
Math 396F

Math for 3D Graphics

Fall 08 - week one

course overview

www.csun.edu/~jb715473/math396.html

http://www.csun.edu/~jb715473/math396.html

math for 3D graphics
main idea: describe a scene in 3D space and render it to a
2D surface still looking 3D

graphics hardware computes pixel data from vertex data ...
of course doing this is not trivial

why math?

geometry: project 3D object onto a plane

but there is more: how can the scene be described
efficiently? how is the information about the color, the
light, and the texture of an object stored?

and how does the hardware manipulate and display it?

the rendering pipeline - overview
a 3D scene consists of separate objects, each defined by a
set of vertices and a graphics primitive

information about the object and its properties is stored at
each vertex

how that information is manipulated and displayed
requires several transformations and a number of
mathematical operations

the sequence of transformations from vertices (input) to
display (output) is known as the rendering pipeline

in chapter 0, the book provides a detailed description of
this process, which we'll summarize here

the rendering pipeline - hardware
on modern computers graphics are handled by Graphical
Processing Unit (GPU), separate from CPU

CPU communicates with graphics application

application sends rendering commands to graphics library
(e.g., OpenGL)

OpenGL sends commands to GPU (through a graphics
driver)

GPU processes vertex data to produce pixel data

pixel data is displayed in image buffers

the rendering pipeline - hardware

CPU Main Memory

Application

OpenGL

Graphics Driver

GPU
Image
Buffers

Depth
Buffer

Texture
Maps

vertex data pixel data

several 3D coordinate systems some local, some global,

vertex data is stored in 3D object space - local

position of each object is given in world space - global

also camera/eye space: x and y align with display, and
z in viewing direction

model-view transformation

the rendering pipeline - transforms

object space world space camera space

 concatenate transforms: +

several 3D coordinate systems some local, some global,

vertex data is stored in 3D object space - local

position of each object is given in world space - global

also camera/eye space: x and y align with display, and
z in viewing direction

model-view transformation

the rendering pipeline - transforms

object space camera space

the rendering pipeline - transforms

more transforms:

projection: apply perspective

performed in four-dimensional homogeneous clip space -
graphics primitives clipped to visible area

in clip space x, y, and z are in [-1,1], coordinates
represent position vector of vertices

viewport transformation of vertices from normalized
coordinates to pixel coordinates - vertices now in window
space

the rendering pipeline - transforms

now some calculations:

how much light reaches each vertex? how much is
reflected?...

per-vertex lighting - pixel light is interpolated from
vertices

vertices may also carry texture coordinates

all these information is interpolated to determine the final
color for each pixel in the viewport...

once in viewport coordinates:

rasterization - what pixels are covered by what primitive?

fragment - depth, color, texture, and location of pixel

fragment/pixel shading - fragment data is used
to determine the final color and depth for each pixel

several test are performed so as to determine what pixels
will be visible before calculating fragment shading so as to
avoid unnecessary operations

if a pixel/fragment passes all tests, its color is blended to
the buffer

rasterization and fragment operations

