High-order Central Schemes for Hyperbolic Systems of Conservation Laws

Jorge Balbás

Dept. of Mathematics, University of Michigan, Ann Arbor jbalbas@umich.edu

Kolloquium - Seminar in Applied Mathematics, ETH, Zurich Joint work with E. Tadmor and C.C. Wu

June 27, 2005

Outline

- central schemes for hyperbolic conservation laws: overview and implementation
- central schemes and MHD equations: the $\nabla \cdot \mathbf{B}=0$ constraint
- some examples: Euler equations of Gas Dynamics and Ideal MHD equations

Hyperbolic Conservation Laws

We consider hyperbolic conservation laws in general
In one space dimension:

$$
u_{t}+f(u)_{x}=0,
$$

and two space dimensions:

$$
u_{t}+f(u)_{x}+g(u)_{y}=0
$$

with some initial data

$$
u(x, y, 0)=u_{0}(x, y)
$$

where the Jacobian matrices $\frac{\partial f}{\partial u}$ and $\frac{\partial g}{\partial u}$ are diagonizable with real eigen values.

Challenges

- discontinuous solutions: even when the initial conditions are smooth, they evolve into steep gradients

Challenges

- discontinuous solutions: even when the initial conditions are smooth, they evolve into steep gradients

- onset of spurious oscillations

Challenges

- discontinuous solutions: even when the initial conditions are smooth, they evolve into steep gradients

- onset of spurious oscillations
- additional challenges may come from the specific problem, e.g., for MHD equations, we need to solve a large system with an additional constraint

Challenges

- discontinuous solutions: even when the initial conditions are smooth, they evolve into steep gradients

- onset of spurious oscillations
- additional challenges may come from the specific problem, e.g., for MHD equations, we need to solve a large system with an additional constraint
- we seek efficient numerical schemes capable of handling these challenges

What do central schemes offer?

simplicity: no Riemann solvers

Upwind Scheme

requires a Riemann solver to distinguish from
right- and left-going waves

Central Scheme

evolves solution over staggered grid, no Riemann solver is needed, but staggering requires smaller time step

More Advantages

- ease of implementation: no dimensional splitting in multidimensional models

More Advantages

- ease of implementation: no dimensional splitting in multidimensional models
- straight forward extension to higher space dimensions

More Advantages

- ease of implementation: no dimensional splitting in multidimensional models
- straight forward extension to higher space dimensions
- highly adaptable implementation: minor changes required to solve different problems

More Advantages

- ease of implementation: no dimensional splitting in multidimensional models
- straight forward extension to higher space dimensions
- highly adaptable implementation: minor changes required to solve different problems
- easy to parallelize: sequential function calls \rightarrow concurrent function calls

Fully-discrete Central Schemes - One Dimension

We begin by integrating the conservation law

$$
u_{t}+f(u)_{x}=0
$$

Fully-discrete Central Schemes - One Dimension

We begin by integrating the conservation law

$$
\frac{1}{\Delta x} \int_{t^{n}}^{t^{n+1}} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} u_{t} d t d x=-\frac{1}{\Delta x} \int_{t^{n}}^{t^{n+1}} \int_{x-\frac{\Delta x}{2}}^{x+\frac{\Delta x}{2}} f(u)_{x} d t d x
$$

over the control volume $\left[x_{j}, x_{j+\frac{1}{2}}\right] \times\left[t^{n}, t^{n+1}\right]$,

Fully-discrete Central Schemes - One Dimension

We begin by integrating the conservation law

$$
u_{t}+f(u)_{x}=0
$$

over the control volume $\left[x_{j}, x_{j+1}\right] \times\left[t^{n}, t^{n+1}\right]$, this leads the equivalent cell average formulation

$$
\bar{u}_{j+\frac{1}{2}}^{n+1}=\bar{u}_{j+\frac{1}{2}}^{n}-\frac{1}{\Delta x} \int_{t^{n}}^{t^{n+1}}\left[f\left(u\left(x_{j+1}, t\right)\right)-f\left(u\left(x_{j}, t\right)\right)\right] d t
$$

We now proceed in two steps:

