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Abstract

We prove conditions of convergence for rearrangements of conditionally

convergent series. The main results are a comparison theorem using integrals

and a limit comparison theorem for rearrangements. This is done by using

elementary techniques from calculus.

1 INTRODUCTION

In most calculus courses students learn that the terms of a conditionally convergent

series

T =
∞
∑

k=1

ak(−1)k−1 (1)

may be rearranged to converge to any given real number. This result is somewhat

mysterious as it seems to contradict our experience. After all the commutativity

of addition of real numbers is one of the truth’, which we hold as self-evident.

Why should this principle break down, when the sum contains an infinite number of

terms. Surprisingly, the proof of this result is relatively easy and we will start with a

rough sketch of it before shedding some different light on this result. If the sequence

{ak}∞k=1 is a decreasing (or at least eventually decreasing) positive sequence that
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converges to 0, and A is a positive real number, one obtains a rearrangement that

converges to A by first adding odd (positive) terms in the series until

N−1
∑

k=1

a2k−1 < A,

and
N
∑

k=1

a2k−1 ≥ A.

In the next step one subtracts one or more of the negative terms until the sum is less

than A. One continues this process by adding positive terms until the sum exceeds

A and subtracting negative terms until it is less than A again. In this manner A

becomes sandwiched between the partial sums ending with a negative term and the

ones ending with a positive term. And since ak is decreasing to zero, the difference

of these partial sums will also go to zero. We refer the reader to [6, pp. 318-319] or

[4, p. 518] for a complete proof of this result.

In this paper we will investigate this result from a slightly different angle. For a

given rearrangement the N -th partial sum

SN(A)

contains a unique number pN of positive terms and qN of negative terms. In this

way the rearrangement can be identified with two sequences of integers

{pN}∞N=1, and {qN}∞N=1.

We will first prove a result that connects these sequences in a simple formula to the

limit of the rearranged series. This will allow us to compute limits of the series in

an efficient way and will lead us to criteria for the convergence of rearrangements.

These results are not original, and similar results on the relation between the limits

of the series and these two sequences (or related sequences) have appeared in the

literature before. A rather complete treatment of these and related problems was

given by A. Pringsheim as early 1883 [7]. However, this paper is not easily accessible
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to most students, as it was written in German and in a rather archaic style. More

recent works on this and related subjects are [2, 3, 8]. Despite the richness of the

literature, we felt that the subject deserves further investigation. The proofs of the

theorems in this paper are completely elementary and accessible to anyone with

a strong background in calculus. In the next section we will state and prove the

main result on the relationship between the limits of the series and the sequences

{pN}∞N=1 and {qN}∞N=1. The third section of the paper will cover some consequences

and simple examples. In the final section we will use the earlier results to prove a

limit comparison theorem for rearrangements of series. We will limit ourselves to

series with decreasing or eventually decreasing terms.

2 THE MAIN RESULT

To state and prove the main result we will first introduce some notation, namely let

{ak}∞k=1

be a non-negative sequence, that converges to zero and is eventually decreasing.Moreover,

let f be a continuous, non-negative, and eventually decreasing function on [1,∞)

such that

f(k) = ak,

for all positive integers k. Such a function will always exist, since one can just take

the piecewise linear function connecting the points (k, ak). Define

F (x) =

∫ x

1

f(t) dt.

The alternating series

T = lim
N→∞

TN = lim
N→∞

N
∑

k=1

ak(−1)k−1

converges by the alternating series test. If in addition F is bounded the series

converges absolutely.
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To continue let

SN(A) (2)

be the N -th partial sum of a rearrangement of the series that converges to a real

number A, and let {pN}∞N=1 and {qN}∞N=1 be the related sequences of positive and

negative terms mentioned above. It is easily checked that

pN + qN = N,

and

SN(A) =

pN
∑

k=1

a2k−1 −
qN
∑

k=1

a2k.

We can now state the main result of this note:

Theorem 1 With the notations introduced above we have:

lim
N→∞

(F (2pN) − F (2qN)) = 2A − 2T (3)

Proof: Without loss of generality, we will assume that pN ≥ qN for all sufficiently

large values of N . The other case can be shown in the completely analogous way.

