
17.8 Divergence Theorem

Vector  fields  can represent  electric  or magnetic  fields,  air velocities  in hurricanes,  or blood  flow in an artery.  

These  and other  vector  phenomena  suggest  movement  of a “substance.”  A frequent  question  concerns  the 

amount  of a substance  that flows across  a surface—for  example,  the amount  of water  that passes  across  the 

membrane  of a cell per unit time.  Such flux calculations  may be done using flux integrals  as in Section  17.6.  The 

Divergence  Theorem  offers  an alternative  method.  In effect,  it says that instead  of integrating  the flow in and

out of a region  across  its boundary,  you may also add up all the sources  (or sinks)  of the flow throughout  the 

region.

Note  »

Circulation form of Green ’s Theorem ⟶ Stokes ’ Theorem

Flux form of Green ’s Theorem ⟶ Divergence Theorem

Divergence Theorem  »

The Divergence  Theorem  is the three-dimensional  version  of the flux form of Green’s  Theorem.  Recall  that if R 

is a region  in the xy-plane,  C  is the simple  closed  piecewise-smooth  oriented  boundary  of R, and F = 〈f , g 〉 is a 

vector  field,  Green’s  Theorem  says that 


C

F ·n d s

flux across C

=  
R

fx + gy 
divergence

d A.

The line integral  on the left gives the flux across  the boundary  of R. The double  integral  on the right 

measures  the net expansion  or contraction  of the vector  field within  R. If F represents  a fluid flow or the trans-

port of a material,  the theorem  says that the cumulative  effect  of the sources  (or sinks)  of the flow within  R 

equals  the net flow across  its boundary.

The Divergence  Theorem  is a direct  extension  of Green’s  Theorem.  The plane region  in Green’s  Theorem  

becomes  a solid region  D  in ℝ3, and the closed  curve  in Green’s  Theorem  becomes  the oriented  surface  S that 

encloses  D. The flux integral  in Green’s  Theorem  becomes  a surface  integral  over S, and the double  integral  in 

Green’s  Theorem  becomes  a triple  integral  over D  of the three-dimensional  divergence  (Figure  17.68 ).
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Figure 17.68

THEOREM  17.17 Divergence  Theorem

Let F be a vector  field whose  components  have continuous  first partial  derivatives  in a connected  

and simply  connected  region  D  enclosed  by a smooth  oriented  surface  S. Then 

 
S

F ·n d S =   
D

∇ ·F d V ,

where  n is the outward  unit normal  vector  on S.

The surface  integral  on the left gives the flux of the vector  field across  the boundary;  a positive  flux 

integral  means  there is a net flow of the field out of the region.  The triple  integral  on the right is the cumulative  

expansion  or contraction  of the field over the region  D. The proof  of a special  case of the theorem  is given later 

in this section.
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Quick Check 1   Interpret  the Divergence  Theorem  in the case that F = 〈a, b, c〉 is a constant  vector  field 

and D  is a ball.   ◆
Answer  »

If F is constant,  then div (F) = 0, so   
D

∇ ·F d V =  
S

F ·n d S = 0. This means  that all 

the "material"  that flows into one side of D  flows out of the other  side of D.

EXAMPLE  1 Verifying  the Divergence  Theorem

Consider  the radial  field F = 〈x, y , z〉 and let S be the sphere  x2 + y2 + z2 = a2 that encloses  the region  D. 

Assume  n is the outward  unit normal  vector  on the sphere.  Evaluate  both integrals  of the Divergence  Theorem.

SOLUTION   »

The divergence  of F is 

∇ ·F =
∂
∂x

(x) +
∂
∂y

(y) +
∂
∂z

(z) = 3.

Integrating  over D, we have 

  
D

∇ ·F d V =   
D

3 d V = 3×volume of D = 3 ·
4

3
π a3 = 4 π a3.

To evaluate  the surface  integral,  we parametrize  the sphere  (Section  17.6,  Table  17.3)  in the form 

r = 〈x, y , z〉 = 〈a sin u cos v, a sin u sin v, a cos u〉,

where  R = {(u, v) : 0 ≤ u ≤ π, 0 ≤ v ≤ 2 π} (u and v  are the spherical  coordinates  φ and θ , respectively).  The 

surface  integral  is 

 
S

F ·n d S =  
R

F · (tu ⨯ tv ) d A,

where  the required  vector  normal  to the surface  is 

tu ⨯ tv = a2 sin2 u cos v, a2 sin2 u sin v, a2 sin u cos u.
Substituting  for F = 〈x, y , z〉 and tu ⨯ tv , we find after simplifying  that F · (tu ⨯ tv ) = a3 sin u. Therefore,  the 

surface  integral  becomes  

 
S

F ·n d S =  
R

F · (tu ⨯ tv )

a3 sin u

d A

= 
0

2 π
0

π
a3 sin u d u d v Substitute for F and tu ⨯ tv .

= 4 π a3. Evaluate integrals .

The two integrals  of the Divergence  Theorem  are equal.

