
17.6 Surface Integrals

We have studied  integrals  on intervals  on the real line,  on regions  in the plane,  on solid regions  in space,  and 

along curves  in space.  One situation  is still unexplored.  Suppose  a sphere  has a known  temperature  distribu -

tion; perhaps  it is cold near the poles  and warm near the equator.  How do you find the average  temperature  

over the entire  sphere?  In analogy  with other  average  value calculations,  we should  expect  to “add up” the 

temperature  values  over the sphere  and divide  by the surface  area of the sphere.  Because  the temperature  varies

continuously  over the sphere,  adding  up means  integrating.  How do you integrate  a function  over a surface?  

This question  leads to surface  integrals .

It helps  to keep curves,  arc length,  and line integrals  in mind as we discuss  surfaces,  surface  area,  and 

surface  integrals.  What  we discover  about  surfaces  parallels  what we already  know about  curves—all  “lifted”  up 

one dimension.

Parallel Concepts

Curves Surfaces

Arc length Surface area

Line integrals Surface integrals

One-parameter

description

Two-parameter

description

Parameterized Surfaces  »

A curve  in ℝ2 is defined  parametrically  by r(t ) = 〈x(t ), y(t )〉, for a ≤ t ≤ b; it requires  one parameter  and two 

dependent  variables.  Stepping  up one dimension,  to define  a surface  in ℝ3 we need two parameters  and three 

dependent  variables.  Letting  u and v  be parameters,  the general  parametric  description  of a surface  has the 

form

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉.

We make the assumption  that the parameters  vary over a rectangle  R = {(u, v) : a ≤ u ≤ b, c ≤ v ≤ d} (Figure  

17.43). As the parameters  (u, v) vary over R, the vector  r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 sweeps  out a surface  

S in ℝ3.
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Figure 17.43

We work extensively  with three surfaces  that are easily  described  in parametric  form.  As with parameter -

ized curves,  a parametric  description  of a surface  is not unique.

Cylinders

In Cartesian  coordinates,  the set

{(x, y , z) : x = a cos θ, y = a sin θ, 0 ≤ θ ≤ 2 π, 0 ≤ z ≤ h},

where  a > 0, is a cylindrical  surface  of radius  a and height  h with its axis along the z-axis.  Using  the parameters  

u = θ and v = z, a parametric  description  of the cylinder  is

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 = 〈a cos u, a sin u, v〉,

where  0 ≤ u ≤ 2 π and 0 ≤ v ≤ h (Figure  17.44 ).
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Quick Check 1   Describe  the surface  r(u, v) = 〈2 cos u, 2 sin u, v〉, for 0 ≤ u ≤ π and 0 ≤ v ≤ 1.  ◆
Answer  »

A half cylinder  with height  1 and radius  2 with its axis along the z-axis.

Cones

The surface  of a cone of height  h and radius  a with its vertex  at the origin  is described  in cylindrical  coordinates  

by

(r , θ, z) : 0 ≤ r ≤ a, 0 ≤ θ ≤ 2 π, z =
r h

a
.

Note  »

Note  that  when  r = 0, z = 0 and  when  r = a , z = h.

For a fixed value of z, we have r =
a z

h
; therefore,  on the surface  of the cone

x = r cos θ = a z

h
cos θ and y = r sin θ = a z

h
sin θ.

Note  »

Recall  the  relationships  among  polar  and  rectangular  coordinates:  

x = r cos θ, y = r sin θ, and x2 + y 2 = r 2.

Using the parameters  u = θ and v = z, the parametric  description  of the conical  surface  is
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r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 =  a v

h
cos u,

a v

h
sin u, v,

where  0 ≤ u ≤ 2 π and 0 ≤ v ≤ h (Figure  17.45 ).
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Figure 17.45

Quick Check 2   Describe  the surface  r(u, v) = 〈v cos u, v sin u, v〉, for 0 ≤ u ≤ π and 0 ≤ v ≤ 10.  ◆
Answer  »

Spheres

The parametric  description  of a sphere  of radius  a centered  at the origin  comes  directly  from spherical  

coordinates:

{(ρ, φ, θ) : ρ = a, 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2 π}.
Note  »

The  complete  cylinder,  cone,  and  sphere  are  generated  as the  angle  variable  θ 

varies  over  the  half-open  interval  [0, 2 π). As  in previous  chapters,  we  will  use  

the  closed  interval  [0, 2 π].
Recall  the following  relationships  among  spherical  and rectangular  coordinates  (Section  16.5):

x = a sin φ cos θ, y = a sin φ sin θ, z = a cos φ.