We have

SN(A) =

pN
∑

k=1

a2k−1 −
qN
∑

k=1

a2k

=

2qN
∑

k=1

ak(−1)k−1 +

pN
∑

k=qN+1

a2k−1

= T2qN
+

pN
∑

k=qN+1

a2k−1,

where T2qN
is the 2qN -th partial sum for the original alternating series. From Figure

1 below we see that

2

pN
∑

k=qN+2

a2k−1 ≤
∫ 2pN

2qN

f(t) dt,

and therefore

2

pN
∑

k=qN+1

a2k−1 − 2a2qN+1 ≤
∫ 2pN

2qN

f(t) dt. (4)
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Figure 2 shows that

2

pN
∑

k=qN

a2k−1 ≥
∫ 2pN

2qN

f(t) dt,

and therefore

2

pN
∑

k=qN+1

a2k−1 + 2a2qN−1 ≤
∫ 2pN

2qN

f(t) dt. (5)

y=f(x)

2Q   N 2P  N

Figure 1: Upper estimate of the sum

by the integral

y=f(x)

2Q   N 2P  N

Figure 2: Lower estimate of the sum

by the integral

Combining (4) and (5), we obtain

∫ 2pN

2qN

f(t) dt − 2a2qN−1 − 2a2qN−1 ≤ 2

pN
∑

k=qN+1

a2k−1 ≤
∫ 2pN

2qN

f(t) dt + 2a2qN+1,

which immediately implies

∫ 2pN

2qN

f(t) dt− 2a2qN−1 − 2a2qN−1 ≤ 2SN(A)− 2T2qN
≤
∫ 2pN

2qN

f(t) dt + 2a2qN+1. (6)

Finally, we observe that

lim
N→∞

2a2qN−1 = lim
N→∞

2a2qN+1 = 0.

Therefore the desired result follows from taking the limit as N → ∞ in all terms of

(6).

¤
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Corollary 1 If limx→∞ F (x) exists and is finite, the series is absolutely convergent,

and

lim
N→∞

(F (2pN) − F (2qN)) = 0.

Therefore, any rearrangement of an absolutely convergent series converges to the

same limit.

Proof: In this case we have

lim
N→∞

F (2pN) = lim
N→∞

F (2qN),

and the result follows immediately.

¤

3 EXAMPLES AND CONSEQUENCES

In this section we will use Theorem 1 to investigate the convergence of rearrange-

ments of some prominent alternating series. In all cases we do the explicit proofs

for pN ≥ qN (at least eventually). We mention that the other situation can be han-

dled in the same way. The most prominent — and most intensively investigated —

conditionally convergent series is the alternating harmonic series, indeed several of

the papers cited specialize on this topic [3, 5]. As we will later see this series is not

a very good model, since it is converging so rapidly, in fact it is almost absolutely

convergent. Applying Theorem 1 to that series yields the following result.

Corollary 2 For the alternating harmonic series the statement of Theorem 1 be-

comes:

A − T =
1

2
lim

N→∞

ln
pN

qN

Proof: In this case f(t) = 1

t
and F (t) = ln t. Applying Theorem 1 gives

2A − 2T = lim
N→∞

(ln 2pN − ln 2qN) = lim
N→∞

pN

qN

.
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¤

In particular, this Corollary implies that the limit of a rearrangement of the alter-

nating harmonic series is finite, if and only if limN→∞

pN

qN

is finite. Other authors

do not use the ratio we use in this paper, but rather use the asymptotic density of

positive terms in the rearrangement, which is defined as

ρ = lim
N→∞

pN

N
.

In this notation, the above corollary implies that a rearrangement of the alternating

series converges to a finite limit if and only if 0 < ρ < 1. The alternating harmonic

series is a relatively rapidly converging alternating series and represents as such

a limiting case for conditionally convergent series. Corollary 1 also allows us to

compute explicit rearrangements converging to a given number. Since in this case it

is known that T = ln 2. For example, to construct a rearrangement which converges

to A = ln 3 we must ensure that

1

2
lim

N→∞

ln
pN

qN

= ln 3 − ln 2 = ln
3

2
.

This can easily be achieved by taking always 9 positive terms followed by 4 negative

terms.

In our next example we will investigate a class of slower converging p-series.

Corollary 3 Consider the alternating p- series

T =
∞
∑

k=1

(−1)k−1

kp

with 0 < p < 1. Then a rearrangement of this series converges to a finite limit if

and only if

lim
N→∞

pN

qN

= 1,

i.e. ρ = 1

2
.

