MHD, the $\nabla \cdot$ B Constraint and Central Schemes

Jorge Balbás

Dept. of Mathematics, University of Michigan, Ann Arbor jbalbas@umich.edu

FoCM 2005 - Santander, Spain
Joint work with E. Tadmor and C.C. Wu

July 8, 2005

Ideal MHD Equations

- conservation of mass:

$$
\rho_{t}=-\nabla \cdot(\rho \mathbf{v}),
$$

Ideal MHD Equations

- conservation of mass:

$$
\rho_{t}=-\nabla \cdot(\rho \mathbf{v}),
$$

- conservation of momentum:

$$
(\rho \mathbf{v})_{t}=-\nabla \cdot\left[\rho \mathbf{v} \mathbf{v}^{\top}+\left(p+\frac{1}{2} B^{2}\right) \mathbb{I}_{3 \times 3}-\mathbf{B B}^{\top}\right]
$$

Ideal MHD Equations

- conservation of mass:

$$
\rho_{t}=-\nabla \cdot(\rho \mathbf{v}),
$$

- conservation of momentum:

$$
(\rho \mathbf{v})_{t}=-\nabla \cdot\left[\rho \mathbf{v} \mathbf{v}^{\top}+\left(p+\frac{1}{2} B^{2}\right) \mathbb{I}_{3 \times 3}-\mathbf{B B}^{\top}\right],
$$

- conservation of energy:

$$
e_{t}=-\nabla \cdot\left[\left(\frac{\gamma}{\gamma-1} p+\frac{1}{2} \rho v^{2}\right) \mathbf{v}-(\mathbf{v} \times \mathbf{B}) \times \mathbf{B}\right],
$$

Ideal MHD Equations

- conservation of mass:

$$
\rho_{t}=-\nabla \cdot(\rho \mathbf{v}),
$$

- conservation of momentum:

$$
(\rho \mathbf{v})_{t}=-\nabla \cdot\left[\rho \mathbf{\mathbf { v } ^ { \top }}+\left(p+\frac{1}{2} B^{2}\right) \mathbb{I}_{3 \times 3}-\mathbf{B B}^{\top}\right]
$$

- conservation of energy:

$$
e_{t}=-\nabla \cdot\left[\left(\frac{\gamma}{\gamma-1} p+\frac{1}{2} \rho v^{2}\right) \mathbf{v}-(\mathbf{v} \times \mathbf{B}) \times \mathbf{B}\right],
$$

- transport equation:

$$
\mathbf{B}_{t}=\nabla \times(\mathbf{v} \times \mathbf{B})
$$

Ideal MHD Equations

- conservation of mass:

$$
\rho_{t}=-\nabla \cdot(\rho \mathbf{v}),
$$

- conservation of momentum:

$$
(\rho \mathbf{v})_{t}=-\nabla \cdot\left[\rho \mathbf{v} \mathbf{v}^{\top}+\left(p+\frac{1}{2} B^{2}\right) \mathbb{I}_{3 \times 3}-\mathbf{B B}^{\top}\right],
$$

- conservation of energy:

$$
e_{t}=-\nabla \cdot\left[\left(\frac{\gamma}{\gamma-1} p+\frac{1}{2} \rho v^{2}\right) \mathbf{v}-(\mathbf{v} \times \mathbf{B}) \times \mathbf{B}\right],
$$

- solenoidal constraint:

$$
\nabla \cdot \frac{\partial \mathbf{B}}{\partial t}=\nabla \cdot[\nabla \times(\mathbf{v} \times \mathbf{B})] \quad \Rightarrow \quad \frac{\partial}{\partial t}(\nabla \cdot \mathbf{B})=0
$$

Ideal MHD Equations

- conservation of mass:

$$
\rho_{t}=-\nabla \cdot(\rho \mathbf{v})
$$

- conservation of momentum:

$$
(\rho \mathbf{v})_{t}=-\nabla \cdot\left[\rho \mathbf{v} \mathbf{v}^{\top}+\left(p+\frac{1}{2} B^{2}\right) \mathbb{I}_{3 \times 3}-\mathbf{B B}^{\top}\right]
$$

- conservation of energy:

$$
e_{t}=-\nabla \cdot\left[\left(\frac{\gamma}{\gamma-1} p+\frac{1}{2} \rho v^{2}\right) \mathbf{v}-(\mathbf{v} \times \mathbf{B}) \times \mathbf{B}\right],
$$

