
17.7 Stokes’ Theorem

With the divergence,  the curl,  and surface  integrals  in hand,  we are ready to present  two of the crowning  results  

of calculus.  Fortunately,  all of the heavy  lifting  has been done.  In this section,  you will see Stokes’  Theorem,  and 

in the next section  we present  the Divergence  Theorem.

Note  »

Born  in Ireland,  George  Gabriel  Stokes  (1819–1903)  led  a long  and  

distinguished  life  as one  of the  prominent  mathematicians  and  physicists  of his  

day.  He  entered  Cambridge  University  as a student  and  remained  there  as a 

professor  for  most  of his  life,  taking  the  Lucasian chair  of mathematics,  once  

held  by Sir  Isaac  Newton.  The  first  statement  of Stokes’  Theorem  was  given  by 

William  Thomson  (Lord  Kelvin).

Stokes’ Theorem  »

Stokes’  Theorem  is the three-dimensional  version  of the circulation  form of Green’s  Theorem.  Recall  that if C  is 

a closed  simple  piecewise-smooth  oriented  curve  in the xy-plane  enclosing  a region  R and F = 〈f , g 〉 is a differen -

tiable  vector  field on R, Green’s  Theorem  says that


C

F ·d r

circulation

=  
R

gx - fy 
curl or rotation

d A.

The line integral  on the left gives the circulation  along the boundary  of R. The double  integral  on the right sums 

the curl of the vector  field over all points  of R. If F represents  a fluid flow, the theorem  says the cumulative  

rotation  of the flow within  R equals  the circulation  along the boundary.

In Stokes’  Theorem,  the plane  region  R in Green’s  Theorem  becomes  an oriented  surface  S in ℝ3. The 

circulation  integral  in Green’s  Theorem  remains  a circulation  integral,  but now over the closed  simple  piece-

wise-smooth  oriented  curve  C  that forms  the boundary  of S. The double  integral  of the curl in Green’s  Theorem  

becomes  a surface  integral  of the three-dimensional  curl (Figure  17.59 ).
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Figure 17.59

Stokes’  Theorem  involves  an oriented  curve  C  and an oriented  surface  S on which  there are two unit 

normal  vectors  at every point.  These  orientations  must  be consistent  and the normal  vectors  must  be chosen  

correctly.  Here is the right-hand  rule that relates  the orientations  of S and C , and determines  the choice  of the 

normal  vectors:

If the fingers  of your right hand curl in the positive  direction  around  C , then your right thumb  points  in the 

(general)  direction  of the vectors  normal  to S (Figure  17.60 ).
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Figure 17.60

A common  situation  occurs  when C  has a counterclockwise  orientation  when viewed  from above;  then,  the 

vectors  normal  to S point  upward.

Note  »

THEOREM  17.15 Stokes’  Theorem

Let S be an oriented  surface  in ℝ3 with a piecewise-smooth  closed  boundary  C  whose  orientation  

is consistent  with that of S. Assume  F = 〈f , g , h〉 is a vector  field whose  components  have 

continuous  first partial  derivatives  on S. Then 


C

F ·d r =  
S

(∇ ⨯ F) ·n d S,

where  n is the unit vector  normal  to S determined  by the orientation  of S.

Quick Check 1   Suppose  S is a region  in the xy-plane  with a boundary  oriented  counterclockwise.  What  

is the normal  to S? Explain  why Stokes’  Theorem  becomes  the circulation  form of Green’s  Theorem.   ◆
Answer  »

The meaning  of Stokes’  Theorem  is much  the same as for the circulation  form of Green’s  Theorem:  Under  

the proper  conditions,  the accumulated  rotation  of the vector  field over the surface  S (as given by the normal  

component  of the curl)  equals  the net circulation  on the boundary  of S. An outline  of the proof  of Stokes’  

Theorem  is given at the end of this section.  First,  we look at some special  cases  that give further  insight  into the 

theorem.

If F is a conservative  vector  field on a domain  D, then it has a potential  function  φ such that F = ∇φ. 

Because  ∇ ⨯ ∇ϕ = 0, it follows  that ∇ ⨯ F = 0 (Theorem  17.11);  therefore,  the circulation  integral  is zero on all 

closed  curves  in D. Recall  that the circulation  integral  is also a work integral  for the force field F, which  empha -

sizes the fact that no work is done in moving  an object  on a closed  path in a conservative  force field.  Among  the 

important  conservative  vector  fields  are the radial  fields  F =
r

rp , which  generally  have zero curl and zero 

circulation  on closed  curves.

EXAMPLE  1 Verifying  Stokes’  Theorem

Confirm  that Stokes’  Theorem  holds  for the vector  field F = 〈z - y , x, -x〉, where  S is the hemisphere  

x2 + y2 + z2 = 4, for z ≥ 0, and C  is the circle  x2 + y2 = 4 oriented  counterclockwise.