Fully-discrete Central Schemes - One Dimension

We begin by integrating the conservation law

$$
u_{t}+f(u)_{x}=0
$$

over the control volume $\left[x_{j}, x_{j+1}\right] \times\left[t^{n}, t^{n+1}\right]$, this leads the equivalent cell average formulation

$$
\bar{u}_{j+\frac{1}{2}}^{n+1}=\bar{u}_{j+\frac{1}{2}}^{n}-\frac{1}{\Delta x} \int_{t^{n}}^{t^{n+1}}\left[f\left(u\left(x_{j+1}, t\right)\right)-f\left(u\left(x_{j}, t\right)\right)\right] d t
$$

We now proceed in two steps:

1. From the cell averages $\left\{\bar{u}_{j}^{n}\right\}$, a non-oscillatory polynomial reconstruction,

$$
\tilde{u}\left(x, t^{n}\right)=\sum_{j} p_{j}\left(x, t^{n}\right) \cdot \mathbf{1}_{l_{j}}
$$

is formed to recover $\left\{\bar{u}_{j+\frac{1}{2}}^{n}\right\}$; where $I_{j}=\left[x_{j}-\Delta x / 2, x_{j}+\Delta x / 2\right]$.

Fully-discrete Central Schemes - One Dimension

2. Time evolution

Fully-discrete Central Schemes - One Dimension

2. Time evolution

- predict intermediate point values, $u_{j}^{n+\beta}$, by Taylor expansion or Runge-Kutta integration.

Fully-discrete Central Schemes - One Dimension

2. Time evolution

- predict intermediate point values, $u_{j}^{n+\beta}$, by Taylor expansion or Runge-Kutta integration.
- approximate flux integrals with simple quadrature formulae (e.g., midpoint or Simpson's).

Fully-discrete Central Schemes - One Dimension

2. Time evolution

- predict intermediate point values, $u_{j}^{n+\beta}$, by Taylor expansion or Runge-Kutta integration.
- approximate flux integrals with simple quadrature formulae (e.g., midpoint or Simpson's).

The fully discrete approximation reads:

- predictor:

$$
u_{j}^{n+\frac{1}{2}}:=\bar{u}_{j}^{n}-\frac{\lambda}{2} f_{j}^{\prime}, \quad \lambda=\frac{\Delta t}{\Delta x},
$$

Fully-discrete Central Schemes - One Dimension

2. Time evolution

- predict intermediate point values, $u_{j}^{n+\beta}$, by Taylor expansion or Runge-Kutta integration.
- approximate flux integrals with simple quadrature formulae (e.g., midpoint or Simpson's).

The fully discrete approximation reads:

- predictor:

$$
u_{j}^{n+\frac{1}{2}}:=\bar{u}_{j}^{n}-\frac{\lambda}{2} f_{j}^{\prime}, \quad \lambda=\frac{\Delta t}{\Delta x},
$$

- corrector:

$$
\bar{u}_{j+\frac{1}{2}}^{n+1}=\frac{1}{2}\left[\bar{u}_{j}^{n}+\bar{u}_{j+1}^{n}\right]+\frac{1}{8}\left[u_{j}^{\prime}-u_{j+1}^{\prime}\right]-\lambda\left[f\left(u_{j+1}^{n+\frac{1}{2}}\right)-f\left(u_{j}^{n+\frac{1}{2}}\right)\right] .
$$

Fully-discrete Central Schemes - Two Dimensions

The staggered scheme can be extended to two space dimensions

Fully-discrete Central Schemes - Two Dimensions

The staggered scheme can be extended to two space dimensions

- predictor

$$
u_{j, k}^{n+\frac{1}{2}}:=\bar{u}_{j, k}^{n}-\frac{\lambda}{2} f_{j, k}^{\prime}-\frac{\mu}{2} g_{j, k}^{\prime},
$$

where $\lambda=\frac{\Delta t}{\Delta x}$ and $\mu=\frac{\Delta t}{\Delta z}$

Fully-discrete Central Schemes - Two Dimensions

The staggered scheme can be extended to two space dimensions

- predictor

$$
\begin{aligned}
& \qquad u_{j, k}^{n+\frac{1}{2}}:=\bar{u}_{j, k}^{n}-\frac{\lambda}{2} f_{j, k}^{\prime}-\frac{\mu}{2} g_{j, k}^{\prime}, \\
& \text { where } \lambda=\frac{\Delta t}{\Delta x} \text { and } \mu=\frac{\Delta t}{\Delta z}
\end{aligned}
$$