Note  »

Section 17.8  Divergence Theorem 3

Copyright © 2019 Pearson Education, Inc.



See  Exercise  32 for  an alternative  evaluation  of the  surface  integral.

Related  Exercise  9  ◆
EXAMPLE  2 Divergence  Theorem  with a rotation  field

Consider  the rotation  field 

F = a ⨯ r = 〈1, 0, 1〉 ⨯ 〈x, y , z〉 = 〈-y , x - z, y〉.

Let S be the hemisphere  x2 + y2 + z2 = a2, for z ≥ 0, together  with its base in the xy-plane.  Find the net outward  

flux across  S.

SOLUTION   »

To find the flux using surface  integrals,  two surfaces  must  be considered  (the hemisphere  and its base).  The 

Divergence  Theorem  gives a simpler  solution.  Note that

∇ ·F =
∂
∂x

(-y) +
∂
∂y

(x - z) +
∂
∂z

(y) = 0.

We see that the flux across  the hemisphere  is zero.

Related  Exercise  13  ◆
With Stokes’  Theorem,  rotation  fields  are noteworthy  because  they have a nonzero  curl.  With the Diver-

gence Theorem,  the situation  is reversed.  As suggested  by Example  2, pure rotation  fields  of the form F = a ⨯ r 

have zero divergence  (Exercise  16). However,  with the Divergence  Theorem,  radial  fields  are interesting  and 

have many  physical  applications.

EXAMPLE  3 Computing  flux with the Divergence  Theorem

Find the net outward  flux of the field F = x y z 〈1, 1, 1〉 across  the boundaries  of the cube 

D = {(x, y , z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.

SOLUTION   »

Computing  a surface  integral  involves  the six faces of the cube.  The Divergence  Theorem  gives the outward  flux 

with a single  integral  over D. The divergence  of the field is 

∇ ·F =
∂
∂x

(x y z) +
∂
∂y

(x y z) +
∂
∂z

(x y z) = y z + x z + x y .

The integral  over D  is a standard  triple  integral:

  
D

∇ ·F d V =   
D

(y z + x z + x y) d V

= 
0

1
0

1
0

1

(y z + x z + x y) d x d y d z Convert to a triple integral .

=
3

4
. Evaluate integrals .

On three faces of the cube (those  that lie in the coordinate  planes),  we see that 

F(0, y , z) = F(x, 0, z) = F(x, y , 0) = 0, so there is no contribution  to the flux on these faces (Figure  17.69 ). On 
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the other  three faces,  the vector  field has components  out of the cube.  Therefore,  the net outward  flux is posi-

tive, as calculated.  

show F on D

Figure 17.69

Related  Exercises  18–19  ◆
Quick Check 2   In Example  3, does the vector  field have negative  components  anywhere  in the cube D? 

Is the divergence  negative  anywhere  in D?  ◆
Answer  »

The vector  field and the divergence  are positive  throughout  D.

Interpretation  of the Divergence  Using Mass Transport

Suppose  v is the velocity  field of a material,  such as water  or molasses,  and ρ is its constant  density.  The vector  

field F = ρ v = 〈f , g , h〉 describes  the mass transport  of the material,  with units  of 

(mass /vol)×(length / time) = mass / (area · time); typical  units  of mass transport  are gm2 s. This means  that F 

gives the mass of material  flowing  past a point  (in each of the three coordinate  directions)  per unit of surface  

area per unit of time.  When  F is multiplied  by an area,  the result  is the flux, with units  of mass /unit time.

Note  »

The  mass  transport  is also  called  the  flux  density ; when  multiplied  by an area,  it 

gives  the  flux.  We  use  the  convention  that  flux  has  units  of mass  per  unit  time.

Now consider  a small  cube located  in the vector  field with its faces  parallel  to the coordinate  planes.  One 

vertex  is located  at (0, 0, 0), the opposite  vertex  is at (Δx, Δy , Δz), and (x, y , z) is an arbitrary  point  in the cube 

(Figure  17.70 ). The goal is to compute  the approximate  flux of material  across  the faces of the cube.  We begin  
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with the flux across  the two parallel  faces  x = 0 and x = Δx.

Figure 17.70

The outward  unit vectors  normal  to the faces  x = 0 and x = Δx  are n1 = 〈-1, 0, 0〉 and n2 = 〈1, 0, 0〉, 

respectively.  Each face has area Δy Δz, so the approximate  net flux across  these faces is 

F(Δx, y , z)

x = Δx face

· n2

〈1,0,0〉
Δy Δz + F(0, y , z)

x = 0 face

· n1

〈-1,0,0〉
Δy Δz = (f (Δx, y , z) - f (0, y , z)) Δy Δz.

Note  »

Check  the  units:  if F has  units  of mass / (area · time ), then  the  flux  has  units  of 

mass / time  (n has  no  units).