SOLUTION   »

The orientation  of C  implies  that the vectors  normal  to S point  in the outward  direction.  The vector  field is a 

rotation  field a ⨯ r, where  a = 〈0, 1, 1〉 and r = 〈x, y , z〉; so the axis of rotation  points  in the direction  of the 
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vector  〈0, 1, 1〉 (Figure  17.61 ). We first compute  the circulation  integral  in Stokes’  Theorem.  The curve  C  with 

the given orientation  is parametrized  as r(t ) = 〈2 cos t , 2 sin t , 0〉, for 0 ≤ t ≤ 2 π; therefore,  

r ' (t ) = 〈-2 sin t , 2 cos t , 0〉.
Note  »

Recall  that  for  a constant  nonzero  vector  a and  the  position  vector  r = 〈x , y , z〉, 

the  field  F = a ⨯ r is a rotational  field.  In Example  1, 

F = 〈0, 1, 1〉 ⨯ 〈x , y , z〉.

∮ CF ·d r

∫ ∫ S ∇ ⨯ F  ·n d S

Line integral

show

r

r ' on C

F = f , g, h  on C

Surface integral

show labels

Figure 17.61

The circulation  integral  is 


C

F ·d r = 
0

2 π
F ·r ' (t ) d t Definition of line integral

= 
0

2 π z - y

-2 sin t

, x, -x ·〈-2 sin t , 2 cos t , 0〉 d t Substitute .

= 
0

2 π
4 sin2 t + cos2 t  d t Simplify .

= 4 
0

2 π
d t sin2 t + cos2 t = 1

= 8 π. Evaluate integral .
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The surface  integral  requires  computing  the curl of the vector  field:

∇ ⨯ F = ∇ ⨯ 〈z - y , x, -x〉 =
i j k

∂
∂x

∂
∂y

∂
∂z

z - y x -x

= 〈0, 2, 2〉.

Recall  from Section  17.6 (Table  17.3)  that an outward  normal  to the hemisphere  is  x

z
,

y

z
, 1. The region  

of integration  is the base of the hemisphere  in the xy-plane,  which  is 

R = (x, y) : x2 + y2 ≤ 4, or, in polar coordinates , {(r , θ) : 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2 π}.
Combining  these results,  the surface  integral  in Stokes’  Theorem  is 

 
S

(∇ ⨯ F)

〈0, 2, 2〉
·n d S =  

R

〈0, 2, 2〉 · x

z
,

y

z
, 1 d A

Substitute and convert

to a double integral over R.

=  
R

2 y

4 - x2 - y2
+ 2 d A

Simplify and use

z = 4 - x2 - y2 .

= 
0

2 π
0

2 2 r sin θ
4 - r 2

+ 2 r d r dθ. Convert to polar coordinates .

We integrate  first with respect  to θ because  the integral  of sin θ from 0 to 2 π is zero and the first term in the 

integral  is eliminated.  Therefore,  the surface  integral  reduces  to 

 
S

(∇ ⨯ F) ·n d S = 
0

2
0

2 π 2 r 2 sin θ
4 - r 2

+ 2 r dθ d r

= 
0

2
0

2 π
2 r dθ d r 

0

2 π
sin θ dθ = 0

= 4 π 
0

2

r d r Evaluate inner integral .

= 8 π. Evaluate outer integral .

Note  »

In eliminating  the  first  term  of this  double  integral,  we  note  that  the  improper  

integral  
0

2 r 2

4 - r 2

d r  has  a finite  value.

Computed  either  as a line integral  or a surface  integral,  the vector  field has a positive  circulation  along the 

boundary  of S, which  is produced  by the net rotation  of the field over the surface  S.

Related  Exercises  5–6  ◆
In Example  1, it was possible  to evaluate  both sides of Stokes’  Theorem.  Often the theorem  provides  an 

easier  way to evaluate  difficult  line integrals.

EXAMPLE  2 Using Stokes’  Theorem  to evaluate  a line integral

Section 17.7  Stokes’ Theorem 5

Copyright © 2019 Pearson Education, Inc.



Evaluate  the line integral  
C

F ·d r, where  F = z i - z j + x2 - y2 k and C  consists  of the three line segments  that 

bound  the plane z = 8 - 4 x - 2 y  in the first octant,  oriented  as shown  in Figure  17.62 .

Figure 17.62

SOLUTION   »

Evaluating  the line integral  directly  involves  parameterizing  the three line segments.  Instead,  we use Stokes’  

Theorem  to convert  the line integral  to a surface  integral,  where  S is that portion  of the plane z = 8 - 4 x - 2 y  

that lies in the first octant.  The curl of the vector  field is 

∇ ⨯ F = ∇ ⨯ z, -z, x2 - y2 =
i j k

∂
∂x

∂
∂y

∂
∂z

z -z x2 - y2

= 〈1 - 2 y , 1 - 2 x, 0〉.

