BackBack

1 article(s) will be saved.

The link information below provides a persistent link to the article you've requested.

Persistent link to this record: Following the link below will bring you to the start of the article or citation.
Cut and Paste: To place article links in an external web document, simply copy and paste the HTML below, starting with "<A HREF"

To continue, select FILE then SAVE AS from your browser's toolbar above. Be sure to save as a plain text file (.txt) or an HTML file (.html).

If you have any problems or questions, contact Technical Support at http://support.epnet.com/CustSupport/Customer/OpenCase.aspx or call 800-758-5995.


Record: 1
Title:ENERGY: ASKING THE WRONG QUESTION.
Author(s):Holdren, John P.
Source:Scientific American; Jan2002, Vol. 286 Issue 1, p65, 3p
Document Type:Article
Subject(s):NATURAL resources
ENVIRONMENTALISM
LOMBORG, Bjorn
SKEPTICAL Environmentalist, The (Book)
Abstract:Presents a criticism of the book 'The Skeptical Environmentalist: Measuring the Real State of the World,' by Bjorn Lomborg. Discussion of the idea that the world's energy and environmental resources are being depleted; Discussion of petroleum resources; Experience of the author in studying environmentalism.
Full Text Word Count:1752
ISSN:0036-8733
Accession Number:5638889
Persistent link to this record: http://search.epnet.com/direct.asp?an=5638889&db=afh
Cut and Paste: <A href="http://search.epnet.com/direct.asp?an=5638889&db=afh">ENERGY: ASKING THE WRONG QUESTION.</A>
Database: Academic Search Elite


ENERGY: ASKING THE WRONG QUESTION



Lomborg's chapter on energy covers a scant 19 pages. It is devoted almost entirely to attacking the belief that the world is running out of energy, a belief that Lomborg appears to regard as part of the "environmental litany" but that few if any environmentalists actually hold. What environmentalists mainly say on this topic is not that we are running out of energy but that we are running out of environment--that is, running out of the capacity of air, water, soil and biota to absorb, without intolerable consequences for human well-being, the effects of energy extraction, transport, transformation and use. They also argue that we are running out of the ability to manage other risks of energy supply, such as the political and economic dangers of overdependence on Middle East oil and the risk that nuclear energy systems will leak weapons materials and expertise into the hands of proliferation-prone nations or terrorists.

That "the energy problem" is not primarily a matter of depletion of resources in any global sense but rather of environmental impacts and sociopolitical risks--and, potentially, of rising monetary costs for energy when its environmental and sociopolitical hazards are adequately internalized and insured against--has in fact been the mainstream environmentalist position for decades. It was, for example, the position I elucidated in the 1971 Sierra Club "Battlebook" Energy (co-authored with Philip Herrera, then the environment editor for Time). It was also the position elaborated on by the Energy Policy Project of the Ford Foundation in the pioneering 1974 report A Time to Choose; by Amory Lovins in his influential 1976 Foreign Affairs article "Energy Strategy: The Road Not Taken"; by Paul R. and Anne H. Ehrlich and me in our 1977 college textbook Ecoscience; and so on.

So whom is Lomborg so resoundingly refuting with his treatise on the abundance of world energy resources? It would seem that his targets are pundits (such as the correspondents for E magazine and CNN cited at the opening of this chapter) and professional analysts (although only a few of these are cited, and those very selectively) who have argued not that the world is running out of energy altogether but only that it might be running out of cheap oil. Lomborg's dismissive rhetoric notwithstanding, this is not a silly question, nor one with an easy answer.

Oil is the most versatile and currently the most valuable of the conventional fossil fuels that have long provided the bulk of civilization's energy, and it remains today the largest contributor to world energy supply (accounting for nearly the whole of energy used for transport, besides other roles). But the recoverable conventional resources of oil are believed (on substantial evidence) to be far smaller than those of coal and probably also smaller than those of natural gas; the bulk of these resources appears to lie in the politically volatile Middle East; much of the rest lies offshore and in other difficult or environmentally fragile locations; and it is likely that the most abundant potential replacements for conventional oil will be more expensive than oil has been. For all these reasons, concerns about declining availability and rising prices have long been more salient for oil than for the other fossil fuels. There is, accordingly, a serious technical literature (produced mainly by geologists and economists) exploring the questions of when world oil production will peak and begin to decline and what the price of oil might be in 2010, 2030 or 2050, with considerable disagreement among informed professionals on the answers.

Lomborg gets right the basic point that the dominance of oil in the world energy market will end not because no oil is left in the ground but because other energy sources have become more attractive relative to oil. But he seems not to recognize that the transition from oil to other sources will not necessarily be smooth or occur at prices as low as those enjoyed by oil consumers today. Indeed, while ridiculing the position that the world's heavy oil dependence may again prove problematic in our lifetimes, he shows no sign of understanding (or no interest in communicating) why there is real debate among serious people about this.