Note that if f (Δx, y , z) > f (0, y , z), the net flux across  these two faces of the cube is positive,  which  means  the 

net flow is out of the cube.  Letting  ΔV = Δx Δy Δz  be the volume  of the cube,  we rewrite  the net flux as 

(f (Δx, y , z) - f (0, y , z)) Δy Δz =
f (Δx, y , z) - f (0, y , z)

Δx
Δx Δy Δz Multiply by

Δx

Δx
.

=
f (Δx, y , z) - f (0, y , z)

Δx
ΔV . ΔV = Δx Δy Δz

A similar  argument  can be applied  to the other  two pairs  of faces.  The approximate  net flux across  the faces 

y = 0 and y = Δy  is 

g (x, Δy , z) - g (x, 0, z)

Δy
ΔV ,

and the approximate  net flux across  the faces  z = 0 and z = Δz  is 

h(x, y , Δz) - h(x, y , 0)

Δz
ΔV .

Adding  these three individual  fluxes  gives the approximate  net flux out of the cube:  
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net flux out of cube ≈ f (Δx, y , z) - f (0, y , z)

Δx

≈ ∂ f

∂x
(0,0,0)

+
g (x, Δy , z) - g (x, 0, z)

Δy

≈ ∂g

∂y
(0,0,0)

+
h(x, y , Δz) - h(x, y , 0)

Δz

≈ ∂h

∂z
(0,0,0)

ΔV

≈ ∂ f

∂x
+

∂g

∂y
+

∂h

∂z (0,0,0)

ΔV

= (∇ ·F) (0, 0, 0) ΔV .

Notice  how the three quotients  approximate  partial  derivatives  when Δx, Δy , and Δz  are small.  A similar  

argument  may be made  at any point  in the region.

Taking  one more step,  we show informally  how the Divergence  Theorem  arises.  Suppose  the small  cube 

we just analyzed  is one of many  small  cubes  of volume  ΔV  that fill a region  D. We label  the cubes  k = 1, …, n 

and apply  the preceding  argument  to each cube,  letting  (∇ ·F)k  be the divergence  evaluated  at a point  in the kth 

cube.  Adding  the individual  contributions  to the net flux from each cube,  we obtain  the approximate  net flux 

across  the boundary  of D:

net flux out of D ≈ 
k=1

n

(∇ ·F)k ΔV .

Note  »

In making  this  argument,  notice  that  for  two  adjacent  cubes  the  flux  into  one

cube  equals  the  flux  out  of the  other  cube  across  the  common  face.  Thus,  there  

is a cancellation  of fluxes  throughout  the  interior  of D .

Letting  the volume  of the cubes  ΔV  approach  0 and letting  the number  of cubes  n increase,  we obtain  an 

integral  over D:

net flux out of D = lim
n→∞ 

k=1

n

(∇ ·F)k ΔV =   
D

∇ ·F d V .

The net flux across  the boundary  of D  is also given by  
S

F ·n d S. Equating  the surface  integral  and the 

volume  integral  gives the Divergence  Theorem.  Now we look at a formal  proof.

Quick Check 3   Draw the unit cube D = {(x, y , z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1} and sketch  the vector  

field F = 〈x, -y , 2 z〉 on the six faces  of the cube.  Compute  and interpret  div F.  ◆
Answer  »

The vector  field has no flow into or out of the cube on the faces x = 0, y = 0, and z = 0 because  

the vectors  of F on these faces are parallel  to the faces.  The vector  field points  out of the cube 
on the x = 1 and z = 1 faces and into the cube on the y = 1 face.  div (F) = 2, so there is a net 

flow out of the cube.

Proof of the Divergence Theorem  »

We prove  the Divergence  Theorem  under  special  conditions  on the region  D. Let R be the projection  of D  in the 

xy-plane  (Figure  17.71 ); that is 

Section 17.8  Divergence Theorem 7

Copyright © 2019 Pearson Education, Inc.



R = {(x, y) : (x, y , z) is in D}.

Assume  the boundary  of D  is S and let n be the unit vector  normal  to S that points  outward.

Figure 17.71

Letting  F = 〈f , g , h〉 = f i + g j + h k, the surface  integral  in the Divergence  Theorem  is 

 
S

F ·n d S =  
S

(f i + g j + h k) ·n d S

=  
S

f i ·n d S +  
S

g j ·n d S +  
S

h k ·n d S.

The volume  integral  in the Divergence  Theorem  is 

  
D

∇ ·F d V =   
D

∂ f

∂x
+

∂g

∂y
+

∂h

∂z
d V .

Matching  terms  of the surface  and volume  integrals,  the theorem  is proved  by showing  that 

 
S

f i ·n d S =   
D

∂ f

∂x
d V ,

 
S

g j ·n d S =   
D

∂g

∂y
d V , and

 
S

h k ·n d S =   
D

∂h

∂z
d V .

(1)

(2)

(3)

We work on equation  (3) assuming  special  properties  for D. Suppose  D  is bounded  by two surfaces  

S1; z = p(x, y) and S2 : z = q(x, y), where  p(x, y) ≤ q(x, y) on R (Figure  17.71).  The Fundamental  Theorem  of 

Calculus  is used in the triple  integral  to show that 
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D

∂h

∂z
d V =  

R


p(x ,y )

q(x ,y ) ∂h

∂z
d z d x d y

=  
R

(h(x, y , q(x, y)) - h(x, y , p(x, y))) d x d y . Evaluate inner integral .