The appropriate  vector  normal  to the plane  z = 8 - 4 x - 2 y  is -zx , -zy , 1 = 〈4, 2, 1〉, which  points  upward,  

consistent  with the orientation  of C . The triangular  region  R in the xy-plane  beneath  the plane is found  by 

setting  z = 0 in the equation  of the plane;  we find R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 4 - 2 x}. The surface  integral  in 

Stokes’  Theorem  may now be evaluated:  

 
S

(∇ ⨯ F)

〈1-2 y ,1-2 x ,0〉
·n d S =  

R

〈1 - 2 y , 1 - 2 x, 0〉 ·〈4, 2, 1〉 d A
Substitute and convert to a

double integral over R.

= 
0

2
0

4-2 x

(6 - 4 x - 8 y) d y d x Simplify .

= -
88

3
. Evaluate integrals .

Note  »
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Recall  that  for  an explicitly  defined  surface  S  given  by z = s(x , y ) over  a region  R  

with  F = 〈f , g , h〉 

 
S

F ·n d S =  
R

- f zx - g zy + h d A .

In Example  2, F is replaced  by ∇ ⨯ F.

The circulation  around  the boundary  of R is negative,  indicating  a net circulation  in the clockwise  direction  on 

C  (looking  from above).

Related  Exercises  13, 16  ◆
In other  situations,  Stokes’  Theorem  may be used to convert  a difficult  surface  integral  into a relatively  

easy line integral,  as illustrated  in the next example.

EXAMPLE  3 Using Stokes’  Theorem  to evaluate  a surface  integral

Evaluate  the integral   
S

(∇ ⨯ F) ·n d S, where  F = -y i + x j + z k, in the following  cases.

a. S is the part of the paraboloid  z = 4 - x2 - 3 y2 that lies within  the paraboloid  z = 3 x2 + y2 (the blue 

surface  in Figure  17.63 ). Assume  n points  in the upward  direction  on S.

b. S is the part of the paraboloid  z = 3 x2 + y2 that lies within  the paraboloid  z = 4 - x2 - 3 y2, with n point-

ing in the upward  direction  on S.

c. S is the surface  in part (b), with n pointing  in the downward  direction  on S.

Figure 17.63

SOLUTION   »

a. Finding  a parametric  description  for S is challenging,  so we use Stokes’  Theorem  to convert  the surface  

integral  into a line integral  along the curve  C  that bounds  S. Note that C  is the intersection  between  the 
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paraboloids  z = 4 - x2 - 3 y2 and z = 3 x2 + y2. Eliminating  z  from these equations,  we find that the projection  

of C  onto the xy-plane  is the circle  x2 + y2 = 1, which  suggests  that we choose  x = cos t  and y = sin t  for the x- 

and y-components  of the equations  for C . To find the z-component,  we substitute  x  and y  into the equation  of 

either  paraboloid.  Choosing  z = 3 x2 + y2, we find that a parametric  description  of C  is 

r(t ) = cos t , sin t , 3 cos2 t + sin2 t ; note that C  is oriented  in the counterclockwise  direction,  consistent  with 

the orientation  of S. 

To evaluate  the line integral  in Stokes’  Theorem,  it is helpful  to first compute  F ·r ' (t ). Along  C , the vector  field is 

F = 〈-y , x, z〉 = -sin t , cos t , 3 cos2 t + sin2 t . Differentiating  r yields  r ' (t ) = 〈-sin t , cos t , -4 cos t sin t〉, 
which  leads to 

F ·r ' (t ) = -sin t , cos t , 3 cos2 t + sin2 t  ·〈-sin t , cos t , -4 cos t sin t〉
= sin2 t + cos2 t

1

- 12 cos3 t sin t - 4 sin3 t cos t .

Noting  that sin2 t + cos2 t = 1, we are ready to evaluate  the integral:  

 
S

(∇ ⨯ F) ·n d S = 
C

F ·d r Stokes ’ Theorem

= 
0

2 π
F ·r ' (t ) d t Definition of line integral

= 
0

2 π1 - 12 cos3 t sin t - 4 sin3 t cos t  d t Substitute .

= 
0

2 π
1 d t - 

0

2 π
12 cos3 t sin t d t

0

- 
0

2 π
4 sin3 t cos t d t

0

Split integral .

= 2 π. Evaluate integrals .

A standard  substitution  in the last two integrals  of the final  step shows  that both integrals  equal  0.

b. Because  the lower  surface  (z = 3 x2 + y2) shares  the same boundary  C  with the upper  surface

(z = 4 - x2 - 3 y2), and because  both surfaces  have an upward-pointing  normal  vector,  the line integral  resulting  

from an application  of Stokes’  Theorem  is identical  to the integral  in part (a). For this surface  S with its associ -

ated normal  vector,  we conclude  that  
S

(∇ ⨯ F) ·n d S = 
C

F ·d r = 2 π. In fact,  the value of this integral  is 2 π 

for any surface  whose  boundary  is C  and whose  normal  vectors  point  in the upward  direction.  

c. In this case,  n points  downward.  We use the parametrization  r(t ) = sin t , cos t , 3 cos2 t + sin2 t  for C  so 

that C  is oriented  in the clockwise  direction,  consistent  with the orientation  of S. You should  verify  that,  when 

duplicating  the calculations  in part (a) with a new description  for C , we have 

F ·r ' (t ) = -sin2 t - cos2 t

-1

- 12 cos3 t sin t - 4 sin3 t cos t .