When we define  the parameters  u = φ and v = θ, a parametric  description  of the sphere  is

r(u, v) = 〈a sin u cos v, a sin u sin v, a cos u〉,
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where  0 ≤ u ≤ π and 0 ≤ v ≤ 2 π (Figure  17.46 ).
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Figure 17.46

Quick Check 3   Describe  the surface  r(u, v) = 〈4 sin u cos v, 4 sin u sin v, 4 cos u〉, for 0 ≤ u ≤ π
2

 and 

0 ≤ v ≤ π.  ◆
Answer  »

EXAMPLE  1 Parametric  surfaces

Find parametric  descriptions  for the following  surfaces.

a. The plane  3 x - 2 y + z = 2

b. The paraboloid  z = x2 + y2, for 0 ≤ z ≤ 9

SOLUTION   »

a. Defining  the parameters  u = x  and v = y , we find that

z = 2 - 3 x + 2 y = 2 - 3 u + 2 v.

Therefore,  a parametric  description  of the plane  is

r(u, v) = 〈u, v, 2 - 3 u + 2 v〉,

for -∞ < u < ∞ and -∞ < v < ∞.

b. Thinking  in terms of polar  coordinates,  we let u = θ and v = z , which  means  that z = v2. The equation  of 

the paraboloid  is x2 + y2 = z = v2, so v  plays  the role of the polar  coordinate  r . Therefore,  x = v cos θ = v cos u 
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and y = v sin θ = v sin u. A parametric  description  for the paraboloid  is

r(u, v) = v cos u, v sin u, v2,

where  0 ≤ u ≤ 2 π and 0 ≤ v ≤ 3.

Alternatively,  we could  choose  u = θ and v = z. The resulting  description  is 

r(u, v) =  v cos u, v sin u, v,

where  0 ≤ u ≤ 2 π and 0 ≤ v ≤ 9.

Related  Exercises  9, 12  ◆
Surface Integrals of Scalar-Valued Functions  »

We now develop  the surface  integral  of a scalar-valued  function  f  on a smooth  parameterized  surface  S 

described  by the equation

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉,

where  the parameters  vary over a rectangle  R = {(u, v) : a ≤ u ≤ b, c ≤ v ≤ d}. The functions  x, y , and z  are 

assumed  to have continuous  partial  derivatives  with respect  to u and v. The rectangular  region  R in the uv-

plane is partitioned  into rectangles,  with sides of length  Δu and Δv, that are ordered  in some convenient  way,  

for k = 1, …, n. The kth rectangle  Rk  corresponds  to a curved  patch  Sk  on the surface  S (Figure  17.47 ), which  

has area ΔSk . 
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Figure 17.47

We let (uk , vk ) be the lower-left  corner  point  of Rk . The parameterization  then assigns  (uk , vk ) to a point  

P(x(uk , vk ), y(uk , vk ), z(uk , vk )), or more simply,  P(xk , yk , zk ), on Sk . To construct  the surface  integral  we 
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define  a Riemann  sum, which  adds up function  values  multiplied  by areas of the respective  patches:


k=1

n

f (x(uk , vk ), y(uk , vk ), z(uk , vk )) ΔSk .

The crucial  step is computing  ΔSk , the area of the kth patch  Sk .

Note  »

Figure  17.48  shows  the patch  Sk  and the point  P(xk , yk , zk ). Two special  vectors  are tangent  to the 

surface  at P ; these vectors  lie in the plane  tangent  to S at P .

 tu  is a vector  tangent  to the surface  corresponding  to a change  in u with v  constant  in the uv-plane.

 tv  is a vector  tangent  to the surface  corresponding  to a change  in v  with u constant  in the uv-plane.

show

tangent vectors

parallelogram

normal vector

u divisions

v divisions

k

show surface

show labels

show grids

Figure 17.48

Note  »

In general,  the  vectors  tu  and  tv  are  different  for  each  patch,  so they  should  

carry  a subscript  k . To  keep  the  notation  as simple  as possible,  we  have  

suppressed  the  subscripts  on  these  vectors  with  the  understanding  that  they  

change  with  k . These  tangent  vectors  are  given  by partial  derivatives  because  in 

each  case,  either  u  or  v  is held  constant,  while  the  other  variable  changes.

Because  the surface  S may be written  r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉, a tangent  vector  corresponding  to a 

change  in u with v  fixed is
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tu =
∂r

∂u
=  ∂x

∂u
,

∂y

∂u
,

∂z

∂u
.

Similarly,  a tangent  vector  corresponding  to a change  in v  with u fixed is

tv =
∂r

∂v
=  ∂x

∂v
,

∂y

∂v
,

∂z

∂v
.

Now consider  an increment  Δu in u with v  fixed;  the corresponding  change  in r, which  is 

r(u + Δu, v) - r(u, v), can be approximated  using the definition  of the partial  derivative  of r with respect  to u. 