- solenoidal constraint:

$$
\nabla \cdot \frac{\partial \mathbf{B}}{\partial t}=\nabla \cdot[\nabla \times(\mathbf{v} \times \mathbf{B})] \quad \Rightarrow \quad \frac{\partial}{\partial t}(\nabla \cdot \mathbf{B})=0
$$

- equation of state:

$$
e=\frac{1}{2} \rho v^{2}+\frac{1}{2} B^{2}+\frac{p}{\gamma-1}
$$

Computational Challenges

- large system of equations: 7 equations in one space dimension and 8 in two and higher dimensions,

Computational Challenges

- large system of equations: 7 equations in one space dimension and 8 in two and higher dimensions,
- hyperbolic conservation law: solutions may develop discontinuities, need shock capturing schemes,

Computational Challenges

- large system of equations: 7 equations in one space dimension and 8 in two and higher dimensions,
- hyperbolic conservation law: solutions may develop discontinuities, need shock capturing schemes,
- If the numerical scheme fails to satisfy $\nabla \cdot \mathbf{B}=0$, the solution becomes unstable,
- The Lorentz force in the momentum flux involves terms proportional to $\nabla \cdot$ B

$$
F=\nabla \cdot\left(\frac{1}{2} B^{2} \mathbb{I}_{3 \times 3}-\mathbf{B B}^{\top}\right)
$$

Computational Challenges

- large system of equations: 7 equations in one space dimension and 8 in two and higher dimensions,
- hyperbolic conservation law: solutions may develop discontinuities, need shock capturing schemes,
- If the numerical scheme fails to satisfy $\nabla \cdot \mathbf{B}=0$, the solution becomes unstable,
- The Lorentz force in the momentum flux involves terms proportional to ∇ - B

$$
\mathbf{B} \cdot F=\mathbf{B} \cdot\left[\nabla \cdot\left(\frac{1}{2} B^{2} \mathbb{I}_{3 \times 3}-\mathbf{B B}^{\top}\right)\right]=0
$$

- In non-smooth regions, the order of convergence of numerical schemes decreases (to first order), the error in $\nabla \cdot \mathbf{B}$ grows, and builds over time.

What to Do - Discontinuous Solutions

A common approach consists on adapting an existing scheme from gas dynamics, e.g., Godunov-type scheme (in one space dimension)

Upwind Scheme

requires a Riemann solver to distinguish from right- and left-going waves

Central Scheme

evolves solution over staggered grid, no Riemann solver is needed, but staggering requires smaller time step

What to Do - The Constraint $\nabla \cdot \mathbf{B}=0$

- Hodge Projection (Brackbill and Barnes, 1980):
- After updating the solution form t to $t+\Delta t$, the magnetic field, B, is reprojected onto its divergenge free component, by solving

$$
\Delta \phi=-\nabla \cdot \mathbf{B}
$$

and writing the new magnetic field as

$$
\mathbf{B}^{c}=\mathbf{B}+\nabla \phi
$$

What to Do - The Constraint $\nabla \cdot \mathbf{B}=0$

- Hodge Projection (Brackbill and Barnes, 1980):
- After updating the solution form t to $t+\Delta t$, the magnetic field, B, is reprojected onto its divergenge free component, by solving

$$
\Delta \phi=-\nabla \cdot \mathbf{B}
$$

and writing the new magnetic field as

$$
\nabla \cdot \mathbf{B}^{c}=\nabla \cdot \mathbf{B}+\Delta \phi=0
$$

- This enforces the constraint, but may affect the local behavior of the solution

What to Do - The Constraint $\nabla \cdot \mathbf{B}=0$

- Hodge Projection (Brackbill and Barnes, 1980):
- After updating the solution form t to $t+\Delta t$, the magnetic field, \mathbf{B}, is reprojected onto its divergenge free component, by solving

$$
\Delta \phi=-\nabla \cdot \mathbf{B}
$$

and writing the new magnetic field as

$$
\nabla \cdot \mathbf{B}^{c}=\nabla \cdot \mathbf{B}+\Delta \phi=0
$$

- This enforces the constraint, but may affect the local behavior of the solution
- Eight Wave Formulation (Powell et. al., 1994):
- A source term proportional to $\nabla \cdot \mathbf{B}$ is added to the momentum, energy and transport equations

