shock tube problem at t=0.2 computed with 800 grid points using the third-order central scheme. Here f 0j
mputed component-wise using the JFF version (2.25).
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methods such as the JFF central schemes described in this paper. The solution of this problem consists of a

left-moving fast rarefaction wave (FR), a slow compound wave (SM) which results from an intermediate

shock that changes By from 0.58 to �0.31 and a slow rarefaction that changes By from �0.31 �0.53, a con-

tact discontinuity (C), a right-moving slow shock (SS), and a right-moving fast rarefaction wave (FR). Note

that the solution to this problem is not unique if Bz and vz are not identically zero.
Figs. 3–6 show the solutions calculated with different versions of the second- and third-order schemes.

These results are comparable with the second-order upwind computations of Brio and Wu [3], and with the

fifth-order WENO computations presented by Jiang and Wu [13]. Our numerical results demonstrate that

central schemes – while avoiding any characteristic information other than an estimate of the maximal

speed maxkjak(u)j, they still capture the main features of the discontinuous MHD solutions.

In Figs. 5 and 6 we observe the third-order oscillations near the trailing edge of the fast rarefaction wave

that are less evident with the second-order results. This is due to the higher order polynomial reconstruc-

tion; indeed, the same phenomenon is reported in [13] when comparing fifth-order WENO with second-
order results. A final remark regarding the JFF, (2.21), (2.25): not only that they offer a more economical

approach by avoiding costly matrix multiplication, but they also provide a better control of these oscilla-

tions as well as a better resolution of the contact discontinuity (C); in particular, they allow the expected

jump in the density profile without disrupting the constant state of the remaining conserved quantities.

4.2. Brio–Wu high mach shock tube problem

The following shock tube model proposed by Brio and Wu [3] is used to check the robustness of the nu-
merical schemes for high Mach number problems. The initial equilibrium states, ul and ur, are given by
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Fig. 6. Results of Brio–Wu shock tube problem at t=0.2 computed with 800 grid points using the third-order central scheme. Here, the

intermediate numerical fluxes, ff ðwj � kb=2f 0j Þg
0
; b ¼ 0; 1=2; 1, are evaluated using the third-order limiter (2.23).
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Fig. 7. Results of Brio–Wu high Mach problem at t=0.012 computed with 200 grid points using second-order central scheme. Here f 0j
are computed component-wise using the JFF (2.21) with a=1.4.
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ðq; vx; vy ; vz;By ;Bz; pÞT ¼
ð1:0; 0; 0; 0; 1:0; 0; 1000ÞT for x < 0;

ð0:125; 0; 0; 0;�1:0; 0; 0:1ÞT for x > 0

(
ð4:5Þ
complemented with the values of Bx”0, and c=2. The Mach number of the right-moving shock wave is

15.5. If the plasma pressure is replaced by the sum of the static and magnetic pressures – denoted by p*

above, the problem becomes a standard hydrodynamical Riemann problem. The solution is presented at

t=0.012, x2 [�1,1], with 200 grid points and with CFL number 0.4, consult (4.3) (see Figs. 7 and 8).

The solution of this second Riemann problem consists of a left-moving fast rarefaction wave (FR), fol-

lowed by a tangential discontinuity (TD), and a right moving fast shock (FS) with Mach number 15.5.

Across the tangential discontinuity, the density, the magnetic field and the pressure can change, but both

the fluid velocity and the total pressure are continuous.

As in the previous problem, our results are comparable to those obtained by Brio and Wu [3] with their

second-order upwind method and the ones presented by Jiang and Wu [13], computed with a fifth-order
WENO scheme. These results indicate that the methods described above are robust even in their �greedy�,
Jacobian-free version.
5. Two-dimensional numerical results

In two space dimensions, Eqs. (1.1)–(1.4) admit the conservative form (3.1) with
u ¼ ðq; qvx; qvy ; qvz;Bx;By ;Bz; eÞT; ð5:1Þ
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Fig. 8. Results of Brio–Wu high Mach problem at t=0.012 computed with 200 grid points using third-order central scheme. Here, the

intermediate numerical fluxes, ff ðwj � kb=2f 0j Þg
0
; b ¼ 0; 1=2; 1, are evaluated using the third-order limiter (2.23).
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f ðuÞ ¼ ðqvx; qv2x þ p
 � B2
x ; qvxvy � BxBy ; qvxvz � BxBz; 0;Byvx � Bxvy ;Bzvx