Specifically,  when Δu is small,  we have 

∂r

∂u
≈ 1

Δu
(r(u + Δu, v) - r(u, v)).

Multiplying  both sides of this equation  by Δu and recalling  that tu =
∂r

∂u
, we see that the change  in r correspond -

ing to the increment  Δu is approximated  by the vector  

tu Δu ≈ r(u + Δu, v) - r(u, v)

change in r corresponding to Δ u

.

Using a similar  line of reasoning,  the change  in r corresponding  to the increment  Δv  (with u fixed)  is approxi -

mated  by the vector  

tv Δv ≈ r(u, v + Δv) - r(u, v)

change in r corresponding to Δ v

.

As nonzero  scalar  multiples  of tu  and tv , the vectors  tu Δu and tv Δv  are also tangent  to the surface.  They 

determine  a parallelogram  that lies in the plane tangent  to S at P  (Figure  17.48);  the area of this parallelogram  

approximates  the area of the kth patch  Sk , which  is ΔSk .

Appealing  to the cross  product  (Section  13.4),  the area of the parallelogram  is

tu Δu ⨯ tv Δv = tu ⨯ tv  Δu Δv ≈ ΔSk .

Note that tu ⨯ tv  is evaluated  at (uk , vk ) and is a vector  normal  to the surface  at P , which  we assume  to be 

nonzero  at all points  of S.

We write  the Riemann  sum with the observation  that the areas of the parallelograms  approximate  the 

areas of the patches  Sk :


k=1

n

f (x(uk , vk ), y(uk , vk ), z(uk , vk )) ΔSk ≈ 
k=1

n

f (x(uk , vk ), y(uk , vk ), z(uk , vk )) tu ⨯ tv  Δu Δv

≈ Δ Sk

.

We now assume  f  is continuous  on S. As Δu and Δv  approach  zero,  the areas of the parallelograms  approach  

the areas of the corresponding  patches  on S. We define  the limit  of this Riemann  sum to be the surface  integral  

of f  over S, which  we write   
S

f (x, y , z) d S. The surface  integral  is evaluated  as an ordinary  double  integral  

over the region  R in the uv-plane:
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S

f (x, y , z) d S = lim
Δ u,Δ v→0


k=1

n

f (x(uk , vk ), y(uk , vk ), z(uk , vk )) tu ⨯ tv  Δu Δv

=  
R

f (x(u, v), y(u, v), z(u, v)) tu ⨯ tv d A.

Note  »

The  factor  tu ⨯ tv  d A  plays  an analogous  role  in surface  integrals  as the  factor  

r ' (t ) d t  in line  integrals.

If R is a rectangular  region,  as we have assumed,  the double  integral  becomes  an iterated  integral  with 

respect  to u and v  with constant  limits.  In the special  case that f (x, y , z) = 1, the integral  gives the surface  area 

of S.

DEFINITION Surface  Integral  of Scalar-Valued  Functions  on Parameterized  Surfaces

Let f  be a continuous  scalar-valued  function  on a smooth  surface  S given parametrically  by 

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉, where  u and v  vary over R = {(u, v) : a ≤ u ≤ b, c ≤ v ≤ d}. 

Assume  also that the tangent  vectors  tu =
∂r

∂u
=  ∂x

∂u
,

∂y

∂u
,

∂z

∂u
 and tv =

∂r

∂v
=  ∂x

∂v
,

∂y

∂v
,

∂z

∂v
 are 

continuous  on R and the normal  vector  tu ⨯ tv  is nonzero  on R. Then the surface  integral  of f  over 

S is 

 
S

f (x, y , z) d S =  
R

f (x(u, v), y(u, v), z(u, v)) tu ⨯ tv  d A.

If f (x, y , z) = 1, the integral  equals  the surface  area of S.

Note  »

The  condition  that  tu ⨯ tv  be  nonzero  means  tu  and  tv  are  nonzero  and  not  

parallel.  If tu ⨯ tv ≠ 0 at all  points,  then  the  surface  is smooth. The  value  of the  

integral  is independent  of the  parameterization  of S .

EXAMPLE  2 Surface  area of a cylinder  and sphere

Find the surface  area of the following  surfaces.

a. A cylinder  with radius  a > 0 and height  h (excluding  the circular  ends)

b. A sphere  of radius  a

SOLUTION   »

The critical  step is evaluating  the normal  vector  tu ⨯ tv . It needs  to be done only once for any given surface.

a. As shown  before,  a parametric  description  of the cylinder  is

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 = 〈a cos u, a sin u, v〉,

where  0 ≤ u ≤ 2 π and 0 ≤ v ≤ h. A normal  vector  is
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tu ⨯ tv =

i j k

∂x

∂u

∂y

∂u

∂z

∂u

∂x

∂v

∂y

∂v

∂z

∂v

Definition of cross product

=

i j k

-a sin u a cos u 0

0 0 1

Evaluate derivatives .