What to Do - The Constraint $\nabla \cdot \mathbf{B}=0$

- Hodge Projection (Brackbill and Barnes, 1980):
- After updating the solution form t to $t+\Delta t$, the magnetic field, \mathbf{B}, is reprojected onto its divergenge free component, by solving

$$
\Delta \phi=-\nabla \cdot \mathbf{B}
$$

and writing the new magnetic field as

$$
\nabla \cdot \mathbf{B}^{c}=\nabla \cdot \mathbf{B}+\Delta \phi=0
$$

- This enforces the constraint, but may affect the local behavior of the solution
- Eight Wave Formulation (Powell et. al., 1994):
- A source term proportional to $\nabla \cdot \mathbf{B}$ is added to the momentum, energy and transport equations
- This approach keeps ∇. B small (to the order of the scheme), but it follows from the non conservative formulation of MHD equations

What to Do - The Constraint $\nabla \cdot \mathbf{B}=0$

Constrained Transport (Evans and Hawley, 1988):

- This method takes advantage of the fact that (in the $x z$-plane)

$$
\frac{\partial B^{x}}{\partial t}=-\frac{\partial \Omega}{\partial z}, \quad \frac{\partial B^{z}}{\partial t}=\frac{\partial \Omega}{\partial x}
$$

where $\Omega=-\mathbf{v} \times \mathbf{B}$ is the y component of the electric field, to evolve a magnetic field centered at the cell interfaces as

$$
\begin{aligned}
& b_{j+\frac{1}{2}, k}^{x, n+1}=b_{j+\frac{1}{2}, k}^{x, n}-\frac{\Delta t}{\Delta z}\left(\Omega_{j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}}-\Omega_{j+\frac{1}{2}, k-\frac{1}{2}}^{n+\frac{1}{2}}\right) \\
& b_{j, k+\frac{1}{2}}^{z, n+1}=b_{j, k+\frac{1}{2}}^{z, n}+\frac{\Delta t}{\Delta x}\left(\Omega_{j+\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}}-\Omega_{j-\frac{1}{2}, k+\frac{1}{2}}^{n+\frac{1}{2}}\right)
\end{aligned}
$$

What to Do - The Constraint $\nabla \cdot \mathbf{B}=0$

- The magnetic field \mathbf{B}^{n+1} is then recovered as the average

$$
\begin{aligned}
B_{j, k}^{x, n+1} & =\frac{1}{2}\left(b_{j+\frac{1}{2}, k}^{x, n+1}+b_{j-\frac{1}{2}, k}^{x, n+1}\right) \\
B_{j, k}^{z, n+1} & =\frac{1}{2}\left(b_{j, k+\frac{1}{2}}^{z, n+1}+b_{j, k-\frac{1}{2}}^{z, n+1}\right)
\end{aligned}
$$

What to Do - The Constraint $\nabla \cdot \mathbf{B}=0$

- The magnetic field \mathbf{B}^{n+1} is then recovered as the average

$$
\begin{aligned}
B_{j, k}^{x, n+1} & =\frac{1}{2}\left(b_{j+\frac{1}{2}, k}^{x, n+1}+b_{j-\frac{1}{2}, k}^{x, n+1}\right) \\
B_{j, k}^{z, n+1} & =\frac{1}{2}\left(b_{j, k+\frac{1}{2}}^{z, n+1}+b_{j, k-\frac{1}{2}}^{z, n+1}\right)
\end{aligned}
$$

- And the divergence is conserved in the sense

$$
(\nabla \cdot \mathbf{b})_{j, k}^{n+1}=\frac{b_{j+\frac{1}{2}, k}^{x, n+1}-b_{j-\frac{1}{2}, k}^{x, n+1}}{\Delta x}+\frac{b_{j, k+\frac{1}{2}}^{z, n+1}-b_{j, k-\frac{1}{2}}^{z, n+1}}{\Delta z}=(\nabla \cdot \mathbf{b})_{j, k}^{n}
$$