Now let’s turn to the surface  integral  in equation  (3),  
S

h k ·n d S, and note that S consists  of three 

pieces:  the lower  surface  S1, the upper  surface  S2, and the vertical  sides S3 of the surface  (if they exist).  The 

normal  to S3 is everywhere  orthogonal  to k, so k ·n = 0 and the S3 integral  makes  no contribution.  What  remains  

is to compute  the surface  integrals  over S1 and S2.

The required  outward  normal  to S2 (which  is the graph  of z = q(x, y)) is -qx , -qy , 1. The outward  

normal  to S1 (which  is the graph  of z = p(x, y)) points  downward, so it is given by px , py , -1. The surface  

integral  of (3) becomes  

 
S

h k ·n d S =  
S2

h(x, y , z) k ·n d S +  
S1

h(x, y , z) k ·n d S

=  
R

h(x, y , q(x, y)) k ·-qx , -qy , 1
1

d x d y

+ 
R

h(x, y , p(x, y)) k ·px , py , -1
-1

d x d y

=  
R

h(x, y , q(x, y)) d x d y -  
R

h(x, y , p(x, y)) d x d y . Simplify .

Observe  that both the volume  integral  and the surface  integral  of (3) reduce  to the same integral  over R. There -

fore,  
S

h k ·n d S =   
D

∂h

∂z
d V .

Equations  (1) and (2) are handled  in a similar  way.

 To prove  (1), we make the special  assumption  that D  is also bounded  by two surfaces,  S1 : x = s(y , z) and 

S2 : x = t (y , z), where  s(x, y) ≤ t (x, y).

 To prove  (2), we assume  that D  is bounded  by two surfaces,  S1 : y = u(x, z) and S2 : y = v(x, z), where  

u(x, y) ≤ v(x, y).

When combined,  equations  (1), (2), and (3) yield the Divergence  Theorem.   ◆

Divergence Theorem for Hollow Regions  »

The Divergence  Theorem  may be extended  to more general  solid regions.  Here we consider  the important  case

of hollow  regions.  Suppose  D  is a region  consisting  of all points  inside  a closed  oriented  surface  S2 and outside  a 

closed  oriented  surface  S1, where  S1 lies within  S2 (Figure  17.72 ). Therefore,  the boundary  of D  consists  of S1 

and S2. (Note  that D  is simply  connected.)

Section 17.8  Divergence Theorem 9

Copyright © 2019 Pearson Education, Inc.



Figure 17.72

We let n1 and n2 be the outward  unit normal  vectors  for S1 and S2, respectively.  Note that n1 points  into 

D, so the outward  normal  to S on S1 is -n1. With this observation,  the Divergence  Theorem  takes the following  

form.

THEOREM  17.18 Divergence  Theorem  for Hollow  Regions

Suppose  the vector  field F satisfies  the conditions  of the Divergence  Theorem  on a region  D  

bounded  by two smooth  oriented  surfaces  S1 and S2, where  S1 lies within  S2. Let S be the entire  

boundary  of D  (S = S1 ⋃ S2) and let n1 and n2 be the outward  unit normal  vectors  for S1 and S2, 

respectively.  Then 

  
D

∇ ·F d V =  
S

F ·n d S =  
S2

F ·n2 d S -  
S1

F ·n1 d S.

Note  »

It’s  important  to point  out  again  that  n1 is the  unit  normal  that  we  would  use  

for  S1 alone,  independent  of S . It is the  outward  unit  normal  to S1, but  it points  

into  D .

This form of the Divergence  Theorem  is applicable  to vector  fields  that are not differentiable  at the origin,  

as is the case with some important  radial  vector  fields.

EXAMPLE  4 Flux for an inverse  square  field

Consider  the inverse  square  vector  field 

F =
r

r3 =
〈x, y , z〉

x2 + y2 + z23/2
.

a. Find the net outward  flux of F across  the surface  of the region  D = (x, y , z) : a2 ≤ x2 + y2 + z2 ≤ b2 that 

lies between  concentric  spheres  with radii  a and b.

b. Find the outward  flux of F across  any sphere  that encloses  the origin.
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Note  »

Recall  that  an inverse  square  force  is proportional  to 
1

r2  multiplied  by a unit  

vector  in the  radial  direction,  which  is 
r

r . Combining  these  two  factors  gives  

F =
r

r3 .

SOLUTION   »

a. Although  the vector  field is undefined  at the origin,  it is defined  and differentiable  in D, which  excludes  

the origin.  In Section  17.5 (Exercise  73) it was shown  that the divergence  of the radial  field F =
r

rp  with p = 3 is 

0. We let S be the union  of S2, the larger  sphere  of radius  b, and S1, the smaller  sphere  of radius  a. Because  

  
D

∇ ·F d V = 0, the Divergence  Theorem  implies  that 

 
S

F ·n d S =  
S2

F ·n2 d S -  
S1

F ·n1 d S = 0.

