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Some interesting and unusual mathematical modeling problems and their solutions

Problem 1.

The graph of a certain function y = f(x) passes through the origin. If (x, y) is a point (6= (0, 0)) on the

graph in the first quadrant, then the graph divides the rectangle with vertices (0, 0), (x, 0), (x, y), and (0, y)

into two parts A and B so that the area of A is n times the area of B (n > 1, integer). Find f(x).
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Figure 1. Illustration to Problem 1.

From Figure 1 we have that area of A ∪ B is given by

(area of A ∪ B) = xy = xf(x) = (area of A) + (area of B) = n

x
∫

0

f(t) dt +

x
∫

0

f(t) dt = (n + 1)

x
∫

0

f(t) dt.

After differentiating both sides of the identity

xf(x) = (n + 1)

x
∫

0

f(t) dt,

we see that f(x) satisfies the differential equation

f(x) + xf ′(x) = (n + 1)f(x), =⇒ xf ′(x) − nf(x) = 0

The last equation is the first order linear differential equation that can be solved explicitly. Its solution is

f(x) = cxn.
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Remark 1. If one interchanges the roles of A and B in Figure 1, i.e., set the area of A ∪ B equal to

xf(x) =

x
∫

0

f(t) dt +
1

n

x
∫

0

f(t) dt,

then one gets the answer f(x) = cx1/n.

Problem 2.

The graph of a certain function y = f(x) passes through (3, 2). Let L(x, y) be the segment of the tangent

line to the graph at (x, y) in the first quadrant. Suppose that each point (x, y) on the graph is the midpoint

of L(x, y). Find f(x).
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Figure 2. Illustration to Problem 2.

From Figure 2 we see that the tangent line has the x-intercept equal to 2x0 and the y-intercept equal to 2y0

(since (x0, y0) is the midpoint of the line segment L(x0, y0)). Furthermore, the slope of the tangent line is

equal to −
2y0

2x0

= f ′(x0). This true at any point (x, y) on the graph of y = f(x). This also means that f(x)

satisfies the equation

y′ = −
y

x
, or equivalently xy′ + y = 0. (1)

The solution of (1) is y = c/x. Now, if (3, 2) is on the graph, then c = 6; thus f(x) = 6/x.
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Problem 3.

A large snowball is shaped into the form of a sphere. Starting at some time, which we can designate as

t = 0, the snowball begins to melt. We assume for the sake of discussion that the snowball melts in such a

manner that its shape remains spherical. Discuss the quantities that change with time as the snowball melts.

If possible, construct a mathematical model that describes the state of the snowball at any time.

The radius, volume, and surface are of the snowball change in time. As the snowball melts the volume

decreases. In other words, the process of melting can be interpreted as the rate of change of the volume of

the snowball in time.. Now, it seems reasonable to assume (WHY?) that the rate at which the snowball

melts is proportional to the surface area. That is, dV/dt = −kS, where k > 0 is a proportionality constant.

Now, V = 4πr3/3 and S = 4πr2, so

dV

dt
= 4πr2

dr

dt
= S

dr

dt
= −kS.

Thus, dr/dt = −k is the differential equation describing the above process of snowball melting.

Problem 4.

Ralph Palmer Agnew’s snowplow problem

(from the text Differential Equations by Ralph Palmer Agnew, McGraw-Hill Book Co.)

One day it started snowing at heavy and steady rate. A snowplow started out at noon, going 2 miles the

first hour and 1 mile the second hour. What time did it start snowing ?

We assume that the plow clears snow at a constant rate of k cubic miles per hour. Let t be the time in

hours after noon, x(t) the depths in miles of the snow at time t, and y(t) the distance the plow has moved

in t hours. The dy/dt is the velocity of the plow and the assumption (that plow clears snow at a constant

rate) gives

wx
dy

dt
= k,

where w is the width of the plow. Each side of this equation simply represents the volume of snow plowed

in one hour.

Now let t0 be the number of hours before noon when it started snowing and let s > 0 be the constant rate

in miles per hour at which x increases. It means that dx/dt = s and therefore, for t > −t0, x = s(t + t0).

(Note, that in our notation, t = 0 is the time the snoplow started working and t = −t0 is the time it started
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snowing.) The differential equation becomes

dy

dt
=

k

ws

1

t + t0
.

Integrating we obtain

y =
k

ws
[ln(t + t0) + c] ,

where c is a constant of integration. Now, when t = 0, y = 0 so c = − ln t0 and

y =
k

ws
ln

(

1 +
t

t0

)

.

Finally, from the fact that when t = 1, y = 2 and when t = 2, y = 3 (Do you know why?), we obtain

(

1 +
2

t0

)2

=

(

1 +
1

t0

)3

.

Expanding and simplifying gives t20 + t0 − 1 = 0. The solutions are t0 = −1±
√

5

2
. Since t0 > 0, we have

t0 = −1+
√

5

2
≈ 0.618 hours ≈ 37 minutes. Thus it started snowing at about 11 : 23 in the morning.

Nice problem, isn’t it !!!

Problem 5.

Suppose a hole is drilled through the center of the earth and a body of mass m is dropped into the hole.

Discuss the possible motion of the mass. Construct a mathematical model that discribes the motion.

Notation:

Let the distance from the center of the earth to the mass at any time t be denoted by r, let M denote the

mass of earth, let Mr denote the mass of that portion of the earth witin the sphere of radius r, and let δ

denote the constant density of the earth.

A possible motion for the mass is that it oscillates back and forth around the center of the earth. The

gravitational force on mass m is F = −kMrm/r2, where r > 0 and k is the gravitational constant. Since

Mr = 4πδr3/3 and M = 4πδR3/3, we have Mr = r3M/R3 and

F = −k
Mrm

r2
= −k

mM

R3
r.

Now from Newton’s second law, F = ma = d2r/dt2, thus we have

m
d2r

dt2
= −k

mM

R3
r or

d2r

dt2
= −k

M

R3
r.

Remark 2. We will see later on that the solution to this differential equations is a periodic function of t.