Proof: In this case f(t) = t−p and hence

F (t) =
1

1 − p

(

t1−p − 1
)

.
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The theorem implies that

2A − 2T = lim
N→∞

1

1 − p

(

(2pN)1−p − (2qN)1−p
)

= lim
N→∞

(2qN)1−p

1 − p

(

(

pN

qN

)1−p

− 1

)

(7)

Since
(2qN)1−p

1 − p

grows without bound as N → ∞, the limit in (7) can only be finite if

lim
N→∞

(

(

pN

qN

)1−p

− 1

)

= 0,

which proves our assertion. The statement in terms of the asymptotic density ρ

follows immediately.

¤

In the case of the alternating harmonic series, convergence of a rearrangement is

assured if

lim
N→∞

pN

qN

is a finite positive number. In Corollary 3, this number must be one. This suggests

that there are really at most three classes of conditionally convergent series, Namely

series where a rearrangement converges to a finite limit if and only if

lim
N→∞

pN

qN

= 1,

and series for which rearrangements converge if and only if this limit is a finite

positive number. Finally, there is the possibility of series for which a rearrangement

also converges if the limit is either 0 or if the sequence pN

qN

is unbounded. We will

encounter aan example of such a series later in this section.

We will now extend these results to another prominent set of alternating series.

Corollary 4 Let p < 1 and consider the series

∞
∑

n=2

1

n(ln n)p
(−1)n−1.
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A rearrangement of this series converges to a finite limit if and only if

lim
N→∞

pN

qN

(8)

is finite and positive.

Proof: Observe that

F (x) =

∫ x

2

1

t(ln t)p
dt =

∫ ln x

ln 2

1

sp
ds.

The previous Corollary implies that a rearrangement of

∞
∑

n=2

1

n(ln n)p
(−1)n−1

converges to a finite limit if and only if

lim
N→∞

ln 2pN

ln 2qN

= 1. (9)

Before continuing we remark that unlike in the previous corollary we can allow

p ≤ 0 here, since the original alternating series also converges in this case and the

argument of the proof of Corollary 3 still works.

We are left to show the equivalence of (9) and (8). To do this suppose first that

lim
N→∞

pN

qN

= L

for some positive real number L. Next choose ε such that 0 < ε < L. Then there

exists an N0 such that

L − ε <
pN

qN

< L + ε

for all N ≥ N0. Multiplication with 2qN yields

2qN(L − ε) < 2pN < 2qN(L + ε)

for all N ≥ N0. The logarithm is a strictly monotonically increasing function. Thus

previous inequality implies

ln 2qN(L − ε) < ln 2pN < ln 2qN(L + ε)
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and

ln 2qN + ln(L − ε) < ln 2pN < ln 2qN + ln(L + ε).

ln 2qN > 0 for sufficiently large N , thus we may divide the inequality by this quantity

to get

1 +
ln(L − ε)

ln 2qN

<
ln 2pN

ln 2qN

< 1 +
ln(L + ε)

ln 2qN

for all N ≥ N0. We take the limit as N → infty and get (9).

To show the opposite direction assume that

pN

qN

is unbounded. Then there exists an N0 such that

pN > qN

for all n ≥ N0. Next observe that for every 0 < ε < 1 we have x > x1−ε for all x > 1.

This implies that

pN > qN > q1−ε
N

for all N ≥ N0. Thus
ln pN

ln qN

>
ln q1−ε

N

ln qN

= (1 − ε)

for all N ≥ N0. Since this inequality holds for all 0 < ε < 1 it follows that

ln pN

ln qN

≥ 1.

This implies the contrapositive of (9) ⇒ (8). If limN→∞

pN

qN

= 0, we apply the same

argument to qN

pN

. This completes the proof of the Corollary.

¤

This last Corollary cannot be extended to the case p = 1. In that case convergence

of a rearrangement is equivalent to the condition

0 < lim
N→∞

ln 2pN

ln 2qN

< ∞ (10)
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by Corollary 2. However, (10) is much weaker than (8). To see this consider the

case when pN = N2 and qN = N . Then

lim
N→∞

ln 2pN

ln 2qN

= lim
N→∞

ln 2 + 2 ln N

ln 2 + ln N
= 2,

and
pN

qN

= N,

which is unbounded. These sequences do not satisfy pN +qN = N , but the sequences

qN = [
√

N ] and pN = N − qN do and allow us to construct a rearrangement of the

series
∞
∑

N=2

(−1)n

n ln n

which converges to a finite number with unbounded pN

qN

.