Therefore,  the net flux across  S is zero.

b. Part (a) implies  that 

 
S2

F ·n2 d S

out of D

=  
S1

F ·n1 d S

into D

.

We see that the flux out of D  across  S2 equals  the flux into D  across  S1. To find that flux,  we evaluate  the surface  

integral  over S1 on which  r = a. (Because  the fluxes  are equal,  S2 could  also be used.)

The easiest  way to evaluate  the surface  integral  is to note that on the sphere  S1, the unit outward  normal  

vector  is n1 =
r

r . Therefore,  the surface  integral  is 

 
S1

F ·n1 d S =  
S1

r

r3 ·
r

r d S Substitute for F and n1.

=  
S1

r2
r4 d S r ·r = r2

=  
S1

1

a2
d S r = a

=
4 π a2

a2
Surface area = 4 π a2

= 4 π.

The same result  is obtained  using S2 or any smooth  surface  enclosing  the origin.  The flux of the inverse  square  
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field across  any surface  enclosing  the origin  is 4 π. As shown  in Exercise  46, among  radial  fields,  this property  is 

held only by the inverse  square  field (p = 3).

Related  Exercises  26–27  ◆
Gauss’ Law  »

Applying  the Divergence  Theorem  to electric  fields  leads to one of the fundamental  laws of physics.  The electric  

field due to a point  charge  Q located  at the origin  is given by the inverse  square  law, 

E(x, y , z) =
Q

4 π ϵ0

r

r3 ,

where r = 〈x, y , z〉 and ϵ0 is a physical  constant  called  the permittivity  of free space .

According  to the calculation  of Example  4, the flux of the field 
r

r3  across  any surface  that encloses  the 

origin  is 4 π. Therefore,  the flux of the electric  field across  any surface  enclosing  the origin  is 
Q

4 π ϵ0

·4 π =
Q

ϵ0

 

(Figure  17.73a ). This is one statement  of Gauss’  Law: If S is a surface  that encloses  a point  charge  Q, then the 

flux of the electric  field across  S is 

 
S

E ·n d S =
Q

ϵ0

.

Figure 17.73

In fact,  Gauss’  Law applies  to more general  charge  distributions  (Exercise  39). If q(x, y , z) is a charge  density  

(charge  per unit volume)  defined  on a region  D  enclosed  by S, then the total  charge  within  D  is 
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Q =   
D

q(x, y , z) d V  (Figure  17.73b ). Replacing  Q with this triple  integral,  Gauss’  Law takes the form 

 
S

E ·n d S =
1

ϵ0

  
D

q(x, y , z) d V

Q

.

Gauss’  Law applies  to other  inverse  square  fields.  In a slightly  different  form,  it also governs  heat transfer.  

If T  is the temperature  distribution  in a solid body D, then the heat flow vector  field is F = -k ∇T . (Heat  flows 

down the temperature  gradient.)  If q(x, y , z) represents  the sources  of heat within  D, Gauss’  Law says 

 
S

F ·n d S = -k  
S

∇T ·n d S =   
D

q(x, y , z) d V .

We see that,  in general,  the flux of material  (fluid,  heat,  electric  field lines)  across  the boundary  of a region  is the 

cumulative  effect  of the sources  within  the region.

A Final Perspective  »

Table 17.4 offers  a look at the progression  of fundamental  theorems  of calculus  that have appeared  throughout  

this text.  Each theorem  builds  on its predecessors,  extending  the same basic  idea to a different  situation  or to 

higher  dimensions.

In all cases,  the statement  is effectively  the same:  The cumulative  (integrated)  effect  of the derivatives of a 

function  throughout  a region  is determined  by the values  of the function  on the boundary  of that region.  This 

principle  underlies  much  of our understanding  of the world  around  us.

Section 17.8  Divergence Theorem 13

Copyright © 2019 Pearson Education, Inc.



Table 17.4

Fundamental

Theorem of Calculus


a

b

f ' (x) d x = f (b) - f (a)

Fundamental Theorem

for Line Integrals


C

∇ f ·d r = f (B) - f (A)

Green ’s Theorem

(Circulation form)

 
R

gx - fy  d A = 
C

f d x + g d y

Stokes ’ Theorem  
S

(∇ ⨯ F) ·n d S = 
C

F ·d r

Divergence Theorem   
D

∇ ·F d V =  
S

F ·n d S

Exercises  »

Getting  Started   »

Practice  Exercises   »

9–12. Verifying  the Divergence  Theorem   Evaluate  both integrals  of the Divergence  Theorem  for the 

following  vector  fields  and regions.  Check  for agreement.

