

Faint early sun paradox

 CH_4 comes from methanogenic bacteria. These convert H_2 from early atmosphere into CH_4 by way of:

 $CO_2 + 4H_2 -> CH_4 + 2H_2O$

 CH_4 is 30x as potent a G-H gas as CO_2 .

The early earth is likely to have been kept warmer by a combination of much higher CO_2 and CH_4 concentrations.

Long-term climate change

How is the climate of the earth controlled over long time scales?

Climate is controlled by a trade-off between solar luminosity and G-H gases – most importantly CO₂.

On a short time scale (less than a century) atm. CO_2 is controlled by respiration, photosynthesis and decomposition. On a long time scale CO_2 is largely controlled by geological processes.

Inorganic Carbon Cycle (Summary)

Carbonate precipitation is just the reverse of carbonate weathering.

In silicate weathering however, there is a net removal of CO_2 from the atmosphere because of the extra carbonic acid molecule used.

Net result:

$CaSiO_3 + CO_2 \rightarrow CaCO_3 + SiO_2$

The rate of conversion of atm CO_2 to limestone by silicate weathering is small (0.03Gton(C)/yr) but must be balanced otherwise the atmospheric supply of CO_2 would be depleted in a million years (using the ocean to supply the atm first).

This is short on geological time scales.

