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The Wave Equation

Goal: Linear and rotational physics allow us to incorporate photorealism into the motion of rigid
bodies, simulating more complex physical phenomena (i.e, fluid motion, the simulation of fire and
smoke, or cloth motion) involve the solution of PDEs. In this lecture we use Newton’s second law to
derive the wave equation, a simple PDE that governs a wide range of physical phenomena and will
lead us into a number of computational methods valuable for creating photorealistic animations.

I. Vibrating String

In order to derive the wave equation, we consider a vibrating flexible string:

◦ L - length (ends fix at x = 0 and x = L)

◦ σ – constant linear density (mass per unit length)

◦ τ – tension stretching the string

◦ f(x, t) – load on the string (positive in downward direction)

◦ we consider motion on the vertical xy-plane (i.e., the string is fix at the ends and moves only
up and down)

We want to determine the displacement y(x, t) under the assumptions:

1. the slope is small, |∂y/∂x| � 1, (i.e., the string is tight)

2. only force acting on cross sections of string is τ which is tangential to the curve y
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Figure 1: Left: loaded vibrating string, right: string element.
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we now consider a piece of the string extending from x to x+ ∆x, and apply Newton’s second law
to it,

τ sin θ(x+ ∆x, t)− τ sin θ(x, t)− f(x+ α∆x, t)∆x = σ∆s
∂2y

∂t2
(x+ β∆x, t), (1)

where:

◦ ∆s = ∆x/ cos θ – arclength ⇒ σ∆s – mass of the string element

◦ 0 ≤ α ≤ 1 is s.t. f(x+ α∆x, t) is the average value of f(x, t) over the interval [x, x+ ∆x]

⇒ f(x+ α∆x, t)∆x – total load on string element

◦ x+ β∆x – location of the mass center

Observation: for θ � 1 (a reasonable assumption for a tight string), we have

sin θ = θ − 1

3!
θ3 +

1

5!
θ5 + · · · ≈ θ,

cos θ = 1− 1

2
θ2 +

1

4!
θ4 + · · · ≈ 1,

tan θ = θ +
1

3!
θ3 +

2

15
θ5 + · · · ≈ θ,

so, we can approximate:

∂y

∂x
= tan θ ≈ sin θ and ∆s =

∆x

cos θ
≈ ∆x,

and write (1) as

τ
∂y
∂x

(x+ ∆x, t)− ∂y
∂x

(x, t)

∆x
− f(x+ α∆x, t) = σ

∂2y

∂t2
(x+ β∆x, t), (2)

and letting ∆x→ 0, we arrive at

τ
∂2y

∂x2
(x, t)− f(x, t) = σ

∂2y

∂t2
(x, t). (3)

If the load on the string is due to gravity, then f(x, t) = σg = constant, and we can write

τ
∂2y

∂x2
(x, t) = σ

∂2y

∂t2
(x, t) + σg, (4)

and if the effect of g is negligible (Q: is it? – HW), letting c =
√

τ
σ

, we arrive at the wave equation

ytt = c2yxx. (5)
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II. D’Alambert Solution. We now seek a solution of the wave equation by introducing the change
of variables

ξ = x− ct and η = x+ ct, (6)

and expressing the partial derivatives with respect to x and t respectively as

∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
=

∂

∂ξ
+

∂

∂η
,

∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂η

∂η

∂t
= −c ∂

∂ξ
+ c

∂

∂η
,

the wave equation becomes(
−c ∂

∂ξ
+ c

∂

∂η

)(
−c ∂

∂ξ
+ c

∂

∂η

)
y = c2

(
∂

∂ξ
+

∂

∂η

)(
∂

∂ξ
+

∂

∂η

)
y,

which reduces to

yξη = 0. (7)

Question: How? Answer: next HW

This equation can be integrated to obtain, first

yξ =

∫
0 dη = 0 + A(ξ) ⇒ y =

∫
A(ξ) dξ = F (ξ) +G(η),

and undoing the change of variables, we get a general solution for the wave equation.

y(x, t) = F (x− ct) +G(x+ ct) (8)

Remark: notice that nothing has been assumed about F and G, which means that any arbitrary
choice will do... Try it (HW).

Example: consider the initial value problem for an infinite string

ytt = c2yxx, −∞ < x <∞, 0 < t <∞

y(x, 0) = f(x), yt(x, 0) = g(x), −∞ < x <∞.

Using D’Alambert’s solution, we write

y(x, 0) = f(x) = F (x) +G(x),

yt(x, 0) = g(x) = −c F ′(x) + cG(x),
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integrating the second of these equations, we obtain∫ x

0

g(ξ) dξ = −c F (x) + c F (0) + cG(x)− cG(0),

and combining this with the first of the above, we can solve for F (x) and G(x)

F (x) =
f(x)

2
− 1

2c

∫ x

0

g(ξ) dξ +
F (0)−G(0)

2
,

G(x) =
f(x)

2
+

1

2c

∫ x

0

g(ξ) dξ − F (0)−G(0)

2
.

So replacing x with x− ct in the first of these and with x+ ct in the second, we can write

y(x, t) = F (x− ct) +G(x+ ct)

=
f(x− ct)

2
− 1

2c

∫ x−ct

0

g(ξ) dξ +
F (0)−G(0)

2

+
f(x+ ct)

2
+

1

2c

∫ x+ct

0

g(ξ) dξ − F (0)−G(0)

2
,

or

y(x, t) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
g(ξ) dξ. (9)

III. An Application: Water Waves

Consider plane water waves in water of depth h(x). If the wavelength is much greater than h (true
for ocean waves and certain shallow water waves), the governing equations are

ut + uux = −gηx,

[u(η + h)]x = −ηt,

where

◦ u(x, t) – velocity of the column of water

◦ η(x, t) – free-surface elevation relative to undisturbed water level

◦ g – acceleration of gravity
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Figure 2: water wave

For small amplitude waves, uux � ut, gηx, and η � h. Then, one can show (HW) that η satisfies,

g(hηx)x = ηtt

and if h(x) is constant (flat ocean floor),

c2ηxx = ηtt

Question: what is c in this case?