9. F = 〈2 x, 3 y , 4 z〉; D = (x, y , z) : x2 + y2 + z2 ≤ 4
10. F = 〈-x, -y , -z〉; D = {(x, y , z) : x ≤ 1, y  ≤ 1, z ≤ 1}

11. F = 〈z - y , x, -x〉; D = (x, y , z) :
x2

4
+

y2

8
+

z2

12
≤ 1

12. F = x2, y2, z2; D = {(x, y , z) : x ≤ 1, y  ≤ 2, z ≤ 3}
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13–16. Rotation  fields

13. Find the net outward  flux of the field F = 〈2 z - y , x, -2 x〉 across  the sphere  of radius  1 centered  at 

the origin.

14. Find the net outward  flux of the field F = 〈z - y , x - z, y - x〉 across  the boundary  of the cube 

{(x, y , z) : x ≤ 1, y  ≤ 1, z ≤ 1}.

15. Find the net outward  flux of the field F = 〈b z - c y , c x - a z, a y - b x〉 across  any smooth  closed  

surface  in ℝ3, where  a, b, and c  are constants.

16. Find the net outward  flux of F = a ⨯ r across  any smooth  closed  surface  in ℝ3, where  a is a constant  

nonzero  vector  and r = 〈x, y , z〉.

17–24. Computing  flux   Use the Divergence  Theorem  to compute  the net outward  flux of the following  

fields across  the given surface  S.

17. F = 〈x, -2 y , 3 z〉; S is the sphere  (x, y , z) : x2 + y2 + z2 = 6. 
18. F = x2, 2 x z, y2; S is the surface  of the cube cut from the first octant  by the planes  x = 1, y = 1, and 

z = 1.

19. F = 〈x, 2 y , z〉; S is the boundary  of the tetrahedron  in the first octant  formed  by the plane 

x + y + z = 1.

20. F = x2, y2, z2; S is the sphere  (x, y , z) : x2 + y2 + z2 = 25.
21. F = y - 2 x, x3 - y , y2 - z; S is the sphere  (x, y , z) : x2 + y2 + z2 = 4.
22. F = 〈y + z, x + z, x + y〉; S consists  of the faces of the cube {(x, y , z) : x ≤ 1, y  ≤ 1, z ≤ 1}.

23. F = 〈x, y , z〉; S is the surface  of the paraboloid  z = 4 - x2 - y2, for z ≥ 0, plus its base in the xy-plane.

24. F = 〈x, y , z〉; S is the surface  of the cone z2 = x2 + y2, for 0 ≤ z ≤ 4, plus its top surface  in the plane  

z = 4.

25–30. Divergence  Theorem  for more  general  regions   Use the Divergence  Theorem  to compute  the net 

outward  flux of the following  vector  fields  across  the boundary  of the given regions  D.

25. F = 〈z - x, x - y , 2 y - z〉; D  is the region  between  the spheres  of radius  2 and 4 centered  at the 

origin.

26. F = r r = 〈x, y , z〉 x2 + y2 + z2 ; D  is the region  between  the spheres  of radius  1 and 2 centered  at 

the origin.

27. F =
r

r =
〈x, y , z〉

x2 + y2 + z2
; D  is the region  between  the spheres  of radius  1 and 2 centered  at the 

origin.

28. F = 〈z - y , x - z, 2 y - x〉; D  is the region  between  two cubes:  

{(x, y , z) : 1 ≤ x ≤ 3, 1 ≤ y  ≤ 3, 1 ≤ z ≤ 3}.
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29. F = x2, -y2, z2; D  is the region  in the first octant  between  the planes  z = 4 - x - y  and z = 2 - x - y .

30. F = 〈x, 2 y , 3 z〉; D  is the region  between  the cylinders  x2 + y2 = 1 and x2 + y2 = 4, for 0 ≤ z ≤ 8.

31. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a. If ∇ ·F = 0 at all points  of a region  D, then F ·n = 0 at all points  of the boundary  of D.

b. If  
S

F ·n d S = 0 on all closed  surfaces  in ℝ3, then F is constant.

c. If F < 1, then   
D

∇ ·F d V  is less than the area of the surface  of D.

32. Flux across  a sphere   Consider  the radial  field F = 〈x, y , z〉 and let S be the sphere  of radius  a 

centered  at the origin.  Compute  the outward  flux of F across  S using  the representation  

z = ± a2 - x2 - y2  for the sphere  (either  symmetry  or two surfaces  must  be used).

33–35. Flux integrals   Compute  the outward  flux of the following  vector  fields  across  the given surfaces  S. 

You should  decide  which  integral  of the Divergence  Theorem  to use.

33. F = x2 ey cos z, -4 x ey cos z, 2 x ey sin z; S is the boundary  of the ellipsoid  
x2

4
+ y2 + z2 = 1.

34. F = 〈-y z, x z, 1〉; S is the boundary  of the ellipsoid  
x2

4
+

y2

4
+ z2 = 1.

35. F = 〈x sin y , -cos y , z sin y〉; S is the boundary  of the region  bounded  by the planes  x = 1, y = 0, 

y =
π
2

, z = 0, and z = x.

