Different types of reduced row-echelon forms for $\mathbf{n} \times \mathbf{m}$ matrices with $\mathbf{1} \leq \mathbf{n}, \mathbf{m} \leq 3$
Math. 262, Spring 2024
Two $n \times m$ matrices in reduced row-echelon form are of the same type if they contain the same number of leading 1 's in the same positions.

$$
\begin{gathered}
1 \times 1 \text { matrices } \\
{[0], \quad[1] .}
\end{gathered}
$$

1×2 matrices
$\left[\begin{array}{ll}0 & 0\end{array}\right], \quad\left[\begin{array}{ll}1 & k\end{array}\right], \quad\left[\begin{array}{ll}0 & 1\end{array}\right], \quad$ where k is an arbitrary constant.
2×1 matrices
$\left[\begin{array}{l}0 \\ 0\end{array}\right], \quad\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
2×2 matrices
$\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], \quad\left[\begin{array}{ll}1 & k \\ 0 & 0\end{array}\right], \quad\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \quad\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad$ where k is an arbitrary constant
1×3 matrices

$$
\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
1 & a & b
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & c
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
$$

where a, b, and c are arbitrary constants.
where a, b, c, d, e, and f are arbitrary constants.

$$
3 \times 3 \text { matrices }
$$

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & a & b \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & c \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & d \\
0 & 1 & e \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & f & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

where a, b, c, d, e, and f are arbitrary constants.

$$
\begin{aligned}
& 3 \times 1 \text { matrices } \\
& {\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] .} \\
& 3 \times 2 \text { matrices } \\
& {\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & k \\
0 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad \text { where } k \text { is an arbitrary constant. }} \\
& 2 \times 3 \text { matrices } \\
& {\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & a & b \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 1 & c \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad\left[\begin{array}{lll}
1 & 0 & d \\
0 & 1 & e
\end{array}\right],\left[\begin{array}{lll}
1 & f & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],}
\end{aligned}
$$