Note  »

Recall  that  x = cos t , y = sin t  is a standard  parameterization  for  the  unit  circle  

centered  at the  origin  with  counterclockwise  orientation.  The  parameterization  

x = sin t , y = cos t  reverses  the  orientation.
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Therefore,  the required  integral  is 

 
S

(∇ ⨯ F) ·n d S = 
C

F ·d r

= 
0

2 π
F ·r ' (t ) d t

= 
0

2 π-1 - 12 cos3 t sin t - 4 sin3 t cos t  d t

= -2 π.

This result  is perhaps  not surprising  when compared  to parts  (a) and (b): The reversal  of the orientation  of S 

requires  a reversal  of the orientation  of C , and we know from Section  17.2 that 
C

F ·d r = -
-C

F ·d r. As we 

discuss  at the end of this section,  it follows  that the surface  integral  over the closed  surface  enclosed  by both 

paraboloids  (with normal  vectors  everywhere  outward)  has the value 2 π - 2 π = 0.

Related  Exercises  21–22  ◆
Quick Check 2   In Example  3a, we used the parameterization  r(t ) = cos t , sin t , 3 cos2 t + sin2 t  for C . 

Confirm  that the parameterization  C : r(t ) = cos t , sin t , 4 - cos2 t - 3 sin2 t  also results  in an answer  of 

2 π.  ◆
Interpreting the Curl  »

Stokes’  Theorem  leads to another  interpretation  of the curl at a point  in a vector  field.  We need the idea of the 

average  circulation . If C  is the boundary  of an oriented  surface  S, we define  the average  circulation  of F over S 

as 

1

area of S

C

F ·d r =
1

area of S
 

S

(∇ ⨯ F) ·n d S,

where  Stokes’  theorem  is used to convert  the circulation  integral  to a surface  integral.

First consider  a general  rotation  field F = a ⨯ r, where  a = 〈a1, a2, a3〉 is a constant  nonzero  vector  and 

r = 〈x, y , z〉. Recall  that F describes  the rotation  about  an axis in the direction  of a with angular  speed  ω = a. 
We also showed  that F has a constant  curl,  ∇ ⨯ F = ∇ ⨯ (a ⨯ r) = 2 a. We now take S to be a small  circular  disk 

centered  at a point  P , whose  normal  vector  n makes  an angle  θ with the axis a (Figure  17.64 ). Let C  be the 

boundary  of S with a counterclockwise  orientation.

Figure 17.64
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The average  circulation  of this vector  field on S is 

1

area of S
 

S

(∇ ⨯ F) ·n

constant

d S Definition

=
1

area of S
(∇ ⨯ F) ·n ·area(S)  

S

d S = area of S

= (∇ ⨯ F)

2 a

·n Simplify .

= 2 a cos θ. n = 1, ∇ ⨯ F = 2 a
Note  »

Recall  that  n is a unit  normal  vector  with  n = 1. By  definition,  the  dot  product  

gives  a ·n = a cos θ.

If the normal  vector  n is aligned  with ∇ ⨯ F (which  is parallel  to a), then θ = 0 and the average  circulation  has its 

maximum  value of 2 a. However,  if the vector  normal  to the surface  S is orthogonal  to the axis of rotation  

(θ = π
2

), the average  circulation  is zero.

We see that for a general  rotation  field F = a ⨯ r, the curl of F has the following  interpretations,  where  S is 

a small  disk centered  at a point  P  with a normal  vector  n.

 The scalar  component  of ∇ ⨯ F at P  in the direction  of n, which  is (∇ ⨯ F) ·n = 2 a cos θ, is the average  

circulation  on S.

 The direction  of ∇ ⨯ F at P  is the direction  that maximizes  the average  circulation  on S. Equivalently,  it is the 

direction  in which  you should  orient  the axis of a paddle  wheel  to obtain  the maximum  angular  speed.

A similar  argument  may be applied  to a general  vector  field (with a variable  curl)  to give an analogous  interpreta -

tion of the curl at a point  (Exercise  48).