Fully-discrete Central Schemes - One Dimension

We begin by integrating the conservation law

$$
u_{t}+f(u)_{x}=0
$$

Fully-discrete Central Schemes - One Dimension

We begin by integrating the conservation law

$$
\frac{1}{\Delta x} \int_{t^{n}}^{t^{n+1}} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} u_{t} d t d x=-\frac{1}{\Delta x} \int_{t^{n}}^{t^{n+1}} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} f(u)_{x} d t d x
$$

over the control volume $\left[x_{j}, x_{j+\frac{1}{2}}\right] \times\left[t^{n}, t^{n+1}\right]$,

Fully-discrete Central Schemes - One Dimension

We begin by integrating the conservation law

$$
u_{t}+f(u)_{x}=0
$$

over the control volume $\left[x_{j}, x_{j+1}\right] \times\left[t^{n}, t^{n+1}\right]$, this leads the equivalent cell average formulation

$$
\bar{u}_{j+\frac{1}{2}}^{n+1}=\bar{u}_{j+\frac{1}{2}}^{n}-\frac{1}{\Delta x} \int_{t^{n}}^{t^{n+1}}\left[f\left(u\left(x_{j+1}, t\right)\right)-f\left(u\left(x_{j}, t\right)\right)\right] d t
$$

We now proceed in two steps:

Fully-discrete Central Schemes - One Dimension

We begin by integrating the conservation law

$$
u_{t}+f(u)_{x}=0
$$

over the control volume $\left[x_{j}, x_{j+1}\right] \times\left[t^{n}, t^{n+1}\right]$, this leads the equivalent cell average formulation

$$
\bar{u}_{j+\frac{1}{2}}^{n+1}=\bar{u}_{j+\frac{1}{2}}^{n}-\frac{1}{\Delta x} \int_{t^{n}}^{t^{n+1}}\left[f\left(u\left(x_{j+1}, t\right)\right)-f\left(u\left(x_{j}, t\right)\right)\right] d t
$$

We now proceed in two steps:

1. From the cell averages $\left\{\bar{u}_{j}^{n}\right\}$, a non-oscillatory polynomial reconstruction,

$$
\tilde{u}\left(x, t^{n}\right)=\sum_{j} p_{j}\left(x, t^{n}\right) \cdot \mathbf{1}_{l_{j}}
$$

is formed to recover $\left\{\bar{u}_{j+\frac{1}{2}}^{n}\right\}$; where $I_{j}=\left[x_{j}-\Delta x / 2, x_{j}+\Delta x / 2\right]$.

Fully-discrete Central Schemes - One Dimension

2. Time evolution

Fully-discrete Central Schemes - One Dimension

2. Time evolution

- predict intermediate point values, $u_{j}^{n+\beta}$, by Taylor expansion or Runge-Kutta integration.

Fully-discrete Central Schemes - One Dimension

2. Time evolution

- predict intermediate point values, $u_{j}^{n+\beta}$, by Taylor expansion or Runge-Kutta integration.
- approximate flux integrals with simple quadrature formulae (e.g., midpoint or Simpson's).

Fully-discrete Central Schemes - One Dimension

2. Time evolution

- predict intermediate point values, $u_{j}^{n+\beta}$, by Taylor expansion or Runge-Kutta integration.
- approximate flux integrals with simple quadrature formulae (e.g., midpoint or Simpson's).

The fully discrete approximation reads:

- predictor:

$$
u_{j}^{n+\frac{1}{2}}:=\bar{u}_{j}^{n}-\frac{\lambda}{2} f_{j}^{\prime}, \quad \lambda=\frac{\Delta t}{\Delta x},
$$

Fully-discrete Central Schemes - One Dimension

2. Time evolution

- predict intermediate point values, $u_{j}^{n+\beta}$, by Taylor expansion or Runge-Kutta integration.
- approximate flux integrals with simple quadrature formulae (e.g., midpoint or Simpson's).