- corrector

$$
\begin{aligned}
\bar{u}_{j+\frac{1}{2}, k+\frac{1}{2}}^{n+1} & =\frac{1}{4}\left(\bar{u}_{j, k}^{n}+\bar{u}_{j+1, k}^{n}+\bar{u}_{j, k+1}^{n}+\bar{u}_{j+1, k+1}^{n}\right)+\frac{1}{16}\left(u_{j, k}^{\prime}-u_{j+1, k}^{\prime}\right) \\
& -\frac{\lambda}{2}\left[f\left(u_{j+1, k}^{n+\frac{1}{2}}\right)-f\left(u_{j, k}^{n+\frac{1}{2}}\right)\right]+\frac{1}{16}\left(u_{j, k+1}^{\prime}-u_{j+1, k+1}^{\prime}\right)-\frac{\lambda}{2}\left[f\left(u_{j+1, k+1}^{n+\frac{1}{2}}\right)-f\left(u_{j, k+1}^{n+\frac{1}{2}}\right)\right] \\
& +\frac{1}{16}\left(u_{j, k}^{\prime}-u_{j, k+1}^{\prime}\right)-\frac{\mu}{2}\left[g\left(u_{j, k+1}^{n+\frac{1}{2}}\right)-g\left(u_{j, k}^{n+\frac{1}{2}}\right)\right] \\
& +\frac{1}{16}\left(u_{j+1, k}^{\prime}-u_{j+1, k+1}^{\prime}\right)-\frac{\mu}{2}\left[g\left(u_{j+1, k+1}^{n+\frac{1}{2}}\right)-g\left(u_{j+1, k}^{n+\frac{1}{2}}\right)\right]
\end{aligned}
$$

Semi-discrete Central Schemes - One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

- Using the information provided by the local speed of propagation,

$$
a_{j+\frac{1}{2}}^{n}=\max _{u \in \mathcal{C}\left(u_{j+\frac{1}{2}}^{-}, u_{j+\frac{1}{2}}^{+}\right)} \rho\left(\frac{\partial f}{\partial u}(u)\right),
$$

where

$$
u_{j+\frac{1}{2}}^{+}:=p_{j+1}\left(x_{j+\frac{1}{2}}\right) \text { and } u_{j+\frac{1}{2}}^{-}:=p_{j}\left(x_{j+\frac{1}{2}}\right),
$$

Semi-discrete Central Schemes - One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

- Using the information provided by the local speed of propagation,

$$
a_{j+\frac{1}{2}}^{n}=\max _{u \in \mathcal{C}\left(u_{j+\frac{1}{2}}^{-}, u_{j+\frac{1}{2}}^{+}\right)} \rho\left(\frac{\partial f}{\partial u}(u)\right),
$$

where

$$
u_{j+\frac{1}{2}}^{+}:=p_{j+1}\left(x_{j+\frac{1}{2}}\right) \text { and } u_{j+\frac{1}{2}}^{-}:=p_{j}\left(x_{j+\frac{1}{2}}\right),
$$

- we distinguish between the regions where the solution remains smooth no Riemann fans, and regions where discontinuities propagate

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$
- the values in these two sets can be interpolated and reprojected as cell averages $\left\{\bar{u}_{j}^{n+1}\right\}$ onto the original non-staggered grid (Jiang et. al., 1998)

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$
- the values in these two sets can be interpolated and reprojected as cell averages $\left\{\bar{u}_{j}^{n+1}\right\}$ onto the original non-staggered grid (Jiang et. al., 1998)
- or one can take the limit as $\Delta t \rightarrow 0$ to arrive at the semi-discrete formulation:

$$
\frac{d}{d t} \bar{u}_{j}(t)=\lim _{\Delta t \rightarrow 0} \frac{\bar{u}_{j}^{n+1}-\bar{u}_{j}^{n}}{\Delta t}=-\frac{H_{j+\frac{1}{2}}(t)-H_{j-\frac{1}{2}}(t)}{\Delta x}
$$

