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Faint early sun paradox

About 4.6 billion years ago the sun was roughly 30%
less luminous than today, but yet the oceans were not
frozen. Why not?

Temperature, K
Solar luminosity relative to present value

Billions of years ago
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Faint early sun paradex

Need another —~70 W/m? heat 4 bya to
prevent freezing of oceans.

Possible sources:

e additional geothermal flux from interior
(No - currently 0.06 W/m?, 4 bya
would have been about 0.3 W/m?)

= albedo/ice cover
(Unlikely — albedo currently is 0.3,
would have needed to be almost 0.)

e much larger G-H effect
(CO, concentration was probably much
higher than now.)




Faint early sun paradox

How much CO, is necessary to keep the

earth

4104

. 103

- 102

101

ligelng! ~——— Ocean-covered Earth
freezing? Huronian glaciation
;1 B (5-20° C)

— Late

@ Precambrian

£ glaciation
About % 10-118 (5-20°C)
1000x & \ 30% Solar flux

B eduction (0° C [
tOday, % szl reduction (0° C)
(o] g OJRC] S |

o
bar 10—3 i

-4
19 4.5 315 2?5 1|.5 0.5
Time before present (b.y.)

Copyright € 2004 Pearson Prentice Hall, Inc.

CO, concentration (x present level)

Faint early sun paradex

How much CO, is necessary to keep the
earth from freezing if CH, is also present?

Temperature (K)
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Faint early sun paradox

CH, comes from methanogenic bacteria.
These convert H, from early atmosphere
into CH, by way of:

CO, + 4H, -> CH, + 2H,0
CH, is 30x as potent a G-H gas as CO.,.
The early earth is likely to have been kept

warmer by a combination of much higher
CO, and CH, concentrations.

Long-term climate change

How is the climate of the earth controlled
over long time scales?

Climate is controlled by a trade-off
between solar luminosity and G-H gases —
most importantly CO.,.

On a short time scale (less than a century)
atm. CO, is controlled by respiration,
photosynthesis and decomposition.

On a long time scale CO, is largely
controlled by geological processes.




Carbon
reservoirs

Atmospheric CH,
10 Gt(C)

Living biomass
600 Gt(C)

Atmospheric CO,
760 Gt(C)

Oceanic dissolved CO,
740 Gt(C)

Oceanic carbonate ion
1300 Gt(C)

Organic carbon in
soils/sediments 1600 Gt(C)

Marine carbonate
sediments 2500 Gt(C)

Fossil fuels 4700 Gt(C)

Oceanic bicarbonate ion 37,000 Gt(C)

Organic carbon in sedimentary rocks 10,000,000 Gt(C) ‘

Limestone in sedimentary rocks 40,000,000 Gt(C)
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Short-term
Organic
Carbon

Cycle

inflow to atm:
30 Gt/yr from
respiration + 30
Gt/yr from
decomposition

outflow:
60Gt/yr from
photosynthesis
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Marine Organic Carbon Cycle

Biological
pump

Deep
ocean

Processes: Photosynthesis
Fecal-pellet production
Oxygen production

002 + H2O —-"CH20" + 02
Surface ocean

Upwelling of Settling of
nutrients organic matter

much
richer in
CO, than
surface
waters.

‘Oxygen consumption

Deep ocean
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CZCS shows
areas of
primary
productivity in
ocean.
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Inorganic Carbon Cycle
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Flow of CO, is down the concentration gradient.

Ocean is source of atm CO, where ocean CO, is higher than atm, as in
regions of upwelling. Ocean is sink for atm CO, where primary
productivity is high and CO, has been removed from surface water.

Inorganic Carbon Cycle

The ocean’s ability to take up excess atm CO, is limited.
1. carbon dioxide dissolves in water to produce carbonic acid (H,CO3).

CO, +H,0 — H,CO,

2. carbonic acid molecules dissociate in water to produce bicarbonate
ions (HCOy").

H,CO, <> H* + HCO;

bicarbonate ions dissociate to produce carbonate ions (CO3?").

HCO; <> H* +COZ

But this reaction can proceed in either direction. The amounts of
bicarbonate and carbonate ions is adjusted according to the pH of
the water. If the pH is below neutral (acidic), the reaction proceeds
to the left. If it is above neutral, the reaction proceeds to the right.




Inorganic Carbon Cycle

The ocean’s ability to take up excess atm CO, is limited.

1. CO, dissolves -=> carbonic acid -> bicarbonate + H*

CO, +H,0 — H,CO, <> H* + HCO;

Now pH is lowered, so H* reacts with carbonate ion ->
bicarbonate ion

HCO; «— H" +COZ

Now the net result is:

CO, +H,0+C0OZ — H* +HCO; +COZ — 2HCO,

there are 2 more bicarbonate ions and 1 less carbonate ion

This can only continue as long as there are carbonate ions in the
ocean — But there are a lot more fossil fuels than carbonate ions
so ocean’s ability to take up excess CO, is limited.