The fully discrete approximation reads:

- predictor:

$$
u_{j}^{n+\frac{1}{2}}:=\bar{u}_{j}^{n}-\frac{\lambda}{2} f_{j}^{\prime}, \quad \lambda=\frac{\Delta t}{\Delta x},
$$

- corrector:

$$
\bar{u}_{j+\frac{1}{2}}^{n+1}=\frac{1}{2}\left[\bar{u}_{j}^{n}+\bar{u}_{j+1}^{n}\right]+\frac{1}{8}\left[u_{j}^{\prime}-u_{j+1}^{\prime}\right]-\lambda\left[f\left(u_{j+1}^{n+\frac{1}{2}}\right)-f\left(u_{j}^{n+\frac{1}{2}}\right)\right] .
$$

Fully-discrete Central Schemes - Two Dimensions

The staggered scheme can be extended to two space dimensions

Fully-discrete Central Schemes - Two Dimensions

The staggered scheme can be extended to two space dimensions

- predictor

$$
u_{j, k}^{n+\frac{1}{2}}:=\bar{u}_{j, k}^{n}-\frac{\lambda}{2} f_{j, k}^{\prime}-\frac{\mu}{2} g_{j, k}^{\prime},
$$

where $\lambda=\frac{\Delta t}{\Delta x}$ and $\mu=\frac{\Delta t}{\Delta z}$

Fully-discrete Central Schemes - Two Dimensions

The staggered scheme can be extended to two space dimensions

- predictor

$$
\begin{aligned}
& \qquad u_{j, k}^{n+\frac{1}{2}}:=\bar{u}_{j, k}^{n}-\frac{\lambda}{2} f_{j, k}^{\prime}-\frac{\mu}{2} g_{j, k}^{\prime}, \\
& \text { where } \lambda=\frac{\Delta t}{\Delta x} \text { and } \mu=\frac{\Delta t}{\Delta z}
\end{aligned}
$$

- corrector

$$
\begin{aligned}
\bar{u}_{j+\frac{1}{2}, k+\frac{1}{2}}^{n+1} & =\frac{1}{4}\left(\bar{u}_{j, k}^{n}+\bar{u}_{j+1, k}^{n}+\bar{u}_{j, k+1}^{n}+\bar{u}_{j+1, k+1}^{n}\right)+\frac{1}{16}\left(u_{j, k}^{\prime}-u_{j+1, k}^{\prime}\right) \\
& -\frac{\lambda}{2}\left[f\left(u_{j+1, k}^{n+\frac{1}{2}}\right)-f\left(u_{j, k}^{n+\frac{1}{2}}\right)\right]+\frac{1}{16}\left(u_{j, k+1}^{\prime}-u_{j+1, k+1}^{\prime}\right)-\frac{\lambda}{2}\left[f\left(u_{j+1, k+1}^{n+\frac{1}{2}}\right)-f\left(u_{j, k+1}^{n+\frac{1}{2}}\right)\right] \\
& +\frac{1}{16}\left(u_{j, k}^{\prime}-u_{j, k+1}^{\prime}\right)-\frac{\mu}{2}\left[g\left(u_{j, k+1}^{n+\frac{1}{2}}\right)-g\left(u_{j, k}^{n+\frac{1}{2}}\right)\right] \\
& +\frac{1}{16}\left(u_{j+1, k}^{\prime}-u_{j+1, k+1}^{\prime}\right)-\frac{\mu}{2}\left[g\left(u_{j+1, k+1}^{n+\frac{1}{2}}\right)-g\left(u_{j+1, k}^{n+\frac{1}{2}}\right)\right]
\end{aligned}
$$

Semi-discrete Central Schemes - One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

- Using the information provided by the local speed of propagation,

$$
a_{j+\frac{1}{2}}^{n}=\max _{u \in \mathcal{C}\left(u_{j+\frac{1}{2}}^{-}, u_{j+\frac{1}{2}}^{+}\right)} \rho\left(\frac{\partial f}{\partial u}(u)\right),
$$

where

$$
u_{j+\frac{1}{2}}^{+}:=p_{j+1}\left(x_{j+\frac{1}{2}}\right) \text { and } u_{j+\frac{1}{2}}^{-}:=p_{j}\left(x_{j+\frac{1}{2}}\right),
$$

Semi-discrete Central Schemes - One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

- Using the information provided by the local speed of propagation,

$$
a_{j+\frac{1}{2}}^{n}=\max _{u \in \mathcal{C}\left(u_{j+\frac{1}{2}}^{-}, u_{j+\frac{1}{2}}^{+}\right)} \rho\left(\frac{\partial f}{\partial u}(u)\right),
$$

where

$$
u_{j+\frac{1}{2}}^{+}:=p_{j+1}\left(x_{j+\frac{1}{2}}\right) \text { and } u_{j+\frac{1}{2}}^{-}:=p_{j}\left(x_{j+\frac{1}{2}}\right),
$$