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$
- the values in these two sets can be interpolated and reprojected as cell averages $\left\{\bar{u}_{j}^{n+1}\right\}$ onto the original non-staggered grid (Jiang et. al., 1998)
- or one can take the limit as $\Delta t \rightarrow 0$ to arrive at the semi-discrete formulation:

$$
\frac{d}{d t} \bar{u}_{j}(t)=-\frac{H_{j+\frac{1}{2}}(t)-H_{j-\frac{1}{2}}(t)}{\Delta x}
$$

Semi-discrete Central Schemes - One Dimension

- two sets of evolved values are calculated:
- staggered values over non-smooth regions $\left\{\bar{w}_{j+\frac{1}{2}}^{n+1}\right\}$
- non-staggered evolution over smooth regions $\left\{\bar{w}_{j}^{n+1}\right\}$
- the values in these two sets can be interpolated and reprojected as cell averages $\left\{\bar{u}_{j}^{n+1}\right\}$ onto the original non-staggered grid (Jiang et. al., 1998)
- or one can take the limit as $\Delta t \rightarrow 0$ to arrive at the semi-discrete formulation:

$$
\frac{d}{d t} \bar{u}_{j}(t)=-\frac{H_{j+\frac{1}{2}}(t)-H_{j-\frac{1}{2}}(t)}{\Delta x}
$$

- where $H_{j+\frac{1}{2}}(t):=\frac{f\left(u_{j+\frac{1}{2}}^{+}(t)\right)+f\left(u_{j+\frac{1}{2}}^{-}(t)\right)}{2}-\frac{a_{j+\frac{1}{2}}(t)}{2}\left[u_{j+\frac{1}{2}}^{+}(t)-u_{j+\frac{1}{2}}^{-}(t)\right]$

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

- staggered evolution over red cells

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

- staggered evolution over red cells
- staggered evolution in one direction over green strips

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

- staggered evolution over red cells
- staggered evolution in one direction over green strips
- non-staggered evolution over $D_{j, k}$, and

Semi-discrete Central Schemes - Two Dimensions

Similarly, in two space dimensions, we apply:

- staggered evolution over red cells
- staggered evolution in one direction over green strips
- non-staggered evolution over $D_{j, k}$, and
- reprojecting over original cells and taking the limit as $\Delta t \rightarrow 0$, we arrive at:

$$
\frac{d}{d t} \bar{u}_{j}(t)=-\frac{H_{j+\frac{1}{2}, k}^{\times}(t)-H_{j-\frac{1}{2}, k}^{\times}(t)}{\Delta x}-\frac{H_{j, k+\frac{1}{2}}^{z}(t)-H_{j, k-\frac{1}{2}}^{z}(t)}{\Delta z}
$$

Central Schemes - Reconstruction

Example of a non-oscillatory reconstruction:
second order minmod reconstruction (Van Leer, 1979)

$$
p_{j, k}(x, z)=\bar{u}_{j, k}^{n}+u_{j, k}^{\prime} \frac{\left(x-x_{j}\right)}{\Delta x}+u_{j, k}^{\prime} \frac{\left(z-z_{k}\right)}{\Delta z}
$$

where

$$
\begin{aligned}
& u^{\prime}(j, k)=\operatorname{minmod}\left(\alpha \Delta_{+, x} \bar{u}_{j, k}^{n}, \frac{1}{2} \Delta_{0, x} \bar{u}_{j, k}^{n}, \alpha \Delta_{-, x} \bar{u}_{j, k}^{n}\right), \\
& u^{\prime}(j, k)=\operatorname{minmod}\left(\alpha \Delta_{+, z} \bar{u}_{j, k}^{n}, \frac{1}{2} \Delta_{0, z} \bar{u}_{j, k}^{n}, \alpha \Delta_{-, z} \bar{u}_{j, k}^{n}\right),
\end{aligned}
$$

with $1 \leq \alpha<2$, and

$$
\operatorname{minmod}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{\begin{array}{lcc}
\min x_{i}, & \text { if } & x_{i}>0 \forall i \\
\max x_{i}, & \text { if } & x_{i}<0 \forall i \\
0 & \text { otherways } &
\end{array}\right.
$$

