Different types of reduced row-echelon forms for $n\times m$ matrices with $1\leq n,m\leq 3$

Math. 262, Spring 2024

Two $n \times m$ matrices in reduced row-echelon form are of the same type if they contain the same number of leading 1's in the same positions.

1×1 matrices [0], [1]. 1×2 matrices $\begin{bmatrix} 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & k \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \end{bmatrix}$, where k is an arbitrary constant. 2×1 matrices $\left[\begin{array}{c}0\\0\end{array}\right], \qquad \left[\begin{array}{c}1\\0\end{array}\right].$ 2×2 matrices $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & k \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \text{ where } k \text{ is an arbitrary constant}$ 1×3 matrices $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & a & b \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & c \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$,

where a, b, and c are arbitrary constants.

$\left[\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right],$	$\left[\begin{array}{rrrr} 1 & a & b \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right],$	$\left[\begin{array}{rrrr} 0 & 1 & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right],$	$\left[\begin{array}{rrrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right], \$	$\begin{bmatrix} 1 & 0 & d \\ 0 & 1 & e \\ 0 & 0 & 0 \end{bmatrix},$	$\left[\begin{array}{rrrr} 1 & f & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right],$	$\left[\begin{array}{rrrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right],$	$\left[\begin{array}{rrrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right],$
where a, b, c, d, e , and f are arbitrary constants.							

 3×3 matrices