� Bxvz; ðeþ p
Þvx � BxðBxvx þ Byvy þ BzvzÞÞT; ð5:2Þ

gðuÞ ¼ ðqvz; qvzvx � BzBx; qvzvy � BzBy ; qv2z þ p
 � B2
z ;Bxvz � Bzvx;Byvz

� Bzvy ; 0; ðeþ p
Þvz � BzðBxvx þ Byvy þ BzvzÞÞT: ð5:3Þ
In this section we present the numerical solutions of two prototype models of two-dimensional MHD equa-
tions. For the first problem – the Kelvin–Helmholtz instability with transverse magnetic field configuration,

we consider two different sets of boundary conditions in the x-direction: periodic in the first case and a free

outflow boundary in the second convective setup. The second Orszag–Tang problem introduced by Orszag

and Tang [22] as a simple model to study MHD turbulence, and has become a standard model to validate

numerical algorithms. In both cases, the time scale, Dt is determined dynamically with CFL=0.4,
Dt ¼ 0:4

ðmax
k
j akðuÞ j =DxÞ þ ðmax

k
j bkðuÞ j =DzÞ

; ð5:4Þ
where {ak(u)}k and {bk(u)}k represent the eigenvalues of the Jacobian matrices of f(u) and g(u), respectively.

5.1. Transverse Kelvin–Helmholtz instability

The Kelvin–Helmholtz instability arises when two superposed fluids flow one over the other with a rel-

ative velocity. It models, for example, the important mechanism for the momentum transfer at the Earth�s
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magnetopause boundary, which separates the solar wind from the Earth�s magnetosphere [13]. We apply

the second-order central scheme of Jiang and Tadmor, (3.7)–(3.12), for the two-dimensional periodic

and convective models with transverse magnetic field configuration.

In both cases, the governing equations are (3.1) with u, f(u) and g(u) given by (5.1), (5.2) and (5.3), re-

spectively, and are subject to initial conditions
Fig. 9.
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referen
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~vx0 ¼
�~v0 sinð2pxk Þ 1

1þz2 ; if � k
2
< x < k

2
;

0 otherwise;

�
ð5:7Þ
with v0=2, ~v0 ¼ �0:008, k=5p and a=1. Also, the grids are stretched in the z-direction with a Roberts

transformation (consult [13]),
z H sinhðsz=2HÞ
sinhðs=2Þ ; s ¼ 6; ð5:8Þ
which renders a denser grid near z=0 where the effect of the small initial perturbation ~vx0 is more noticeable,
and a coarser grid near z=±H, where little action takes place.

In the periodic case, the computational domain is [�L/2,L/2]· [0,H], with L=5p and H=10. Reflection

boundary conditions are applied for the outflow variables at the top boundary, z=H, and the bottom

boundary values are recovered by symmetry, since q, p, and By are symmetric, and vx and vz are antisym-

metric under the transformation (x,z)fi (�x,�z). In Fig. 9, we present solutions at t=144, with 96·96 and

192·192 grid points.
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The resolution and accuracy of our results are comparable to those achieved by the second-order gas

kinetic scheme of Tang and Xu [25] using a 200·200 uniform grid, and to those achieved by Jiang and

Wu�s fifth-order WENO scheme, [13], obtained with a coarser grid. It should be noted, however, that in

the case of central schemes, the additional computational cost generated by thinner grids is compensated

by the simplicity of the algorithm: no characteristic decompositions are computed, no Jacobians are re-
quired and dimensional splitting is avoided.

In the convective setup, the initial conditions and perturbation are the same as in the periodic setup,

(5.5)–(5.7). Free outflow conditions are applied to all four boundaries of the computational domain

[�L/2,L/2]· [�H,H]. Here H=20 and L=55p, with L�k – so chosen to allow the excitation to convect

freely without disturbing the x-boundaries. In this case, rather than using symmetry to reconstruct the so-

lution in the bottom half of the domain, we test the symmetry preserving capabilities of our schemes by

solving the problem in the entire domain.