= 〈a cos u, a sin u, 0〉. Compute cross product .

Notice  that the normal  vector  points  outward  from the cylinder,  away from the z-axis (Figure  17.49 ). It now 

follows  that

tu ⨯ tv  = a2 cos2 u + a2 sin2 u = a.

Setting  f (x, y , z) = 1, the surface  area of the cylinder  is

 
S

1 d S =  
R

tu ⨯ tv 
a

d A = 
0

2 π
0

h

a d v d u = 2 π a h,

confirming  the formula  for the surface  area of a cylinder  (excluding  the ends).
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Figure 17.49

b. A parametric  description  of the sphere  is

r(u, v) = 〈a sin u cos v, a sin u sin v, a cos u〉,
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where  0 ≤ u ≤ π and 0 ≤ v ≤ 2 π. A normal  vector  is

tu ⨯ tv =

i j k

a cos u cos v a cos u sin v -a sin u

-a sin u sin v a sin u cos v 0

= a2 sin2 u cos v, a2 sin2 u sin v, a2 sin u cos u.

Computing  tu ⨯ tv  requires  several  steps (Exercise  70). However,  the needed  result  is quite  simple:  

tu ⨯ tv  = a2 sin u and the normal  vector  tu ⨯ tv  points  outward  from the surface  of the sphere  (Figure  17.50 ). 

With f (x, y , z) = 1, the surface  area of the sphere  is

 
S

1 d S =  
R

tu ⨯ tv 
a2 sin u

d A = 
0

2 π
0

π
a2 sin u d u d v = 4 π a2,

confirming  the formula  for the surface  area of a sphere.
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Move ⊕ to change the
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Figure 17.50

Note  »

Recall  that  for  the  sphere,  u = φ and  v = θ, where  φ and  θ are  spherical  

coordinates.  The  element  of surface  area  in spherical  coordinates  is 

d S = a2 sin φ d φ d θ.

Related  Exercises  19, 22  ◆
EXAMPLE  3 Surface  area of a partial  cylinder

Find the surface  area of the cylinder  {(r , θ) : r = 4, 0 ≤ θ ≤ 2 π} between  the planes  z = 0 and z = 16 - 2 x  (exclu -

ding the top and bottom  surfaces).
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SOLUTION   »

Figure  17.51  shows  the cylinder  bounded  by the two planes.  

Move ⊕ to change the

point u, v .
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Figure 17.51

With u = θ and v = z, a parametric  description  of the cylinder  is

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 = 〈4 cos u, 4 sin u, v〉.

The challenge  is finding  the limits  on v, which  is the z-coordinate.  The plane z = 16 - 2 x  intersects  the cylinder  

in an ellipse;  along this ellipse,  as u varies  between  0 and 2 π, the parameter  v  also changes.  To find the relation -

ship between  u and v  along this intersection  curve,  notice  that at any point  on the cylinder,  we have x = 4 cos u 

(remember  that u = θ). Making  this substitution  in the equation  of the plane,  we have

z = 16 - 2 x = 16 - 2 (4 cos u) = 16 - 8 cos u.

Substituting  v = z, the relationship  between  u and v  is v = 16 - 8 cos u (Figure  17.52 ). 
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Move ⊕ to change the
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Region of integration in the uv-plane is

R = {(u, v) : 0 ≤ u ≤ 2 π, 0 ≤ v ≤ 16 - 8 cos

u}.

Figure 17.52

Therefore,  the region  of integration  in the uv-plane  is

R = {(u, v) : 0 ≤ u ≤ 2 π, 0 ≤ v ≤ 16 - 8 cos u}.

Recall  from Example  2a that for the cylinder,  tu ⨯ tv  = a = 4. Setting  f (x, y , z) = 1, the surface  integral  for the 

area is

 
S

1 d S =  
R

tu ⨯ tv 
4

d A

= 
0

2 π
0

16-8 cos u

4 d v d u

= 4 
0

2 π
(16 - 8 cos u) d u Evaluate inner integral .

= 4 (16 u - 8 sin u) 
0

2 π
Evaluate outer integral .

= 128 π. Simplify .

Related  Exercise  24  ◆
EXAMPLE  4 Average  temperature  on a sphere

The temperature  on the surface  of a sphere  of radius  a varies  with latitude  according  to the function  

T (φ, θ) = 10 + 50 sin φ, for 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2 π (φ and θ are spherical  coordinates,  so the temperature  is 10° 

at the poles,  increasing  to 60° at the equator).  Find the average  temperature  over the sphere.