EXAMPLE  4 Horizontal  channel  flow

Consider  the velocity  field v = 0, 1 - x2, 0, for x ≤ 1 and z ≤ 1, which  represents  a horizontal  flow in the y-

direction  (Figure  17.65 ).

a. Suppose  you place a paddle  wheel  at the point  P
1

2
, 0, 0 . Using  physical  arguments,  in which  of the 

coordinate  directions  should  the axis of the wheel  point  in order  for the wheel  to spin?  In which  direction  does 

it spin?  What  happens  if you place  the wheel  at Q -
1

2
, 0, 0 ?

b. Compute  and graph  the curl of v and provide  an interpretation.
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x
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show labels

Figure 17.65

SOLUTION   »

a. If the axis of the wheel  is aligned  with the x-axis at P , the flow strikes  the upper  and lower  halves  of the 

wheel  symmetrically  and the wheel  does not spin.  If the axis of the wheel  is aligned  with the y-axis,  the flow 

strikes  the face of the wheel  and it does not spin.  If the axis of the wheel  is aligned  with the z-axis at P , the flow 

in the y-direction  is greater  for x <
1

2
 than it is for x >

1

2
. Therefore,  a wheel  located  at 

1

2
, 0, 0  spins  in the 

clockwise  direction,  looking  from above.  Using  a similar  argument,  we conclude  that a vertically  oriented  

paddle  wheel  placed  at Q -
1

2
, 0, 0  spins  in the counterclockwise  direction  (when  viewed  from above).

b.  A short  calculation  shows  that 

∇ ⨯ v =

i j k

∂
∂x

∂
∂y

∂
∂z

0 1 - x2 0

= -2 x k.

As shown  in Figure  17.65,  the curl points  in the z-direction,  which  is the direction  of the paddle  wheel  axis that 

gives the maximum  angular  speed  of the wheel.  Consider  the z-component  of the curl,  which  is 
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(∇ ⨯ v) ·k = -2 x. At x = 0, this component  is zero,  meaning  the wheel  does not spin at any point  along the y-

axis when its axis of the wheel  is aligned  with the z-axis.  For x > 0, we see that (∇ ⨯ v) ·k < 0, which  corresponds  

to clockwise  rotation  of the vector  field.  For x < 0, we have (∇ ⨯ F) ·v > 0, corresponding  to counterclockwise  

rotation.

Related  Exercise  26  ◆
Quick Check 3   In Example  4, explain  why a paddle  wheel  with its axis aligned  with the z-axis does not 

spin when placed  on the y-axis.   ◆
Answer  »

Proof of Stokes’ Theorem  »

The proof  of the most  general  case of Stokes’  Theorem  is intricate.  However,  a proof  of a special  case is instruc -

tive and it relies  on several  previous  results.

Consider  the case in which  the surface  S is the graph  of the function  z = s(x, y), defined  on a region  in the 

xy-plane.  Let C  be the curve  that bounds  S with a counterclockwise  orientation,  let R be the projection  of S in 

the x y-plane,  and let C ' be the projection  of C  in the xy-plane  (Figure  17.66 ).

Figure 17.66

Letting  F = 〈f , g , h〉, the line integral  in Stokes’  Theorem  is 


C

F ·d r = 
C

f d x + g d y + h d z.

The key observation  for this integral  is that along C  (which  is the boundary  of S), d z = zx d x + zy d y . Making  this 

substitution,  we convert  the line integral  on C  to a line integral  on C ' in the xy-plane:  


C

F ·d r = 
C '

f d x + g d y + h zx d x + zy d y
d z

= 
C '

(f + h zx)

M (x ,y )

d x + g + h zy 
N (x ,y )

d y .

We now apply  the circulation  form of Green’s  Theorem  to this line integral  with M (x, y) = f + h zx  and 

N (x, y) = g + h zy ; the result  is 

12 Chapter 17 •  Vector Calculus

Copyright © 2019 Pearson Education, Inc.




C '

M d x + N d y =  
R

Nx - My  d A.

A careful  application  of the Chain  Rule (remembering  that z  is a function  of x  and y , Exercise  49) reveals  that 

My = fy + fz zy + h zx y + zx hy + hz zy  and

Nx = gx + gz zx + h zy x + zy (hx + hz zx).

Making  these substitutions  in the line integral  and simplifying  (note  that zx y = zy x  is needed),  we have 


C

F ·d r =  
R

zx gz - hy  + zy (hx - fz) + gx - fy  d A.
(1)

Now let’s look at the surface  integral  in Stokes’  Theorem.  The upward  vector  normal  to the surface  is 

-zx , -zy , 1. Substituting  the components  of ∇ ⨯ F the surface  integral  takes  the form 

 
S

(∇ ⨯ F) ·n d S =  
R

hy - gz  (-zx) + (fz - hx) -zy  + gx - fy  d A,

which  upon rearrangement  becomes  the integral  in (1).  ◆

Two Final Notes on Stokes’ Theorem  »

1. Stokes’  Theorem  allows  a surface  integral   
S

(∇ ⨯ F) ·n d S to be evaluated  using only the values  of the 

vector  field on the boundary  C . This means  that if a closed  curve  C  is the boundary  of two different  smooth  

oriented  surfaces  S1 and S2, which  both have an orientation  consistent  with that of C , then the integrals  of 