Lomborg does not so much as offer his readers a clear explanation of the distinction--crucial to understanding arguments about depletion--between "proved reserves" (referring to material that has already been found and is exploitable at a profit at today's prices, using today's technologies) and "remaining ultimately recoverable resources" (which incorporate estimates of additional material exploitable with today's technology at today's prices but still to be found, as well as material both already found and still to be found that will be exploitable with future technologies at potentially higher future prices). And, while noting that most of the world's oil reserves lie in the Middle East (and failing to note, having not even introduced the concept, that a still larger share of remaining ultimately recoverable resources is thought to lie there), he placidly informs us that it is "imperative for our future energy supply that this region remains reasonably peaceful," as if that observation did not undermine any basis for complacency. (At this juncture, one of his 2,930 footnotes helpfully adds that this peace imperative for the Middle East was "one of the background reasons for the Gulf War"!)

Lomborg's treatment of energy resources other than oil is not much better. He is correct in his basic proposition that resources of coal, oil shale, nuclear fuels and renewable energy are immense (which few environmentalists--and no well-informed ones--dispute). But his handling of the technical, economic and environmental factors that will govern the circumstances and quantities in which these resources might actually be used is superficial, muddled and often plain wrong. His mistakes include apparent misreadings or misunderstandings of statistical data--in other words just the kinds of errors he claims are pervasive in the writings of environmentalists-as well as other elementary blunders of quantitative manipulation and presentation that no self-respecting statistician ought to commit.

He tells us correctly, for example, that the world has huge resources of coal, but in observing that "it is presumed that there is sufficient coal for well beyond the next 1,500 years" he says nothing about the rate of coal use for which this conclusion might obtain. Concerning the environmental questions that increased reliance on coal would raise, he writes the following: "Typically, coal pollutes quite a lot, but in developed economies switches to low-sulfur coal, scrubbers and other air-pollution control devices have today removed the vast part of sulfur dioxide and nitrogen dioxide emissions.'' To the contrary, data readily available on the Web in the Environmental Protection Agency report National Air Pollutant Emission Trends 1900-1998 reveal that U.S. emissions of nitrogen oxides from coal-burning electric power plants were 6.1 million short tons in 1980 and 5.4 million short tons in 1998. Emissions of sulfur dioxide from U.S. coal-burning power plants were 16.1 million short tons in 1980 and 12.4 million short tons in 1998. These are moderate reductions, welcome but hardly the "vast part" of the emissions.

Concerning nuclear energy, Lomborg tells us that it "constitutes 6 percent of global energy production and 20 percent in the countries that have nuclear power." The first figure is right, the second seriously wrong. Nuclear energy provides a bit less than 10 percent of the primary energy supply in the countries that use this energy source. (It appears that Lomborg has confused contributions to the electricity sector with contributions to primary energy supply.) After a muddled discussion of the relation between uranium-resource estimates and breeding (which omits altogether the potentially decisive issue of the usability of uranium from seawater), he then barely notes in passing that breeder reactors "produce large amounts of plutonium that can be used for nuclear weapons production, thus adding to the security concerns." He should have added that this problem is so significant that it may preclude use of the breeding approach altogether, unless we develop technologies that make breeding much less susceptible to diversion of the plutonium while not making this approach even more uneconomic than it is today.

Lomborg has some generally sensible things to say about the large contributions that are possible from increased energy end-use efficiency and from renewable energy--on these topics he seems, to his credit, to be more a contributor to the "environmental litany" than a critic of it. But on these subjects as on the others, his treatment is superficial, uneven and marred by numerous errors and infelicities. For example, he persistently presents numbers to two- and three-figure precision for quantities that cannot be known to such accuracy: "43 percent of American energy use is wasted"; "the costs of carbon dioxide" emissions are "0.64 cents per kWh"; plant photosynthesis is "1,260 EJ" annually. He makes claims, based on single citations and without elaboration, that are far from representative of the literature: "We know today that it is possible to produce safe cars getting more than 50-100 km per liter (120-240mpg)." (How big would these cars be, and powered how?) He bungles terminology: "Energy can be stored in hydrogen by catalyzing water." (He must mean "by electrolyzing water" or "by catalytic thermochemical decomposition of water.") And he propagates a variety of conceptual confusions, such as the idea that grid-connected wind power requires "a sizeable excess capacity" in the windmills because these alone "need to be able to meet peak demand."

Of course, much of what is most problematic in the global energy picture is covered by Lomborg not in his energy chapter but in those that deal with air pollution, acid rain, water pollution and global warming. The last is devastatingly critiqued by Stephen Schneider on page 62. There is no space to deal with the other energy-related chapters; suffice it to say that I found their level of superficiality, selectivity and misunderstanding roughly consistent with that of the energy chapter reviewed here. This is a shame. Lomborg is giving skepticism-and statisticians--a bad name.

~~~~~~~~

By John P. Holdren

John P. Holdren is the Teresa and John Heinz Professor of Environmental Policy at the John F. Kennedy School of Government, as well as professor of environmental science and public policy in the department of earth and planetary sciences, at Harvard University. From 1973 to 1996 he co-led the interdisciplinary graduate program in energy and resources at the University of California, Berkeley. He is a member of the National Academy of Sciences and the National Academy of Engineering.


Copyright of Scientific American is the property of Scientific American Inc. and its content may not be copied or e-mailed to multiple sites or posted to a listserv without the copyright holder`s express written permission. However, users may print, download, or e-mail articles for individual use.
Source: Scientific American, Jan2002, Vol. 286 Issue 1, p65, 3p
Item: 5638889
 
Top of Page

BackBack