SOLUTION   »

We use the parametric  description  of a sphere.  With u = φ and v = θ, the temperature  function  becomes  

f (u, v) = 10 + 50 sin u. Integrating  the temperature  over the sphere  using the fact that tu ⨯ tv  = a2 sin u (Exa-

mple 2b), we have
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S

(10 + 50 sin u) d S =  
R

(10 + 50 sin u) tu ⨯ tv 
a2 sin u

d A

= 
0

π
0

2 π
(10 + 50 sin u) a2 sin u d v d u

= 2 π a2 
0

π
(10 + 50 sin u) sin u d u Evaluate inner integral .

= 10 π a2(4 + 5 π). Evaluate outer integral .

The average  temperature  is the integrated  temperature  10 π a2(4 + 5 π) divided  by the surface  area of the sphere  

4 π a2, so the average  temperature  is 
20 + 25 π

2
≈ 49.3 °.

Related  Exercise  42  ◆
Surface  Integrals  on Explicitly  Defined  Surfaces

Suppose  a smooth  surface  S is defined  not parametrically,  but explicitly,  in the form z = g (x, y) over a region  R 

in the x y-plane.  Such a surface  may be treated  as a parameterized  surface.  We simply  define  parameters  to be 

u = x  and v = y . Making  these substitutions  into the expression  for tu  and tv , a short  calculation  (Exercise  71) 

reveals  that tu = tx = 〈1, 0, zx〉, tv = ty = 0, 1, zy , and the required  normal  vector  is 

tx ⨯ ty = -zx , -zy , 1.

It follows  that

tx ⨯ ty  = -zx , -zy , 1 = zx
2 + zy

2 + 1 .

With these observations,  the surface  integral  over S can be expressed  as a double  integral  over a region  R in the 

x y-plane.

Note  »

THEOREM  17.14 Evaluation  of Surface  Integrals  of Scalar-Valued  Functions  on Explicitly  

Defined  Surfaces

Let f  be a continuous  function  on a smooth  surface  S given by z = g (x, y), for (x, y) in a region  R. 

The surface  integral  of f  over S is 

 
S

f (x, y , z) d S =  
R

f (x, y , g (x, y)) zx
2 + zy

2 + 1 d A.

If f (x, y , z) = 1, the surface  integral  equals  the area of the surface.

Note  »

EXAMPLE  5 Area of a roof over an ellipse

Find the area of the surface  S that lies in the plane z = 12 - 4 x - 3 y  directly  above  the region  R bounded  by the 

ellipse  
x2

4
+ y2 = 1 (Figure  17.53 ).
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show
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show labels

show grids

Figure 17.53

SOLUTION   »

Because  we are computing  the area of the surface,  we take f (x, y , z) = 1. Note that zx = -4 and zy = -3, so the 

factor  zx
2 + zy

2 + 1  has the value (-4)2 + (-3)2 + 1 = 26  (a constant  because  the surface  is a plane).  The 

relevant  surface  integral  is

 
S

1 d S =  
R

zx
2 + zy

2 + 1

26

d A = 26  
R

d A.

The double  integral  that remains  is simply  the area of the region  R bounded  by the ellipse.  Because  the ellipse  

has semiaxes  of length  a = 2 and b = 1, its area is π a b = 2 π. Therefore,  the area of S is 2 π 26 .

This result  has a useful  interpretation.  The plane  surface  S is not horizontal,  so it has a greater  area than 

the horizontal  region  R beneath  it. The factor  that converts  the area of R to the area of S is 26 . Notice  that if 

the roof were horizontal,  then the surface  would  be z = c, the area conversion  factor  would  be 1, and the area of 

the roof would  equal  the area of the floor beneath  it.

Related  Exercises  29–30  ◆
Quick Check 4   The plane z = y  forms  a 45 ° angle  with the x y-plane.  Suppose  the plane is the roof of a 

room and the x y-plane  is the floor of the room.  Then 1 ft2 on the floor becomes  how many  square  feet 

when projected  on the roof?   ◆
Answer  »

EXAMPLE  6 Mass of a conical  sheet

A thin conical  sheet  is described  by the surface  z = x2 + y21/2
, for 0 ≤ z ≤ 4. The density  of the sheet  in gcm2 is 
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ρ = f (x, y , z) = (8 - z) (decreasing  from 8 gcm2 at the vertex  to 4 gcm2 at the top of the cone;  Figure  17.54 ). 