Semi-discrete Central Schemes - Time Evolution

Solution evolved with SSP RK Schemes (Gottlieb et. al., 2001),
Example: Third-order scheme

$$
\begin{aligned}
u^{(1)} & =u^{(0)}+\Delta t C\left[u^{(0)}\right] \\
u^{(2)} & =u^{(1)}+\frac{\Delta t}{4}\left(-3 C\left[u^{(0)}\right]+C\left[u^{(1)}\right]\right) \\
u^{n+1} & :=u^{(3)}=u^{(2)}+\frac{\Delta t}{12}\left(-C\left[u^{(0)}\right]-C\left[u^{(1)}\right]+8 C\left[u^{(2)}\right]\right)
\end{aligned}
$$

where
$C[w(t)]=-\frac{H_{j+\frac{1}{2}, k}^{\times}(w(t))-H_{j-\frac{1}{2}, k}^{x}(w(t))}{\Delta x}-\frac{H_{j, k+\frac{1}{2}}^{z}(w(t))-H_{j, k-\frac{1}{2}}^{z}(w(t))}{\Delta z}$

Ideal MHD Equations

- conservation of mass:

$$
\rho_{t}=-\nabla \cdot(\rho \mathbf{v}),
$$

- conservation of momentum:

$$
(\rho \mathbf{v})_{t}=-\nabla \cdot\left[\rho \mathbf{\mathbf { v } ^ { \top }}+\left(p+\frac{1}{2} B^{2}\right) \mathbb{I}_{3 \times 3}-\mathbf{B B}^{\top}\right]
$$

- conservation of energy:

$$
e_{t}=-\nabla \cdot\left[\left(\frac{\gamma}{\gamma-1} p+\frac{1}{2} \rho v^{2}\right) \mathbf{v}-(\mathbf{v} \times \mathbf{B}) \times \mathbf{B}\right],
$$

- transport equation:

$$
\mathbf{B}_{t}=\nabla \times(\mathbf{v} \times \mathbf{B})
$$

Ideal MHD Equations

- conservation of mass:

$$
\rho_{t}=-\nabla \cdot(\rho \mathbf{v}),
$$

- conservation of momentum:

$$
(\rho \mathbf{v})_{t}=-\nabla \cdot\left[\rho \mathbf{v} \mathbf{v}^{\top}+\left(p+\frac{1}{2} B^{2}\right) \mathbb{I}_{3 \times 3}-\mathbf{B B}^{\top}\right],
$$

- conservation of energy:

$$
e_{t}=-\nabla \cdot\left[\left(\frac{\gamma}{\gamma-1} p+\frac{1}{2} \rho v^{2}\right) \mathbf{v}-(\mathbf{v} \times \mathbf{B}) \times \mathbf{B}\right],
$$

- solenoidal constraint:

$$
\nabla \cdot \frac{\partial \mathbf{B}}{\partial t}=\nabla \cdot[\nabla \times(\mathbf{v} \times \mathbf{B})] \quad \Rightarrow \quad \frac{\partial}{\partial t}(\nabla \cdot \mathbf{B})=0
$$

Solenoidal Constraint

- Numerical results indicate central schemes maintain $\nabla \cdot \mathbf{B}$ small

Solenoidal Constraint

- Numerical results indicate central schemes maintain ∇. B small
- Also, using the constraint transport approach and notation (Evans and Hawley, 1988), it can be shown that the magnetic field, as evolved by the second order fully-discrete staggered scheme (JT), can be written as

$$
B_{j+\frac{1}{2}, k+\frac{1}{2}}^{x, n+1}=\frac{1}{2}\left(b_{j, k+\frac{1}{2}}^{x, n+1}+b_{j+1, k+\frac{1}{2}}^{x, n+1}\right)
$$

with

$$
b_{j, k+\frac{1}{2}}^{\times, n+1}=\tilde{b}_{j, k+\frac{1}{2}}^{\times, n}-\frac{\Delta t}{\Delta z}\left(\Omega_{j, k+\frac{1}{2}}^{n+\frac{1}{2}}-\Omega_{j+1, k+\frac{1}{2}}^{n+\frac{1}{2}}\right),
$$