- we distinguish between the regions where the solution remains smooth no Riemann fans, and regions where discontinuities propagate

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$
- the values in these two sets can be interpolated and reprojected as cell averages $\left\{\bar{u}_{j}^{n+1}\right\}$ onto the original non-staggered grid (Jiang et. al., 1998)

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$
- the values in these two sets can be interpolated and reprojected as cell averages $\left\{\bar{u}_{j}^{n+1}\right\}$ onto the original non-staggered grid (Jiang et. al., 1998)
- or one can take the limit as $\Delta t \rightarrow 0$ to arrive at the semi-discrete formulation:

$$
\frac{d}{d t} \bar{u}_{j}(t)=\lim _{\Delta t \rightarrow 0} \frac{\bar{u}_{j}^{n+1}-\bar{u}_{j}^{n}}{\Delta t}=-\frac{H_{j+\frac{1}{2}}(t)-H_{j-\frac{1}{2}}(t)}{\Delta x}
$$

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$
- the values in these two sets can be interpolated and reprojected as cell averages $\left\{\bar{u}_{j}^{n+1}\right\}$ onto the original non-staggered grid (Jiang et. al., 1998)
- or one can take the limit as $\Delta t \rightarrow 0$ to arrive at the semi-discrete formulation:

$$
\frac{d}{d t} \bar{u}_{j}(t)=-\frac{H_{j+\frac{1}{2}}(t)-H_{j-\frac{1}{2}}(t)}{\Delta x}
$$

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$
- the values in these two sets can be interpolated and reprojected as cell averages $\left\{\bar{u}_{j}^{n+1}\right\}$ onto the original non-staggered grid (Jiang et. al., 1998)
- or one can take the limit as $\Delta t \rightarrow 0$ to arrive at the semi-discrete formulation:

$$
\frac{d}{d t} \bar{u}_{j}(t)=-\frac{H_{j+\frac{1}{2}}(t)-H_{j-\frac{1}{2}}(t)}{\Delta x}
$$

- where $H_{j+\frac{1}{2}}(t):=\frac{f\left(u_{j+\frac{1}{2}}^{+}(t)\right)+f\left(u_{j+\frac{1}{2}}^{-}(t)\right)}{2}-\frac{a_{j+\frac{1}{2}}(t)}{2}\left[u_{j+\frac{1}{2}}^{+}(t)-u_{j+\frac{1}{2}}^{-}(t)\right]$

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

- staggered evolution over red cells

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

- staggered evolution over red cells
- staggered evolution in one direction over green strips

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

- staggered evolution over red cells
- staggered evolution in one direction over green strips
- non-staggered evolution over $D_{j, k}$, and

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

- staggered evolution over red cells
- staggered evolution in one direction over green strips
- non-staggered evolution over $D_{j, k}$, and
- reprojecting over original cells and taking the limit as $\Delta t \rightarrow 0$, we arrive at:

$$
\frac{d}{d t} \bar{u}_{j, k}(t)=-\frac{H_{j+\frac{1}{2}, k}^{x}(t)-H_{j-\frac{1}{2}, k}^{x}(t)}{\Delta x}-\frac{H_{j, k+\frac{1}{2}}^{z}(t)-H_{j, k-\frac{1}{2}}^{z}(t)}{\Delta z}
$$

Central Schemes - Reconstruction

Examples of non-oscillatory reconstructions:

- second order minmod reconstruction (Van Leer, 1979)

$$
p_{j, k}(x, z)=\bar{u}_{j, k}^{n}+u_{j, k}^{\prime} \frac{\left(x-x_{j}\right)}{\Delta x}+u_{j, k}^{\prime} \frac{\left(z-z_{k}\right)}{\Delta z}
$$

Central Schemes - Reconstruction

Examples of non-oscillatory reconstructions:

- second order minmod reconstruction (Van Leer, 1979)

$$
p_{j, k}(x, z)=\bar{u}_{j, k}^{n}+u_{j, k}^{\prime} \frac{\left(x-x_{j}\right)}{\Delta x}+u_{j, k}^{\prime} \frac{\left(z-z_{k}\right)}{\Delta z}
$$

