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So you want to measure something?
– noise, averaging, and bandwidth

Henk W.Ch. Postma – November 11, 2015

Manual readings

Suppose there is a signal that we want to measure, and it is a little
bit noisy. It could be a small voltage V across a resistor that has a
current running through it. We are not interested in the fluctuations,
but only the average value. Let us assume that we have taken great
care to remove line interference (at multiples of the line frequency of
50 or 60 Hz).
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Figure 1: Repeated measurements of a
time-varying signal.

We take one reading, call it V1, and while we’re at it, we take a few
more. We get

V1 = 1.3423 V; V2 = 0.40399 V; V3 = 0.51914 V

and the average is 〈V1..3〉 = 0.75513 V. Just to be sure, we repeat the
three readings again, and we get a new average 〈V4..6〉 = 1.1404 V
(figure 1). We see that there is a significant difference between the
readings, and we are not happy with that. So we take the average of
all 6 numbers, and get 〈V1..6〉 = 0.94779 V.

Computer readings

By this time, we are ready to hook up a computer to the signal and
take some of this work off our hands, and we go all out: we take 1000
readings and get 〈V1..1000〉 = 0.97096 V. Our sample rate is 100 Hz, so
this reading takes 10 s. To verify that our readings are converging to
the actual average value, we run a short script in matlab/gnu octave,
and arrive at the following plot of the average voltage Vn as a function
of how many averages we were taking n (figure 2).
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Figure 2: Convergence of average read-
ings to the mean.

We see that indeed the average values fluctuate quite a lot in the
beginning when we’re averaging over a low number of readings, but
converge to an average value of ∼ 1 V.

Bandwidth and aliasing

When we were doing readings by hand, we took perhaps a few seconds
to read the value, record it in our notebook, and then we calculated
the average. While we were doing our recordings, however, the signal
kept fluctuating. Look at the blue signal in figure 1, and then look
at the red marked readings that we took by hand. The fluctuations
happened on a time scale that was shorter than we were reading at.
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To illustrate, look at the fourier transform of the final readings we
were doing by computer in the figure. Indeed we have high-frequency
fluctuations that got folded into our measurements even though we
were not reading at that high frequency. That is known as ‘aliasing’.

1e+0 1e+1 1e+2 1e+3
1e-1

1e+0

1e+1

1e+2

1e+3

1e+4

frequency (au)

fo
ur

ie
r 

tr
an

sf
or

m
 (

au
)

Figure 3: Fourier transform of signal.

Anti aliasing

In order to get a better reading, we should discard these higher fre-
quencies. Because even if we’re reading at a low frequency, our read-
ings still contain the effect of higher-frequency flucations. Removing
the high frequencies that occur faster than our sampling rate is known
as applying an ‘anti aliasing’ filter. There are many ways you can ac-
complish this.

We could put a low-pass filter with a cut-off frequency f0 slightly
above what we will be reading at. For instance, we could use a simple
first-order RC low-pass filter with a transfer function

|H( f )| = 1√
1 + f 2/ f 2

0

, f0 =
1

2πRC
.

This approach requires a-priori knowledge of our measurement fre-
quency and maybe some soldering.

Alternatively, we could measure the signal as quickly as possible
with the computer, and average it in software. Let’s say, as in our
experiment, we sample the signal at 100 Hz, then load all that data
into the computer for averaging.

How averaging works

The signal has a specific power spectral density SV , in V2/Hz, and
when we read the signal, we get a root-mean-square (RMS) level of
fluctuations into the reading equal to

V2
RMS =

∫ ∞

0
SV( f )d f

If we limit the signal to a specific bandwidth B, we basically terminate
the integral before f reaches infinity

V2
RMS =

∫ B

0
SV( f )d f

and the RMS signal is smaller, i.e. we have less fluctuations.
More accurately, when we filter, we modify SV itself because we

send it through a filter. If it is a simple RC low-pass filter as suggested
above, it has a transfer function with absolute value

|H( f )| = |Vout/Vin| = 1/
√

1 + f 2/ f 2
0 ,
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where f0 is the cutoff frequency of the filter. If the noise is white, i.e.
SV( f ) = SV , a frequency-independent level of fluctuations, the RMS
signal becomes

V2
RMS =

∫ ∞

0
SV

1
1 + f 2/ f 2

0
d f = SV f0π/2

The lower we make the cutoff frequency f0, the smaller the level of
fluctuations is.

If we average the signal, we can describe that as integrating the
signal. That, in turn, can be described as convolving the signal with a
scaled rectangular function in the time domain,

Vav(t) =
∫

V(t′)h(t− t′) dt′ .

If the duration of the average is τ, we are convolving the signal with a
modified rectangular function h(t)

h(t) = rect′(t) =


0 if |t| > τ/2
1

2τ if |t| = τ/2
1/τ if |t| < τ/2

and its fourier transform is

H( f ) =
∫ ∞

−∞
rect′(t)e−2πi f tdt =

∫ τ/2

−τ/2

e−2πi f t

τ
dt =

sin(π f τ)

π f τ
= sinc(π f τ)

Therefore, if the noise is white, the RMS level is (using
∫

sinc2(x) dx =
1
2 )

V2
RMS = SV

∫ ∞

0

(
sin(π f τ)

π f τ

)2

d f =
SV

2πτ

The longer we average, the smaller the fluctuations become, and the
RMS level scales like

VRMS ∝ τ−1/2 .

This behavior is very similar to the discrete case, where the standard
deviation of the mean is σ ∝ n−1/2.

Let’s look again at how the average reading gets better and better
the longer we average. We expect the deviation of an average over n
numbers (V1..n) from the final average value to get smaller and con-
verge as ∝ τ−1/2 towards V∞. But the deviation could be positive as
well as negative. Therefore, if we square the deviation, we get

(Vn −V∞)2 ∝
1
τ

If we look at the bottom of figure 2, we see that indeed it appears to
follow that behavior.
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Summary

Measure as fast as you can so you can get many readings in. If you
cannot measure as quickly as your signal is varying, filter out the fluc-
tuations above your sample frequency. If you do not have access to
a computer that can read the signal quickly, you can filter the signal
yourself. Or, you can use a digital multimeter that allows you to in-
crease the integration time.