What is the mass of the cone?

show

z = x 2
+ y 2

region R

show labels

show grids

Figure 17.54

SOLUTION   »

We find the mass by integrating  the density  function  over the surface  of the cone.  The projection  of the cone in 

the x y-plane  is found  by setting  z = 4 (the top of the cone)  in the equation  of the cone.  We find that 

x2 + y21/2
= 4; therefore,  the region  of integration  is the disk R = (x, y) : x2 + y2 ≤ 16. The next step is to 

compute  zx  and zy  in order  to evaluate  zx
2 + zy

2 + 1 . Differentiating  z2 = x2 + y2 implicitly  gives 2 z zx = 2 x, 

or zx =
x

z
. Similarly,  zy =

y

z
. Using  the fact that z2 = x2 + y2, we have

zx
2 + zy

2 + 1 =
x

z

2

+
y

z

2

+ 1 =
x2 + y2

z2

1

+ 1 = 2 .

To integrate  the density  over the conical  surface,  we set f (x, y , z) = 8 - z. Replacing  z  in the integrand  by 

r = x2 + y21/2
 and using polar  coordinates,  the mass in grams  is given by

16 Chapter 17 •  Vector Calculus

Copyright © 2019 Pearson Education, Inc.



 
S

f (x, y , z) d S =  
R

f (x, y , z) zx
2 + zy

2 + 1

2

d A

= 2  
R

(8 - z) d A Substitute .

= 2  
R

8 - x2 + y2  d A z = x2 + y2

= 2 
0

2 π
0

4

(8 - r) r d r dθ Polar coordinates

= 2 
0

2 π
4 r 2 -

r 3

3 0

4

dθ Evaluate inner integral .

=
128 2

3


0

2 π
dθ Simplify .

=
256 π 2

3
≈ 379. Evaluate outer integral .

As a check,  note that the surface  area of the cone is π r r 2 + h2 ≈ 71 cm2. If the entire  cone had the maximum  

density  ρ = 8 gcm2, its mass would  be approximately  568 g. If the entire  cone had the minimum  density  

ρ = 4 gcm2, its mass would  be approximately  284 g. The actual  mass is between  these extremes  and closer  to 

the low value because  the cone is lighter  at the top, where  the surface  area is greater.

Related  Exercise  36  ◆
Table 17.3 summarizes  the essential  relationships  for the explicit  and parametric  descriptions  of cylin-

ders,  cones,  spheres,  and paraboloids.  The listed normal  vectors  are chosen  to point  away from the z-axis.
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Table 17.3

Explicit Description z = g (x , y) Parametric Description

Surface Equation Normal vector ;

± -zx , -zy , 1; -zx ,

Equation Normal vector

magnitude

tu ⨯ tv ; tu ⨯

Cylinder
x2 + y2 = a2,

0 ≤ z ≤ h
〈x, y , 0〉; a

r = 〈a cos u, a sin u, v〉,

0 ≤ u ≤ 2 π, 0 ≤ v ≤ h

〈a cos u, a sin

Cone
z2 = x2 + y2,

0 ≤ z ≤ h
 x

z
,

y

z
, -1; 2

r = 〈v cos u, v sin u, v〉,

0 ≤ u ≤ 2 π, 0 ≤ v ≤ h

〈v cos u, v sin

2 v

Sphere x2 + y2 + z2 = a2  x

z
,

y

z
, 1;

a

z

r = 〈a sin u cos v, a sin

u sin v,

a cos u〉, 0 ≤ u ≤ π,

0 ≤ v ≤ 2 π

a2 sin2 u cos

n2 u sin v,

a2 sin u cos u

a2 sin u

Paraboloid
z = x2 + y2,

0 ≤ z ≤ h
〈2 x, 2 y , -1〉; 1 + 4 x2 + y2

r = v cos u, v sin u, v2,

0 ≤ u ≤ 2 π, 0 ≤ v ≤ h

2 v2 cos u, 2

-v; v 1 + 4

Quick Check 5   Explain  why the explicit  description  for a cylinder  x2 + y2 = a2 cannot  be used for a 

surface  integral  over a cylinder  and a parametric  description  must  be used.   ◆
Answer  »

The cylinder  x2 + y2 = a2 does not represent  a function,  so zx  and zy  cannot  be computed.

Surface Integrals of Vector Fields  »

Before  beginning  a discussion  of surface  integrals  of vector  fields,  two technical  issues  about  surfaces  and 

normal  vectors  must  be addressed.

The surfaces  we consider  in this text are called  two-sided, or orientable, surfaces.  To be orientable,  a 

surface  must  have the property  that the normal  vectors  vary continuously  over the surface.  In other  words,  

when you walk on any closed  path on an orientable  surface  and return  to your starting  point,  your head must  

point  in the same direction  it did when you started.  The most  famous  example  of a nonorientable surface  is the 

Möbius  strip (Figure  17.55 ). Suppose  you start walking  along the surface  of the Möbius  strip at a point  P  with 

your head pointing  upward.  When  you return  to P , your head points  in the opposite  direction,  or downward.  

Therefore,  the Möbius  strip  is not orientable.
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Move the ⊗ symbols to

change the rectangle

R.