(∇ ⨯ F) ·n on the two surfaces  are equal;  that is, 

 
S1

(∇ ⨯ F) ·n1 d S =  
S2

(∇ ⨯ F) ·n2 d S,

where  n1 and n2 are the respective  unit normal  vectors  consistent  with the orientation  of the surfaces  (Figure  

17.67a; see Example  3).
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Figure 17.67

Now let’s take a different  perspective.  Suppose  S is a closed surface  consisting  of S1 and S2 with a com-

mon boundary  curve  C  (Figure  17.67b ). Let n represent  the outward  unit normal  vector  for the entire  surface  

S. It follows  that n points  in the same direction  as n1 and in the direction  opposite  to that of n2 (Figure  17.67b).  

Therefore,   
S1

(∇ ⨯ F) ·nd S and  
S2

(∇ ⨯ F) ·nd S are equal  in magnitude  and of opposite  sign,  from which  

we conclude  that 

 
S

(∇ ⨯ F) ·nd S =  
S1

(∇ ⨯ F) ·nd S +  
S2

(∇ ⨯ F) ·nd S = 0.

This argument  can be adapted  to show that  
S

(∇ ⨯ F) ·n d S = 0 over any closed  oriented  surface  S 

(Exercise  50).

2. We can now resolve  an assertion  made  in Section  17.5.  There  we proved  (Theorem  17.11)  that if F is a 

conservative  vector  field,  then ∇ ⨯ F = 0; we claimed,  but did not prove,  that the converse  is true.  The converse  

follows  directly  from Stokes’  Theorem.

THEOREM  17.16 Curl F = 0 Implies  F is Conservative

Suppose  ∇ ⨯ F = 0 throughout  an open simply  connected  region  D  of ℝ3. Then 
C

F ·d r = 0 on all 

closed  simple  smooth  curves  C  in D  and F is a conservative  vector  field on D.

Proof:  Given  a closed  simple  smooth  curve  C , an advanced  result  states  that C  is the boundary  of at least  one 

smooth  oriented  surface  S in D. By Stokes’  Theorem  


C

F ·d r =  
S

(∇ ⨯ F)

0

·n d S = 0

14 Chapter 17 •  Vector Calculus

Copyright © 2019 Pearson Education, Inc.



Because  the line integral  equals  zero over all such curves  in D, the vector  field is conservative  on D  by Theorem  

17.6.  ◆

Exercises  »

Getting  Started   »

Practice  Exercises   »

5–10.  Verifying  Stokes’  Theorem   Verify  that the line integral  and the surface  integral  of Stokes’  Theorem  

are equal  for the following  vector  fields,  surfaces  S, and closed  curves  C. Assume  C has counterclockwise  

orientation  and S has a consistent  orientation.

5. F = 〈y , -x, 10〉; S is the upper  half of the sphere  x2 + y2 + z2 = 1 and C  is the circle  x2 + y2 = 1 in the 

xy-plane.

6. F = 〈0, -x, y〉; S is the upper  half of the sphere  x2 + y2 + z2 = 4 and C  is the circle  x2 + y2 = 4 in the 

xy-plane.

7. F = 〈x, y , z〉; S is the paraboloid  z = 8 - x2 - y2, for 0 ≤ z ≤ 8, and C  is the circle  x2 + y2 = 8 in the xy-

plane.

8. F = 〈2 z, -4 x, 3 y〉; S is the cap of the sphere  x2 + y2 + z2 = 169 above  the plane  z = 12 and C  is the 

boundary  of S.

9. F = 〈y - z, z - x, x - y〉; S is the cap of the sphere  x2 + y2 + z2 = 16 above  the plane  z = 7  and C  is 

the boundary  of S.

10. F = 〈-y , -x - z, y - x〉; S is the part of the plane z = 6 - y  that lies in the cylinder  x2 + y2 = 16 and C  

is the boundary  of S.

11–16.  Stokes’  Theorem  for evaluating  line integrals   Evaluate  the line integral  
C

F ·d r by evaluating  

the surface  integral  in Stokes’  Theorem  with an appropriate  choice  of S. Assume  C  has a counterclockwise  

orientation.

11. F = 〈2 y , -z, x〉; C  is the circle  x2 + y2 = 12 in the plane  z = 0. 

12. F = 〈y , x z, -y〉; C  is the ellipse  x2 +
y2

4
= 1 in the plane z = 1.

13. F = x2 - z2, y , 2 x z; C  is the boundary  of the plane  z = 4 - x - y  in the first octant.

14. F = x2 - y2, z2 - x2, y2 - z2; C  is the boundary  of the square  x ≤ 1, y  ≤ 1 in the plane z = 0.

15. F = y2, -z2, x; C  is the circle  r(t ) = 〈3 cos t , 4 cos t , 5 sin t〉, for 0 ≤ t ≤ 2 π.

16. F = 2 x y sin z, x2 sin z, x2 y cos z; C  is the boundary  of the plane  z = 8 - 2 x - 4 y  in the first octant.

17–24.  Stokes’  Theorem  for evaluating  surface  integrals   Evaluate  the line integral  in Stokes’  Theorem  to 

determine  the value  of the surface  integral   
S

(∇ ⨯ F) ·n d S. Assume  n points  in an upward  direction.
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17. F = 〈x, y , z〉; S is the upper  half of the ellipsoid  
x2

4
+

y2

9
+ z2 = 1.