Figs. 10 and 11 display the solution computed with 1056·192 grid points at t=120 and t=145, respec-
tively. As in the periodic case, our results are comparable to those previously obtained with upwind
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Fig. 11. Solution of convective Kelvin–Helmholtz instability at t=145, with 1056·192 grid points. The density ranges from 0.43 to 1.3,

pressure ranges from 0.10 to 0.86 and maximum value for the velocity is 1.94.
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schemes, [13,25], and demonstrate the ability of central schemes to detect and resolve steep gradients with-

out any detailed knowledge of the eigenstructure of the Jacobian matrices and to preserve the symmetry of

the solution.

5.2. Orszag–Tang MHD turbulence problem

This model considers the evolution of a compressible Orszag–Tang vortex system. The evolution of the

vortex system involves the interaction between several shock waves traveling at various speed regimes

[5,13,26], which makes the problem especially attractive for numerical experiments.

The initial data are given by
Fig. 14

Red –

j B j ar
version
qðx; z; 0Þ ¼ c2; vxðx; z; 0Þ ¼ � sin z; vzðx; z; 0Þ ¼ sin x;

pðx; z; 0Þ ¼ c; Bxðx; z; 0Þ ¼ � sin z; Bzðx; z; 0Þ ¼ sin 2x;
where c=5/3. With this initial data, the root mean square values of the velocity and magnetic fields are both

1; the initial average Mach number is 1, and the average plasma beta is 10/3.

We solve the problem in [0,2p]· [0,2p], with periodic boundary conditions in both x- and z-directions

using a uniform grid with 384·384 points.
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In this problem, the numerical scheme fails to satisfy the divergence-free constraint of the magnetic field,

$ ÆB=0. In order to guarantee this condition and avoid numerical instability, we project the updated mag-

netic field B into its divergence-free component at the end of every time iteration by applying the correction

(3.13) and (3.14).
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Figs. 13–15 present the solution of the Orszag–Tang vortex system at t=0.5,t=2, and t=3, respectively.

Again, these results are comparable with those obtained by upwind schemes. The lower order of our meth-

ods require a thinner grid than Jiang and Wu�s fifth-order WENO scheme for resolving accurately the var-

ious shocks that the vortex system develops. However, this relative loss of efficiency is still compensated by

the simplicity in the implementation of the schemes (see Fig. 16).
6. Conclusions

The numerical results presented in this paper demonstrate the ability of central schemes to compute the

discontinuous solutions of ideal MHD equations accurately. Our numerical tests are in excellent agreement

with the results of Jiang and Wu [13], and they complement previous results of Wu and Chang [27] and the

more recent results of Del Zanna et al. [7,8] where the efficiency of central schemes is demonstrated for other
MHD models.

How one can quantify this efficiency? the answer depends on too many local features – computer code,

hardware and database configurations, etc. which prevent a precise quantitative answer. We therefore re-

port here on our �subjective� results of CPU running time for solving the above Orszag–Tang problem,

comparing the second-order staggered central scheme [12] vs. WENO scheme [13] (fifth-order in space

and forth in time). The JFF of the second-order central schemes offered a speed-up factor of 25 in this case.

We should point out, however, that the second-order results required a refinement of the spatial grid by a

factor of �2, in order to achieve a resolution similar to the fifth-order WENO. With the more restrictive
CFL condition – the staggered central CFL condition is �0.5 rather than 1, this increases the amount of

2D �work� by a factor 8. Thus, the acceleration factor for a given resolution in this case is a factor of �3.
The additional gain offered by the black-box central solvers lies in their simplicity: neither characteristic

decomposition nor dimensional splitting is required. The relative ease of implementation is highlighted

by the 2D code in Appendix A, where the intricate eigensystem specified in [13, pp. 570–572] is completely

avoided.

Finally, we observe that the lower resolution of our staggered central schemes necessitates further refine-

ment of the spatial grids in order to achieve the same resolution as higher order upwind methods, resulting
in a loss of efficiency. We will address this issue in a second part of our work on central schemes for MHD

equations, where we use a semi-discrete version of the central schemes introduced in [15,16] and its higher-

order extensions, consult [4,18]. This approach retains both the simplicity of implementation and the effi-

ciency of Riemann-solver-free algorithms.
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Appendix A. A central code for two-dimensional ideal MHD equations

The following C++ code was used to compute the solution of the convective Kelvin–Helmholtz Insta-

bility, Figs. 10–12. We refer the reader to http://www.math.ucla.edu/~jbalbas/MHD/code for this two-di-

mensional MHD code and additional software required for its implementation.

http://www.math.ucla.edu/~jbalbas/MHD/code
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