Move ⊕ to change the

point u, v .

a

show labels

show grids

⊗

⊗

-1
u

π
2

π

3 π
2

2 π

v

Figure 17.55

At any point  of a parameterized  orientable  surface,  there are two unit normal  vectors.  Therefore,  the 

second  point  concerns  the orientation  of the surface  or, equivalently,  the choice  of the direction  of the normal  

vector.  Once the direction  of the normal  vector  is determined,  the surface  becomes  oriented.

We make the common  assumption  that—unless  specified  otherwise—a  closed  orientable  surface  that 

fully encloses  a region  (such as a sphere)  is oriented  so that the normal  vectors  point  in the outward  direction . 

For a surface  that is not closed,  we assume  that the orientation  is specified  in some way. For example,  we might  

specify  that the normal  vectors  for a particular  surface  point  in the positive  z-direction;  that is, in an upward  

direction  (Figure  17.56 ).

Figure 17.56

Now recall  that the parameterization  of a surface  defines  a normal  vector  tu ⨯ tv  at each point.  In many  

cases,  the normal  vectors  are consistent  with the specified  orientation,  in which  case no adjustments  need to be 

Section 17.6  Surface Integrals 19

Copyright © 2019 Pearson Education, Inc.



made.  If the direction  of tu ⨯ tv  is not consistent  with the specified  orientation,  then the sign of tu ⨯ tv  must  be 

reversed  before  doing  calculations.  This process  is demonstrated  in the following  examples.

Flux Integrals

It turns out that the most  common  surface  integral  of a vector  field is a flux integral . Consider  a vector  field 

F = 〈f , g , h〉, continuous  on a region  in ℝ3, that represents  the flow of a fluid or the transport  of a substance.  

Given a smooth  oriented  surface  S, we aim to compute  the net flux of the vector  field across  the surface.  In a 

small  region  containing  a point  P , the flux across  the surface  is proportional  to the component  of F in the 

direction  of the unit normal  vector  n at P . If θ is the angle  between  F and n, then this component  is 

F ·n = F n cos θ = F cos θ (because  n = 1; Figure  17.57 ). We have the following  special  cases.

 If F and the unit normal  vector  are aligned  at P  (θ = 0), then the component  of F in the direction  n is 

F ·n = F; that is, all of F flows across  the surface  in the direction  of n.

 If F and the unit normal  vector  point  in opposite  directions  at P  (θ = π), then the component  of F in the 

direction  n is F ·n = -F; that is, all of F flows across  the surface  in the direction  opposite  to that of n.

 If F and the unit normal  vector  are orthogonal  at P  (θ = π
2

), then the component  of F in the direction  n is 

F ·n = 0; that is, none of F flows across  the surface  at that point.

Move ⊕ to change the

point u, v .

show field on S

show labels

show grids

a
u

c

v

F · n > 0
▼
▲
F0

θ
▼

0 π
2

π

θ is the angle between n and F.

Figure 17.57

The flux integral,  denoted   
S

F ·n d S or  
S

F ·d S, simply  adds up the components  of F normal  to the 

surface  at all points  of the surface.  Notice  that F ·n is a scalar-valued  function.  Here is how the flux integral  is 

computed.

20 Chapter 17 •  Vector Calculus

Copyright © 2019 Pearson Education, Inc.



Suppose  the smooth  oriented  surface  S is parameterized  in the form

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉,

where  u and v  vary over a region  R in the uv-plane.  The required  vector  normal  to the surface  at a point  is 

tu ⨯ tv , which  we assume  to be consistent  with the orientation  of S. Therefore,  the unit normal  vector  consistent  

with the orientation  is n =
tu ⨯ tv

tu ⨯ tv  . Appealing  to the definition  of the surface  integral  for parameterized  sur-

faces,  the flux integral  is

 
S

F ·n d S =  
R

F ·n tu ⨯ tv  d A Definition of surface integral

=  
R

F ·
tu ⨯ tv

tu ⨯ tv 
n

tu ⨯ tv  d A Substitute for n.

=  
R

F · (tu ⨯ tv ) d A. Convenient cancellation

The remarkable  occurrence  in the flux integral  is the cancellation  of the factor  tu ⨯ tv .
Note  »

If tu ⨯ tv  is not  consistent  with  the  specified  orientation,  its  sign  must  be 

reversed.

The special  case in which  the surface  S is specified  in the form z = s(x, y) follows  directly  by recalling  that 

the required  normal  vector  to the surface  is tu ⨯ tv = -zx , -zy , 1. In this case,  with F = 〈f , g , h〉, the integrand  

of the surface  integral  is F · (tu ⨯ tv ) = -f zx - g zy + h.