and a similar expression for $B_{j+\frac{1}{2}, k+\frac{1}{2}}^{z, n+1}$

MHD: Brio-Wu Rotated Shock Tube

- One-dimensional Riemann problem with initial states given by

$$
\left(\rho, v_{x}, v_{y}, v_{z}, B_{x}, B_{y}, B_{z}, p\right)^{\top}= \begin{cases}(1,0,0,0,0.75,0,1,1)^{\top} & \text { for } x<0 \\ (0.125,0,0,0,0.75,0,-1,0.1)^{\top} & \text { for } x>0\end{cases}
$$

- Solved over a two dimensional domain with the direction of the flow rotated 45°
- Solution computed up to $t=0.2, x \in[-1,1]$, with 600×600 grid points, $\gamma=2$.

MHD: Brio-Wu Rotated Shock Tube

Solution at $t=0.2$

From top to bottom and from left to right: density, transverse velocity, transverse magnetic filed, parallel magnetic field, and pressure. The divergence of the reconstructed polynomial $\sim 10^{-13}$. Results computed with Jacobian free formulation of 2 nd order JT scheme.

MHD: Shock - Cloud Interaction

- Disruption of a high density cloud by a strong shock

MHD: Shock - Cloud Interaction

- Disruption of a high density cloud by a strong shock
- Initial conditions

$$
\left(\rho, v_{x}, v_{y}, v_{z}, B_{x}, B_{y}, B_{z}, p\right)^{\top}= \begin{cases}(3.86,0,0,0,0,-2.18,2.18,167.34)^{\top} & \text { for } x<0.6 \\ (1,-11.25,0,0,0,0.564,0.564,1)^{\top} & \text { for } x>0.6\end{cases}
$$

high density cloud $-\rho=10, p=1$ - centered at $x=0.8, y=0.5$, with radius 0.15 ,

MHD: Shock - Cloud Interaction

- Disruption of a high density cloud by a strong shock
- Initial conditions

$$
\left(\rho, v_{x}, v_{y}, v_{z}, B_{x}, B_{y}, B_{z}, p\right)^{\top}= \begin{cases}(3.86,0,0,0,0,-2.18,2.18,167.34)^{\top} & \text { for } x<0.6 \\ (1,-11.25,0,0,0,0.564,0.564,1)^{\top} & \text { for } x>0.6\end{cases}
$$

high density cloud $-\rho=10, p=1$ - centered at $x=0.8, y=0.5$, with radius 0.15,

- Solved up to $t=0.06,(x, z) \in[0,1] \times[0,1]$, with 256×256 grid points, CFL number 0.5 and $\gamma=5 / 3$

MHD: Shock - Cloud Interaction

Solution of shock-cloud interaction, left: density at $t=0$, center: density at $t=0.06$, right: magnetic field lines at $\mathrm{t}=0.06$. Results compputed with 3 rd order semi-discrete scheme.

Euler Equations of Gas Dynamics

- conservation of mass:

$$
\rho_{t}=-\nabla \cdot(\rho \mathbf{v}),
$$

- conservation of momentum:

$$
(\rho \mathbf{v})_{t}=-\nabla \cdot\left(\rho \mathbf{v}^{\top}+p \mathbb{I}_{3 \times 3}\right),
$$

- conservation of energy:

$$
e_{t}=-\nabla \cdot\left[\left(\frac{\gamma}{\gamma-1} p+\frac{1}{2} \rho v^{2}\right) \mathbf{v}\right]
$$

- equation of state:

$$
p=(\gamma-1)\left[e-\frac{1}{2} \rho v^{2}\right]
$$

Euler Equations: 2d Riemann Problem

Solution of a 2d Riemann problem, left: density at $t=0$ and initial conditions, center: density at $t=0.3$ $\left(S_{21} \leftarrow, S_{32}^{\leftarrow}, S_{34}^{\leftarrow}, S_{41}^{\leftarrow}\right)$, right: pressure at $\mathrm{t}=0.3$. Results compputed with 3rd order semi-discrete scheme using 400×400 grid cells.