We finish this section by studying the series

∞
∑

n=2

1

ln n
(−1)n.

A straight forward application of Theorem 1 gives that a rearrangement with a

sequence of positive terms pN and negative terms qN converges to a finite number,

if and only if

lim
N→∞

∫ 2pN

2qN

1

ln t
dt = lim

N→∞

(Li(2pN) − Li(2qN))

exists and is finite. Here Li(x) denotes the logarithmic integral function defined as

Li(x) =

∫ x

2

1

ln t
dt.

Using l’Hospital’s rule we get

lim
x→∞

Li(x) ln x

x
= 1,

and therefore the rearrangement converges if and only if

lim
N→∞

(

2pN

ln 2pN

− 2qN

ln 2qN

)
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exists and is finite. Factoring this expression as before we get

lim
N→∞

2qN

ln 2qN

(

pN ln 2qN

qN ln 2pN

− 1

)

,

which can only be finite if

lim
N→∞

pN ln 2qN

qN ln 2pN

= 1. (11)

From the proof of the last Corollary we have that if limN→∞

pN

qN

= L for some finite

positive number L, then

lim
N→∞

ln 2pN

ln 2qN

= 1.

It follows that in this case (11) holds if and only if L = 1. However, (11) could hold

if limN→∞

pN

qN

= 0 or if it diverges. To investigate this case let rN = pN

qN

, and assume

that rN → ∞ then

pN ln 2qN

qN ln 2pN

= rN

ln rN2pN

ln 2pN

= rN

(

ln rN

ln 2pN

+ 1

)

≥ rN .

Clearly, this expression diverges if rN → ∞. On the other hand if rN → 0 we

investigate the reciprocal of this expression in the same way. Therefore (11) can

never be satisfied. We have thus shown

Corollary 5 A rearrangement of

∞
∑

n=2

1

ln n

converges if and only if

lim
N→∞

pN

qN

= 1.

This last result has a slightly different interpretation in light of the prime number

theorem. Let π(x) denote the number of primes that are less than or equal to x,

then the prime-number theorem [1, p. 74] implies that a rearrangement of this series

converges if and only if

lim
N→∞

(π(2pN) − π(2qN))

is finite. Or in other words if AN is the number of primes in the interval [2qN , 2pn],

then the rearrangement converges if and only if limN→∞ AN is finite.
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4 A LIMIT COMPARISON THEOREM FOR RE-

ARRANGEMENTS

In the previous section we considered the convergence behavior of some special series.

This section is devoted to a more general convergence result. Similar to the rich

theory of the convergence of positive series, we will prove a comparison theorem.

This will allow us to study the convergence of rearrangements of series with more

complicated terms.

Theorem 2 Let
∞
∑

n=1

an(−1)n−1 and

∞
∑

n=1

bn(−1)n−1

be two conditionally convergent series, which satisfy the assumptions spelled out in

the introduction of this paper. Assume that there is a positive constant C such that.

lim
n→∞

an

bn

= C.

Then any rearrangement of
∞
∑

n=1

an(−1)n−1

will converge if and only if the corresponding rearrangement of

∞
∑

n=1

bn(−1)n−1

converges.

Proof: To facilitate the proof of this theorem we need to introduce some notation.

Consider a given rearrangement of the alternating series

∞
∑

n=1

an(−1)n−1

with associated sequence s pn and qn of positive and negative terms. Without loss

of generality we assume that pn > qn for sufficiently large n. Let

SN(a)

13



denote the N -th partial sum of this rearrangement, and

SN(b)

denote the N -th partial sum of the same rearrangement of

∞
∑

n=1

bn(−1)n−1.

Moreover, let TN(a) and TN(b) denote the partial sums of the corresponding alter-

nating series. Furthermore, let

α : [1,∞) → [0,∞) and β : [1,∞) → [0,∞)

be two continuous functions with anti derivatives A and B such that

α(n) = an and β(n) = bn.