36. Radial  fields   Consider  the radial  vector  field F =
r

rp =
〈x, y , z〉

x2 + y2 + z2p/2
. Let S be the sphere  of 

radius  a centered  at the origin.

a. Use a surface  integral  to show that the outward  flux of F across  S is 4 π a3-p . Recall  that the unit 

normal  to the sphere  is 
r

r .

b. For what values  of p does F satisfy  the conditions  of the Divergence  Theorem?  For these values  

of p, use the fact (Theorem  17.10)  that ∇ ·F =
3 - p

rp  to compute  the flux across  S using the 

Divergence  Theorem.

37. Singular  radial  field   Consider  the radial  field F =
r

r =
〈x, y , z〉

x2 + y2 + z21/2
.

a. Evaluate  a surface  integral  to show that  
S

F ·n d S = 4 π a2, where  S is the surface  of a sphere  

of radius  a centered  at the origin.
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b. Note that the first partial  derivatives  of the components  of F are undefined  at the origin,  so the 

Divergence  Theorem  does not apply  directly.  Nevertheless,  the flux across  the sphere  as 

computed  in part (a) is finite.  Evaluate  the triple  integral  of the Divergence  Theorem  as an

improper  integral  as follows.  Integrate  div F over the region  between  two spheres  of radius  a and 

0 < ϵ < a. Then let ϵ → 0+  to obtain  the flux computed  in part (a).

38. Logarithmic  potential   Consider  the potential  function  φ(x, y , z) =
1

2
ln x2 + y2 + z2 = ln r, where  

r = 〈x, y , z〉.

a. Show that the gradient  field associated  with φ is F =
r

r2 =
〈x, y , z〉

x2 + y2 + z2
.

b. Show that  
S

F ·n d S = 4 π a, where  S is the surface  of a sphere  of radius  a centered  at the 

origin.

c. Compute  div F.

d. Note that F is undefined  at the origin,  so the Divergence  Theorem  does not apply  directly.  

Evaluate  the volume  integral  as described  in Exercise  37.

39. Gauss’  Law for electric  fields   The electric  field due to a point  charge  Q is E =
Q

4 π ϵ0

r

r3 , where  

r = 〈x, y , z〉, and ϵ0 is a constant.

a. Show that the flux of the field across  a sphere  of radius  a centered  at the origin  is 

 
S

E ·n d S =
Q

ϵ0

.

b. Let S be the boundary  of the region  between  two spheres  centered  at the origin  of radius  a and 

b, respectively,  with a < b. Use the Divergence  Theorem  to show that the net outward  flux across  

S is zero.

c. Suppose  there is a distribution  of charge  within  a region  D. Let q(x, y , z) be the charge  density  

(charge  per unit volume).  Interpret  the statement  that 

 
S

E ·n d S =
1

ϵ0

  
D

q(x, y , z) d V .

d. Assuming  E satisfies  the conditions  of the Divergence  Theorem  on D, conclude  from part (c) 

that ∇ ·E =
q

ϵ0

.

e. Because  the electric  force is conservative,  it has a potential  function  φ. From part (d), conclude  

that ∇2 φ = ∇ ·∇φ =
q

ϵ0

.

40. Gauss’  Law for gravitation   The gravitational  force due to a point  mass M  at the origin  is 

proportional  to F =
G M r

r3 , where  r = 〈x, y , z〉 and G  is the gravitational  constant.

a. Show that the flux of the force field across  a sphere  of radius  a centered  at the origin  is 

 
S

F ·n d S = 4 π G M .
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b. Let S be the boundary  of the region  between  two spheres  centered  at the origin  of radius  a and 

b, respectively,  with a < b. Use the Divergence  Theorem  to show that the net outward  flux across  

S is zero.

c. Suppose  there is a distribution  of mass within  a region  D. Let ρ(x, y , z) be the mass density  

(mass  per unit volume).  Interpret  the statement  that 

 
S

F ·n d S = 4 π G   
D

ρ(x, y , z) d V .

d. Assuming  F satisfies  the conditions  of the Divergence  Theorem  on D, conclude  from part (c) 

that ∇ ·F = 4 π G ρ.

e. Because  the gravitational  force is conservative,  it has a potential  function  φ. From part (d), 

conclude  that ∇2 φ = 4 π G ρ.

41–45. Heat  transfer   Fourier’s  Law of heat transfer  (or heat conduction)  states  that the heat flow vector  F 

at a point  is proportional  to the negative  gradient  of the temperature;  that is, F = -k ∇T , which  means  

that heat energy  flows from hot regions  to cold regions.  The constant  k > 0 is called  the conductivity,  which  

has metric  units  of J/(m-s-K).  A temperature  function  for a region  D is given.  Find the net outward  heat 

flux  
S

F ·n d S = -k  
S

∇T ·n d S across  the boundary  S of D. In some cases,  it may be easier  to use 

the Divergence  Theorem  and evaluate  a triple  integral.  Assume  k = 1.

