- Calitornic "State University
) ofthrldge

|'

%

csun.edu/~jb715473/math396.html

1

http://www.csun.edu/~jb715473/math396.html

math for 3D graphics

e main idea: describe a scene in 3D space and render it to a
2D surface still looking 3D

e graphics hardware computes pixel data from vertex data ...
of course doing this is not trivial

e why math?
o geometry: project 3D object onto a plane
o but there is more: how can the scene be described
efficiently? how is the information about the color, the

light, and the texture of an object stored?

o and how does the hardware manipulate and display it?

e S —

the rendering pipeline - overview

e a 3D scene consists of separate objects, each defined by a
set of vertices and a graphics primitive

e information about the object and its properties is stored at
each vertex

e how that information is manipulated and displayed
requires several transformations and a number of
mathematical operations

e the sequence of transformations from vertices (input) to
display (output) is known as the rendering pipeline

e in chapter 0, the book provides a detailed description of
this process, which we'll summarize here

W T — 'ﬂ_ - - e - . e . -

the rendering pipeline - hardware

e on modern computers graphics are handled by Graphical
Processing Unit (GPU), separate from CPU

e CPU communicates with graphics application

e application sends rendering commands to graphics library
(e.g., OpenGL)

e OpenGL sends commands to GPU (through a graphics
driver)

| o GPU processes vertex data to produce pixel data

e pixel data is displayed in image buffers

Y
. i
l; ! % 5 4 A 1 A | I! —,.-ﬂ-—

S - -
F_T‘_h?_-f__v i T T *__ - - - - ——r ——— —m

the rendering pipeline - hardware

CPU :: Main Memory

-
Sk ’ st
Application . '
S/ } $
OpenGL vertex data pixel data
WV ¥ R

Graphics Driver .' f

GPU Buffers Buffer

|:‘l> Image Depth Texture
:: Maps

the rendering pipeline - transforms
e several 3D coordinate systems some local, some global,
o vertex data is stored in 3D object space - local
o position of each object is given in world space - global

o also camera/eye space: x and y align with display, and
Z in viewing direction

e Mmodel-view transformation

‘object space mp world space mp camera space

concatenate transforms: mjp * WP

W T n g -q_ -+ - —— - o ~ .

the rendering pipeline - transforms
e several 3D coordinate systems some local, some global,
o vertex data is stored in 3D object space - local
o position of each object is given in world space - global

o also camera/eye space: x and y align with display, and
Z in viewing direction

e Mmodel-view transformation

object space mmmj» Camera space

the rendering pipeline - transforms

more transforms:
e projection: apply perspective

e performed in four-dimensional homogeneous clip space -
graphics primitives clipped to visible area

e in clip space X,y, and z are in [-1,1], coordinates
represent position vector of vertices

e viewport transformation of vertices from normalized
coordinates to pixel coordinates - vertices now in window
space

the rendering pipeline - transforms

now some calculations:

e how much light reaches each vertex? how much is
reflected?...

e per-vertex lighting - pixel light is interpolated from
vertices

e vertices may also carry texture coordinates

e all these information is interpolated to determine the final
color for each pixel in the viewport...

rasterization and fragment operations

once In viewport coordinates:
e rasterization - what pixels are covered by what primitive?
e fragment - depth, color, texture, and location of pixel

e fragment/pixel shading - fragment data is used
to determine the final color and depth for each pixel

e several test are performed so as to determine what pixels
will be visible before calculating fragment shading so as to
avoid unnecessary operations

| o if a bixel/fragment pasSes all tests, its color is blended to
the buffer

| — — f e
el —p————

