Course Syllabus

The following lectures from the text (and other sources) will be covered:

Part I: Fundamentals
Lecture 1 Matrix-Vector Multiplication
Lecture 2 Orthogonal Vectors and Matrices
Lecture 3 Norms
Lecture 4 The Singular Valued Decomposition
Lecture 5 More on the SVD

Part II: QR Factorization and Least Squares
Lecture 6 Projectors
Lecture 7 QR Factorization
Lecture 8 Gram-Schmidt Orthogonalization
Lecture 9 MATLAB
Lecture 10 Householder Triangularization
Lecture 11 Least Squares Problems

Part III: Conditioning and Stability
Selected topics from this part will be covered as needed for parts IV, V, and VI

Part IV: Systems of Equations
Lecture 20 Gaussian Elimination
Lecture 21 Pivoting
Lecture 22 Stability of Gaussian Elimination
Lecture 23 Cholesky Factorization
Part V: Eigenvalues

Lecture 24 Eigenvalue Problems
Lecture 25 Overview of Eigenvalue Algorithms
Lecture 26 Reduction of Hessenberg or Tridiagonal Form
Lecture 27 Rayleigh Quotient, Inverse Iteration
Lecture 28 QR Algorithm without Shifts
Lecture 29 QR Algorithm with Shifts
Lecture 30 Other Eigenvalue Algorithms
Lecture 31 Computing the SVD

Part VI: Iterative Methods

Lecture 32 Overview of Iterative Methods
Lecture 38 Conjugate Gradients
Lecture 40 Preconditioning

Remark: The following topics, while introduced in the text, are not covered in detail, additional resources will be used / provided

Lecture A1 Jacobi Iteration
Lecture A2 Gauss - Siedel Iteration
Lecture A3 SOR
Lecture A5 Other Methods for Linear Systems