41. T (x, y , z) = 100 + x + 2 y + z; D = {(x, y , z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

42. T (x, y , z) = 100 + x2 + y2 + z2; D = {(x, y , z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

43. T (x, y , z) = 100 + e-z ; D = {(x, y , z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}

44. T (x, y , z) = 100 + x2 + y2 + z2; D  is the unit sphere  centered  at the origin.

T 45. T (x, y , z) = 100 e-x2-y 2-z2

; D  is the sphere  of radius  a centered  at the origin.

Explorations  and Challenges   »

46. Inverse  square  fields  are special   Let F be a radial  field F =
r

rp , where  p is a real number  and 

r = 〈x, y , z〉. With p = 3, F is an inverse  square  field.

a. Show that the net flux across  a sphere  centered  at the origin  is independent  of the radius  of the 

sphere  only for p = 3.

b. Explain  the observation  in part (a) by finding  the flux of F =
r

rp  across  the boundaries  of a 

spherical  box {(ρ, φ, θ) : a ≤ ρ ≤ b, φ1 ≤ φ ≤ φ2, θ1 ≤ θ ≤ θ2} for various  values  of p.

47. A beautiful  flux integral   Consider  the potential  function  φ(x, y , z) = G(ρ), where  G  is any twice  

differentiable  function  and ρ = x2 + y2 + z2 ; therefore,  G  depends  only on the distance  from the 

origin.

a. Show that the gradient  vector  field associated  with φ is F = ∇φ = G ' (ρ) r

ρ , where  r = 〈x, y , z〉 

and ρ = r.
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b. Let S be the sphere  of radius  a centered  at the origin  and let D  be the region  enclosed  by S. Show 

that the flux of F across  S is  
S

F ·n d S = 4 π a2 G ' (a).

c. Show that ∇ ·F = ∇ ·∇φ =
2 G ' (ρ)

ρ + G '' (ρ).
d. Use part (c) to show that the flux across S (as given in part (b)) is also obtained  by the volume

integral    
D

∇ ·F d V . (Hint: use spherical  coordinates  and integrate  by parts.)

48. Integration  by parts  (Gauss’  formula)   Recall  the Product  Rule of Theorem  17.13:  

∇ · (u F) = ∇u ·F + u (∇ ·F).

a. Integrate  both sides of this identity  over a solid region  D  with a closed  boundary  S and use the 

Divergence  Theorem  to prove  an integration  by parts  rule:  

  
D

u (∇ ·F) d V =  
S

u F ·n d S -   
D

∇u ·F d V .

b. Explain  the correspondence  between  this rule and the integration  by parts  rule for single-

variable  functions.

c. Use integration  by parts  to evaluate    
D

x2 y + y2 z + z2 x d V , where  D  is the cube in the 

first octant  cut by the planes  x = 1, y = 1, and z = 1.

49. Green’s  Formula   Write  Gauss’  Formula  of Exercise  48 in two dimensions—that  is, where  F = 〈f , g 〉, 

D  is a plane  region  R and C  is the boundary  of R. Show that the result  is Green’s  Formula:  

 
R

u fx + gy  d A = 
C

u (F ·n) d s -  
R

f ux + g uy  d A.

 Show that with u = 1, one form of Green’s  Theorem  appears.  Which  form of Green’s  Theorem  is it?

50. Green’s  First  Identity   Prove  Green’s  First  Identity  for twice  differentiable  scalar-valued  functions  u 

and v  defined  on a region  D: 

  
D

u ∇2 v + ∇u ·∇v d V =  
S

u ∇v ·n d S,

 where  ∇2 v = ∇ ·∇v. You may apply  Gauss’  Formula  in Exercise  48 to F = ∇v  or apply  the 

Divergence  Theorem  to F = u ∇v.

51. Green’s  Second  Identity   Prove  Green’s  Second  Identity  for scalar-valued  functions  u and v  defined  

on a region  D: 

  
D

u ∇2 v - v ∇2 u d V =  
S

(u ∇v - v ∇u) ·n d S.

 (Hint: Reverse  the roles of u and v  in Green’s  First  Identity.)

52–54. Harmonic  functions   A scalar-valued  function  φ is harmonic  on a region  D if ∇2 φ = ∇ ·∇φ = 0 at 

all points  of D.

52. Show that the potential  function  φ(x, y , z) = r-p  is harmonic  provided  p = 0 or p = 1, where  

r = 〈x, y , z〉. To what vector  fields  do these potentials  correspond?
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53. Show that if φ is harmonic  on a region  D  enclosed  by a surface  S, then  
S

∇φ ·n d S = 0.

54. Show that if u is harmonic  on a region  D  enclosed  by a surface  S, then 

 
S

u ∇u ·n d S =   
D

∇u2 d V .

55. Miscellaneous  integral  identities   Prove  the following  identities.

a.   
D

∇ ⨯ F d V =  
S

(n ⨯ F) d S (Hint: Apply  the Divergence  Theorem  to each component  of 

the identity.)

b.  
S

(n ⨯ ∇φ) d S = 
C

φ d r (Hint: Apply  Stokes’  Theorem  to each component  of the identity.)
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