Chemical Weathering

atm CO, dissolves in rainwater to produce carbonic acid (H,CO;)

Carbonate weathering:

carbonic acid dissolves calcium carbonate to produce calcium ions +
bicarbonate ions.

CaCo, + H,CO, - Ca®* + 2HCO,

Silicate weathering:
carbonic acid dissolves silicates (eg. wollastonite) to produce
calcium ions, bicarbonate ions, silica and water.

CaSiO, + 2H,CO, —» Ca®* +2HCO; +Si0, + H,0

RHS gets transported via rivers to ocean

Note: Silicate weathering uses twice as much atm CO, as carbonate
weathering.




Mineral Deposition

marine organisms use calcium ions and bicarbonate ions in
seawater to produce their shells (calcite = CaCO;)

Carbonate precipitation:

Ca® +2HCO, — CaCO, + H,CO,

When these organisms (foraminifera, corals, shellfish) die, their
shells sink to the bottom of the ocean. They arrive intact where the
ocean depth is less than 4 km (shallow tropical waters and mid-
ocean ridges). They dissolve before reaching the bottom of the
deep ocean basins.

At mid-ocean ridges they are buried by sediments and carried
across the ocean by seafloor spreading.

When tectonic uplift occurs (after millions of years) the limestones
are exposed at the Earth’s surface and the cycle continues.

Inorganic Carboen Cycle (Summary)

Carbonate precipitation is just the reverse of carbonate weathering.

In silicate weathering however, there is a net removal of CO, from
the atmosphere because of the extra carbonic acid molecule used.

Net result:

CaSiO, + CO, — CaCO, + SiO,

The rate of conversion of atm CO, to limestone by silicate
weathering is small (0.03Gton(C)/yr) but must be balanced
otherwise the atmospheric supply of CO, would be depleted in a
million years (using the ocean to supply the atm first).

This is short on geological time scales.

10
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Carbonate-Silicate Geochemical
Cycle

Plate tectonics returns the CO, to the atmosphere via metamorphism
and volcanoes. Carbonate metamorphism:

CaCo, + Si0, — CasSiO, + CO,

CO; release

‘release | ;
Carbonate

Weathering

Mid-ocean
ridge

metamorphism
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Carbonate-Silicate Geochemical Cycle

Together silicate weathering, carbonate precipitation and formation of
carbonic acid in air are the reverse of carbonate metamorphism.

Over the history of the earth these have balanced out (unlike Mars,
which has lost its CO,-rich atm, and flowing water).

Feedback loops help to keep things in balance:

surface
temperature

(T

O

greenhouse atmospheric
effect pCO,
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main periods of glaciation. Why?

2.3 bya (Huronian)
Rise in atm. O, reacted with CH,.
CH, greatly reduced.
Temp. cooled.

Recovery?
silicate weathering reduced by ice cover or more
methanogenesis.
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0.6 — 0.8 bya (late Proterozoic)
“Snowball Earth” — even tropics were glaciated. Why?

All landmasses joined at equator — lots of silicate
weathering. Brings down atm. CO,. Earth cools. Polar
ice sheets advance to lower latitudes. At — 30° latitude,
positive (albedo) feedback becomes so strong that
system is unstable. Oceans freeze. Earth freezes.
Global temp -50°C.

Silurian
Albedo > 0.6. Grdovicion
544 Cambrian -
1000 ‘-._4.__..I
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2000 < .
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Archean \\
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Recovery from late Proterozoic “Snowball Earth”

Silicate weathering stopped (earth covered in ice).

CO, builds up in atm. from volcanic emissions.

(At modern rates of outgassing, CO, would reach 0.1 bar
(300 x today’s) in 10 m.y.)
Temp. increases, ice melts, positive feedback sets in. All
ice could melt over a few thousand years.

CO,-rich atm.
low albedo.
surface T: 50 — 60°C

Lots of silicate weathering.

CO, decreases
Climate restored.
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Mesozoic was warm.

2 — 6 °C warmer at equator.

20 — 60 °C warmer at poles.

CO, levels were 4 x as high. Why? Sea-floor spreading
rates were high -=> increased carbon metamorphism and

volcanism.
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Cooling occurred during Cenozoic. Why?

Decrease in mid-ocean spreading rates +

India collided with Asia (40 mya). Created massive uplifted
terrain (Tibetan Plateau) — more weathering surface and
created Asian monsoon rain. Weathering rates increased and

CO, decreased.
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Thus Earth’s climate on a long time scale has largely
been controlled by G-H gases — primarily CO, and
stabilized by silicate weathering.
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