18. F =
r

r ; S is the paraboloid  x = 9 - y2 - z2, for 0 ≤ x ≤ 9 (excluding  its base),  and r = 〈x, y , z〉.

19. F = 〈2 y , -z, x - y - z〉; S is the cap of the sphere  x2 + y2 + z2 = 25, for 3 ≤ x ≤ 5 (excluding  its base).

20. F = 〈x + y , y + z, z + x〉; S is the tilted disk enclosed  by r(t ) = cos t , 2 sin t , 3 cos t .
21. F = 〈y , z - x, -y〉; S is the part of the paraboloid  z = 2 - x2 - 2 y2 that lies within  the cylinder  

x2 + y2 = 1.

22. F = 〈4 x, -8 z, 4 y〉; S is the part of the paraboloid  z = 1 - 2 x2 - 3 y2 that lies within  the paraboloid  

z = 2 x2 + y2.

23. F = 〈y , 1, z〉; S is the part of the surface  z = 2 x  that lies within  the cone z = x2 + y2 .

24. F = ex ,
1

z
, y; S is the part of the surface  z = 4 - 3 y2 that lies within  the paraboloid  z = x2 + y2.

25–28.  Interpreting  and graphing  the curl  For the following  velocity  fields,  compute  the curl,  make  a 

sketch  of the curl,  and interpret  the curl.

25. v = 〈0, 0, y〉
26. v = 1 - z2, 0, 0
27. v = 〈-2 z, 0, 1〉
28. v = 〈0, -z, y〉
29. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a. A paddle  wheel  with its axis in the direction  〈0, 1, -1〉 would  not spin when put in the vector  

field F = 〈1, 1, 2〉 ⨯ 〈x, y , z〉.
b. Stokes’  Theorem  relates  the flux of a vector  field F across  a surface  to values  of F on the 

boundary  of the surface.

c. A vector  field of the form F = 〈a + f (x), b + g (y), c + h(z)〉, where  a, b, and c  are constants,  has 

zero circulation  on a closed  curve.

d. If a vector  field has zero circulation  on all simple  closed  smooth  curves  C  in a region  D, then F is 

conservative  on D.

30–33.  Conservative  fields   Use Stokes’  Theorem  to find the circulation  of the following  vector  fields  

around  any simple  closed  smooth  curve  C .

30. F = 〈2 x, -2 y , 2 z〉
31. F = ∇ (x sin y ez)

32. F = 3 x2 y , x3 + 2 y z2, 2 y2 z
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33. F = y2 z3, 2 x y z3, 3 x y2 z2
34–38.  Tilted  disks   Let S be the disk enclosed  by the curve  C : r(t ) = 〈cos φ cos t , sin t , sin φ cos t〉, for 

0 ≤ t ≤ 2 π, where  0 ≤ φ ≤ π
2

 is a fixed angle.

34. What is the area of S? Find a vector  normal  to S.

35. What is the length  of C ?

36. Use Stokes’  Theorem  and a surface  integral  to find the circulation  on C  of the vector  field 

F = 〈-y , x, 0〉 as a function  of φ. For what  value of φ is the circulation  a maximum?

37. What is the circulation  on C  of the vector  field F = 〈-y , -z, x〉 as a function  of φ? For what  value of φ 

is the circulation  a maximum?

38. Consider  the vector  field F = a ⨯ r, where  a = 〈a1, a2, a3〉 is a constant  nonzero  vector  and 

r = 〈x, y , z〉. Show that the circulation  is a maximum  when a points  in the direction  of the normal  to 

S.

39. Circulation  in a plane   A circle  C  in the plane  x + y + z = 8 has a radius  of 4 and center  (2, 3, 3). 

Evaluate  
C

F ·d r for F = 〈0, -z, 2 y〉 where  C  has a counterclockwise  orientation  when viewed  from 

above.  Does the circulation  depend  on the radius  of the circle?  Does it depend  on the location  of the 

center  of the circle?

40. No integrals   Let F = 〈2 z, z, 2 y + x〉 and let S be the hemisphere  of radius  a with its base in the xy-

plane and center  at the origin.

a. Evaluate   
S

(∇ ⨯ F) ·n d S by computing  ∇ ⨯ F and appealing  to symmetry.

b. Evaluate  the line integral  using  Stokes’  Theorem  to check  part (a).