- third order CWENO reconstruction (Kurganov and Levy, 2000) direction-by-direction
$p_{j, k}\left(x, z_{k}\right)=w_{\mathrm{L}} P_{\mathrm{L}}\left(x, z_{k}\right)+w_{\mathrm{C}} P_{\mathrm{C}}\left(x, z_{k}\right)+w_{\mathrm{R}} P_{\mathrm{R}}\left(x, z_{k}\right), \quad x \in\left[x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right]$

Central Schemes - Reconstruction

Examples of non-oscillatory reconstructions:

- second order minmod reconstruction (Van Leer, 1979)

$$
p_{j, k}(x, z)=\bar{u}_{j, k}^{n}+u_{j, k}^{\prime} \frac{\left(x-x_{j}\right)}{\Delta x}+u_{j, k}^{\prime} \frac{\left(z-z_{k}\right)}{\Delta z}
$$

- third order CWENO reconstruction (Kurganov and Levy, 2000) direction-by-direction
$p_{j, k}\left(x, z_{k}\right)=w_{\mathrm{L}} P_{\mathrm{L}}\left(x, z_{k}\right)+w_{\mathrm{C}} P_{\mathrm{C}}\left(x, z_{k}\right)+w_{\mathrm{R}} P_{\mathrm{R}}\left(x, z_{k}\right), \quad x \in\left[x_{j-\frac{1}{2}}, x_{j+\frac{1}{2}}\right]$
- fourth order genuinely two-dimensional reconstruction (Levy et. al., 2002):

$$
p_{j, k}(x, z)=\sum_{r, s=-1}^{1} w_{r, s} P_{r, s}(x, z)
$$

Semi-discrete Central Schemes - Time Evolution

Solution evolved with SSP RK Schemes (Shu, 1988, S. Gottlieb et. al., 2001),

Example: Third-order scheme

$$
\begin{aligned}
u^{(1)} & =u^{(0)}+\Delta t C\left[u^{(0)}\right] \\
u^{(2)} & =u^{(1)}+\frac{\Delta t}{4}\left(-3 C\left[u^{(0)}\right]+C\left[u^{(1)}\right]\right) \\
u^{n+1} & :=u^{(3)}=u^{(2)}+\frac{\Delta t}{12}\left(-C\left[u^{(0)}\right]-C\left[u^{(1)}\right]+8 C\left[u^{(2)}\right]\right),
\end{aligned}
$$

where

$$
C[w(t)]=-\frac{H_{j+\frac{1}{2}, k}^{\times}(w(t))-H_{j-\frac{1}{2}, k}^{\times}(w(t))}{\Delta x}-\frac{H_{j, k+\frac{1}{2}}^{2}(w(t))-H_{j, k-\frac{1}{2}}^{z}(w(t))}{\Delta z}
$$

Central Schemes - Solenoidal Constraint

How do we enforce $\nabla \cdot \mathbf{B}=0$?

Central Schemes - Solenoidal Constraint

How do we enforce $\nabla \cdot \mathbf{B}=0$?

- We don't do anything!

Central Schemes - Solenoidal Constraint

How do we enforce $\nabla \cdot \mathbf{B}=0$?

- We don't do anything!
- Numerical results indicate central schemes maintain $\nabla \cdot \mathbf{B}$ small $\left(\sim 10^{-13}\right)$

Central Schemes - Solenoidal Constraint

How do we enforce $\nabla \cdot \mathbf{B}=0$?

- We don't do anything!
- Numerical results indicate central schemes maintain $\nabla \cdot \mathbf{B}$ small $\left(\sim 10^{-13}\right)$
- Also, using the constraint transport approach and notation, it can be shown that the magnetic field, as evolved by the second order fully-discrete staggered scheme (JT), can be written as

$$
B_{j+\frac{1}{2}, k+\frac{1}{2}}^{\times, n+1}=\frac{1}{2}\left(b_{j, k+\frac{1}{2}}^{\times, n+1}+b_{j+1, k+\frac{1}{2}}^{\times, n+1}\right)
$$

with

$$
b_{j, k+\frac{1}{2}}^{\times, n+1}=\tilde{b}_{j, k+\frac{1}{2}}^{\times, n}-\frac{\Delta t}{\Delta z}\left(\Omega_{j, k+\frac{1}{2}}^{n+\frac{1}{2}}-\Omega_{j+1, k+\frac{1}{2}}^{n+\frac{1}{2}}\right),
$$

