

Predicted Climate Changes in California: Impacts on Agriculture

Temperature – heat stress, number of chill hours, milk production

Pests and weeds - warmer winters lead to increase

Spring snowpack may be reduced by as much as 70 - 90% by the end of the century.

Need to build more storage capacity (maximum runoff will occur earlier – snowpack currently stores half the amount of the man-made reservoirs in California).

More demand for water from agriculture due to higher evaporation rates.

Economic consequences for ski resorts.

Cayan et al., 2006;CEC-500-2005-186-SF

Predicted Climate Changes in California: Fires

The risk of large fires could rise by as much as 55% by the end of the century and increase associated damage costs by as much as 30% (Westerling and Bryant, 2006).

In addition, wildfires add significantly to atmospheric carbon dioxide emissions, so that the expected increase in their frequency will further accelerate global warming (Running, 2006).

		Projected	Change in Annual	Change in
Estimated changes in annual and peak	Time Period	Warming Range	Electricity Demand (%)	Peak Demand (%)
lemand for	2005–2034	Low	0.9	1.4
nultiple			1.2	1.5
temperature projections.		Medium	2.9	3.6
		High	3.4	4.8
	2070-2099	Low	3.1	4.1
			5.8	7.3
			5.3	5.6
		Medium	11.0	12.1
		High	20.3	19.3

Franco and Sanstad 2006, Cayan et al., 2006: CEC-500-2005-186-SF

expenditures.

(Emissions Scenarios End of Century Atmospheric CO ₂ Concentration)	Figure 17. Projected Impacts ¹ End of Century ²	Statewide Temperature Rise (°C) 2070-2099
	Higher Emissions A1fi (970 ppm)	0% loss in Sierra snowpack 5-75 cm (22-30 inches) of sea level rise -4 times as many heat wave days for major urban centers ³ -6 times as many heat-related deaths for major urban centers ³ .5 times the number critically dry years ⁴ 0% increase in electricity demand Enange in forest yields not evaluated for this scenario ⁵ Thange in fire risk not evaluated for this scenario ⁵ increase in days meteorologically conducive to ozone formation ⁵	4.4-5.8°C (8-10.4°F)
	Medium-High Emissions A2 (830 ppm)	0%-80% loss in Sierra snowpack 5-55 cm (14-22 inches) of sea level rise 5-4 times as many heat wave days for major urban centers ³ - 6 times as many heat-related deaths for major urban centers ³ 5%-85% increase in days meteorologically conducive to ozone formation ⁶ -2.5 times the number critically dry years ⁴ 1% increase in electricity demand 0% decrease in forest yields (pine) 5% increase in the expected risk of large fires	3.1-4.4°C (5.5-7.9°F)
	Lower Emissions B1 (550 ppm) 4	0%-60% loss in Sierra snowpack 5-35 cm (6-14 inches) of sea level rise -2.5 times as many heat wave days for major urban centers ³ -3 times as many heat-related deaths for major urban centers ³ 5%-35% increase in days meteorologically conducive to ozone formation ⁶ Jp to 1-1.5 times the number critically dry years ⁴ %-6% increase in days updals (pine) %-14% decrease in forst yields (pine) 0%-35% increase in the risk of large fires	1.7-3.0°C (3.0-5.4°F)