41. Compound  surface  and boundary   Begin  with the paraboloid  z = x2 + y2, for 0 ≤ z ≤ 4, and slice it 

with the plane  y = 0. Let S be the surface  that remains  for y ≥ 0 (including  the planar  surface  in the 

xz-plane)  (see figure).  Let C  be the semicircle  and line segment  that bound  the cap of S in the plane  

z = 4 with counterclockwise  orientation.  Let F = 〈2 z + y , 2 x + z, 2 y + x〉.
a. Describe  the direction  of the vectors  normal  to the surface  that are consistent  with the 

orientation  of C .

b. Evaluate   
S

(∇ ⨯ F) ·n d S.

c. Evaluate  
C

F ·d r and check  for agreement  with part (b).
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42. Ampère’s  Law   The French  physicist  André-Marie  Ampère  (1775-1836)  discovered  that an electrical  

current  I  in a wire produces  a magnetic  field B. A special  case of Ampère’s  Law relates  the current  to 

the magnetic  field through  the equation  
C

B ·d r = μ I , where  C  is any closed  curve  through  which  

the wire passes  and μ is a physical  constant.  Assume  the current  I  is given in terms of the current  

density  J as I =  
S

J ·n d S, where  S is an oriented  surface  with C  as a boundary.  Use Stokes’  

Theorem  to show that an equivalent  form of Ampère’s  Law is ∇ ⨯ B = μ J.

43. Maximum  surface  integral   Let S be the paraboloid  z = a 1 - x2 - y2, for z ≥ 0, where  a > 0 is a real 

number.  Let F = 〈x - y , y + z, z - x〉. For what  value(s)  of a (if any) does  
S

(∇ ⨯ F) ·n d S have its 

maximum  value?

Explorations  and Challenges   »

44. Area of a region  in a plane   Let R be a region  in a plane  that has a unit normal  vector  n = 〈a, b, c〉 
and boundary  C . Let F = 〈b z, c x, a y〉.
a. Show that ∇ ⨯ F = n.

b. Use Stokes’  Theorem  to show that 

area of R = 
C

F ·d r.

c. Consider  the curve  C  given by r = 〈5 sin t , 13 cos t , 12 sin t〉, for 0 ≤ t ≤ 2 π. Prove  that C  lies in a 

plane by showing  that r ⨯ r ' is constant  for all t .

d. Use part (b) to find the area of the region  enclosed  by C  in part (c). (Hint: Find the unit normal  

vector  that is consistent  with the orientation  of C .)

45. Choosing  a more  convenient  surface   The goal is to evaluate  A =  
S

(∇ ⨯ F) ·n d S, where  

F = 〈y z, -x z, x y〉 and S is the surface  of the upper  half of the ellipsoid  x2 + y2 + 8 z2 = 1 (z ≥ 0).

a. Evaluate  a surface  integral  over a more convenient  surface  to find the value of A.

b. Evaluate  A using  a line integral.
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46. Radial  fields  and zero circulation   Consider  the radial  vector  fields  F =
r

rp , where  p is a real 

number  and r = 〈x, y , z〉. Let C  be any circle  in the xy-plane  centered  at the origin.

a. Evaluate  a line integral  to show that the field has zero circulation  on C .

b. For what values  of p does Stokes’  Theorem  apply?  For those  values  of p, use the surface  integral  

in Stokes’  Theorem  to show that the field has zero circulation  on C .

47. Zero curl   Consider  the vector  field F = -
y

x2 + y2
i +

x

x2 + y2
j + z k.

a. Show that ∇ ⨯ F = 0.

b. Show that 
C

F ·d r is not zero on a circle  C  in the xy-plane  enclosing  the origin.

c. Explain  why Stokes’  Theorem  does not apply  in this case.

48. Average  circulation   Let S be a small  circular  disk of radius  R centered  at the point  P  with a unit 

normal  vector  n. Let C  be the boundary  of S.

a. Express  the average  circulation  of the vector  field F on S as a surface  integral  of ∇ ⨯ F.

b. Argue that for small  R, the average  circulation  approaches  (∇ ⨯ F)P ·n (the component  of ∇ ⨯ F 

in the direction  of n evaluated  at P) with the approximation  improving  as R → 0.

49. Proof  of Stokes’  Theorem   Confirm  the following  step in the proof  of Stokes’  Theorem.  If z = s(x, y) 

and f , g , and h are functions  of x, y , and z, with M = f + h zx  and N = g + h zy , then 

My = fy + fz zy + h zx y + zx hy + hz zy  and

Nx = gx + gz zx + h zy x + zy (hx + hz zx).

50. Stokes’  Theorem  on closed  surfaces   Prove  that if F satisfies  the conditions  of Stokes’  Theorem,  

then  
S

(∇ ⨯ F) ·n d S = 0, where  S is a smooth  surface  that encloses  a region.

51. Rotated  Green’s  Theorem   Use Stokes’  Theorem  to write  the circulation  form of Green’s  Theorem  

in the yz-plane.
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