and a similar expression for $B_{j+\frac{1}{2}, k+\frac{1}{2}}^{2, n+1}$

Central Schemes - Solenoidal Constraint

This result allows us to write

$$
(\nabla \cdot \overline{\mathbf{B}})_{j+\frac{1}{2}, k+\frac{1}{2}}^{n+1}=(\nabla \cdot \overline{\mathbf{B}})_{j+\frac{1}{2}, k+\frac{1}{2}}^{n}
$$

where $\overline{\mathbf{B}}_{j+\frac{1}{2}, k+\frac{1}{2}}^{n}$ is the reconstructed cell average of the magnetic field at the vertex $\left(j+\frac{1}{2}, k+\frac{1}{2}\right)$ (not the cell center) at time $t=t^{n}$

Brio-Wu Rotated Shock Tube

- One-dimensional Riemann problem with initial states given by

$$
\left(\rho, v_{x}, v_{y}, v_{z}, B_{x}, B_{y}, B_{z}, p\right)^{\top}= \begin{cases}(1,0,0,0,0.75,0,1,1)^{\top} & \text { for } x<0 \\ (0.125,0,0,0,0.75,0,-1,0.1)^{\top} & \text { for } x>0\end{cases}
$$

- Solved over a two dimensional domain with the direction of the flow rotated 45°
- Solution computed up to $t=0.2, x \in[-1,1]$, with 600×600 grid points, $\gamma=2$.

Brio-Wu Rotated Shock Tube

Solution at $t=0.2$

From top to bottom and from left to right: density, transverse velocity, transverse magnetic filed, parallel magnetic field, and pressure. The divergence of the reconstructed polynomial $\sim 10^{-13}$. Results computed with Jacobian free formulation of 2 nd order JT scheme.

Orszag-Tang Vortex System

- This test problem considers the evolution of a compressible vortex system with several interacting shock waves
- The initial data is given by

$$
\begin{aligned}
& \rho(x, z, 0)=\gamma^{2}, \quad v_{x}(x, y, 0)=-\sin z, \quad v_{z}(x, z, 0)=\sin x, \\
& p(x, z, 0)=\gamma, \quad B_{x}(x, z, 0)=-\sin z, \quad B_{z}(x, z, 0)=\sin 2 x,
\end{aligned}
$$

where $\gamma=5 / 3$.

- The problem is solved in $[0,2 \pi] \times[0,2 \pi]$, with periodic boundary conditions in both x - and z-directions using a uniform grid with 288×288 cells. Results computed with 3rd order semi-discrete scheme, using Kurganov and Levy's CWENO reconstruction.

Orszag-Tang Vortex System

Solution at $t=1.0$

Orszag-Tang MHD turbulence problem with a 288×288 uniform grid. There are 16 contours for density (left) and pressure (second from left). Red-high value, blue-low value. Second from the right: velocity field and right: magnetic filed.

Orszag-Tang Vortex System

Solution at $t=3.0$

Orszag-Tang MHD turbulence problem with a 288×288 uniform grid. There are 16 contours for density (left) and pressure (second from left). Red-high value, blue-low value. Second from the right: velocity field and right: magnetic filed.

Shock - Cloud Interaction

- Disruption of a high density cloud by a strong shock
- Initial conditions

$$
\left(\rho, v_{x}, v_{y}, v_{z}, B_{x}, B_{y}, B_{z}, p\right)^{\top}= \begin{cases}(3.86,0,0,0,0,-2.18,2.18,167.34)^{\top} & \text { for } x<0.6 \\ (1,-11.25,0,0,0,0.564,0.564,1)^{\top} & \text { for } x>0.6\end{cases}
$$

high density cloud $-\rho=10, p=1$ - centered at $x=0.8, y=0.5$, with radius 0.15 ,

- Solved up to $t=0.06,(x, z) \in[0,1] \times[0,1]$, with 256×256 grid points, CFL number 0.5 and $\gamma=5 / 3$

Shock - Cloud Interaction

Solution of shock-cloud interaction, left: density at $t=0$, center: density at $t=0.06$, right: magnetic field lines at $\mathrm{t}=0.06$. Results compputed with 3 rd order semi-discrete scheme.