Finally, let

B(x) =

∫ x

1

β(t) dt, and A(x) =

∫ x

1

α(t) dt

Let ε > 0 then there exists an N0 such that

bn(C − ε) < an < bn(C + ε)

for all n ≥ qN

2
+ 1. Let N ≥ N0, then

SN(a) = TqN
(a) +

pN
∑

n=qN+1

a2n−1

≤ TqN
(a) + (C + ε)

pN
∑

n=qN+1

b2n−1

Analogously, we get

SM(a) = TqM
(a) +

pM
∑

n=qM+1

a2n−1

≥ TqM
(a) + (C − ε)

pM
∑

n=qM+1

b2n−1
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for M ≥ N0. Subtracting the second inequality from the first we get

SN(a) − SM(a) ≤ TqN
(a) − TqM

(a) + C

pN
∑

n=qN+1

b2n−1 − C

pM
∑

n=qM+1

b2n−1

+ε

pN
∑

n=qN+1

b2n−1 + ε

pM
∑

n=qM+1

b2n−1

≤ TqN
(a) − TqM

(a) + C (TqM
(b) − TqN

(b))

+C (SN(b) − SM(b)) + ε

pN
∑

n=qN+1

b2n−1 + ε

pM
∑

n=qM+1

b2n−1

≤ |TqN
(a) − TqM

(a)| + C |TqM
(b) − TqN

(b)|

+C |SN(b) − SM(b)| + ε

pN
∑

n=qN+1

b2n−1 + ε

pM
∑

n=qM+1

b2n−1

In this step we used the decomposition of SN(b) into TqM
(b) and a positive remainder

term, and the fact that x ≤ |x|. On the right hand side of the last inequality we

may interchange M and N without changing the value of the right hand side. This

implies that the same inequality applies to

SM(a) − SN(a)

and therefore

|SN(a) − SM(a)| ≤ |TqN
(a) − TqM

(a)| + C |TqM
(b) − TqN

(b)|

+C |SN(b) − SM(b)| + ε

pN
∑

n=qN+1

b2n−1 + ε

pM
∑

n=qM+1

b2n−1

Next, from the proof of Theorem 1 we have that

pN
∑

n=qN+1

b2n−1 ≤
1

2

∫ 2pN

2qN

β(t) dt + b2qN+1 = B(2pN) − B(2qN) + b2qN+1.

Now assume that SN(b) converges, then by Theorem 1 B(2pN)−B(2qN) converges

to a finite number and hence there exists a K > 0 such that

B(2pN) − B(2qN) + b2qN+1 < K
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for all N . Next, since SN(b), TN(a), and TN(b) all converge, they are Cauchy

sequences and there exists a M0 such that

|TqN
(a) − TqM

(a)| < ε

|TqN
(b) − TqM

(b)| < ε

|SN(b) − SM(b)| < ε

Hence, for M,N ≥ max {N0,M0}

|SN(a) − SM(a)| < ε + 2Cε + 2Kε

and therefore it is a Cauchy sequence and it converges. The opposite direction is

proved completely analogously.

¤

We illuminate the use of Theorem 2 by an example. Consider the series

∞
∑

n=1

(−1)n

ln sin 1

n

The reader can easily verify that

an =
−1

ln sin 1

n

satisfies the conditions of both theorems. Now using l’Hospital’s rule we get

lim
x→∞

− ln sin 1

x

ln x
= 1.

Therefore, by Corollary 6, any rearrangement of this series converges if and only if

lim
n→∞

pn

qn

= 1.

Remarks:

1. To best of our knowledge, Theorem 2 is, at least in the form given, a new result,

albeit not very useful. A. Pringsheim [7] does a comparison of conditionally

convergent series with the alternating harmonic series, by comparing whether

lim
n→∞

nan
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is finite or not. This result follows from Theorem 2 by using the alternating

harmonic series as one of the two series used in Theorem 2.

2. The condition that

0 < lim
n→∞

an

bn

< ∞

is only a sufficient condition for rearrangements of the two series two converge

together. As we have seen in Corollaries 2 and 3 rearrangements of,

∞
∑

n=1

(−1)n−1

n
and

∞
∑

n=2

log n

n
(−1)n

converge together, but the condition of Theorem 2 is obviously not satisfied.

3. The entire paper only applies to series with eventually decreasing terms. There

are, however series which do not satisfy this property and which are still con-

ditionally convergent and subject to Riemann’s Theorem.
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