DEFINITION Surface  Integral  of a Vector  Field

Suppose  F = 〈f , g , h〉 is a continuous  vector  field on a region  of ℝ3 containing  a smooth  oriented  

surface  S. If S is defined  parametrically  as r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉, for (u, v) in a region  

R, then 

 
S

F ·n d S =  
R

F · (tu ⨯ tv ) d A,

where  tu =
∂r

∂u
=  ∂x

∂u
,

∂y

∂u
,

∂z

∂u
 and tv =

∂r

∂v
=  ∂x

∂v
,

∂y

∂v
,

∂z

∂v
 are continuous  on R, the normal  

vector  tu ⨯ tv  is nonzero  on R, and the direction  of the normal  vector  is consistent  with the 

orientation  of S. If S is defined  in the form z = s(x, y), for (x, y) in a region  R, then 

 
S

F ·n d S =  
R

-f zx - g zy + h d A.

Note  »
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The  value  of the  surface  integral  is independent  of the  parameterization.  

However,  in contrast  to a surface  integral  of a scalar-valued  function,  the  value  

of a surface  integral  of a vector  field  depends  on  the  orientation  of the  surface.  

Changing  the  orientation  changes  the  sign  of the  result.

EXAMPLE  7 Rain on a roof

Consider  the vertical  vector  field F = 〈0, 0, -1〉, corresponding  to a constant  downward  flow. Find the flux in the 

downward  direction  across  the surface  S, which  is the plane  z = 4 - 2 x - y  in the first octant.

SOLUTION   »

In this case,  the surface  is given explicitly.  With z = 4 - 2 x - y , we have zx = -2 and zy = -1. Therefore,  a vector  

normal  to the plane  is -zx , -zy , 1 = 〈2, 1, 1〉, which  points  upward (the z-component  of the vector  is positive).  

Because  we are interested  in the downward flux of F across  S, the surface  must  be oriented  so the normal  

vectors  point  in the negative  z-direction.  So, we take the normal  vector  to be 〈-2, -1, -1〉 (Figure  17.58 ). 

Letting  R be the region  in the x y-plane  beneath  S and noting  that F = 〈f , g , h〉 = 〈0, 0, -1〉, the flux integral  is

 
S

F ·n d S =  
R

〈0, 0, -1〉 ·〈-2, -1, -1〉 d A =  
R

d A = area (R).

show

S: z = 4 - 2 x - y

region R

field on S

normal vectors

show labels

show grids

Figure 17.58

The base R is a triangle  in the x y-plane  with vertices  (0, 0), (2, 0), and (0, 4), so its area is 4. Therefore,  the 

downward flux across  S is 4. This flux integral  has an interesting  interpretation.  If the vector  field F represents  

the rate of rainfall  with units  of, say, gm2 per unit time,  then the flux integral  gives the mass of rain (in grams)  

that falls on the surface  in a unit of time.  This result  says that (because  the vector  field is vertical)  the mass of 

rain that falls on the roof equals  the mass that would  fall on the floor beneath  the roof if the roof were not there.  

This property  is explored  further  in Exercise  73.
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Related  Exercises  43–44  ◆
EXAMPLE  8 Flux of the radial  field

Consider  the radial  vector  field F = 〈f , g , h〉 = 〈x, y , z〉. Is the upward  flux of the field greater  across  the hemi-

sphere  x2 + y2 + z2 = 1, for z ≥ 0, or across  the paraboloid  z = 1 - x2 - y2, for z ≥ 0? Note that the two surfaces  

have the same base in the x y-plane  and the same high point  (0, 0, 1). Use the explicit  description  for the hemi-

sphere  and a parametric  description  for the paraboloid.

SOLUTION   »

The base of both surfaces  in the x y-plane  is the unit disk R = (x, y) : x2 + y2 ≤ 1, which,  when expressed  in 

polar coordinates,  is the set {(r , θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2 π}. To use the explicit  description  for the hemisphere,  we 

must compute  zx  and zy . Differentiating  x2 + y2 + z2 = 1 implicitly,  we find that zx = -
x

z
 and zy = -

y

z
. There -

fore, the required  normal  vector  is  x

z
,

y

z
, 1, which  points  upward  on the surface.  

Note  »

The flux integral  is evaluated  by substituting  for f , g , h, zx , and zy ; eliminating  z  from the integrand;  and convert -

ing the integral  in x  and y  to an integral  in polar  coordinates:

 
S

F ·n d S =  
R

-f zx - g zy + h d A

=  
R

x
x

z
+ y

y

z
+ z d A Substitute .

=  
R

x2 + y2 + z2

z
d A Simplify .

=  
R

1

z
d A x2 + y2 + z2 = 1

=  
R

1

1 - x2 - y2
d A z = 1 - x2 - y2

= 
0

2 π
0

1 1

1 - r 2
r d r dθ Polar coordinates

= 
0

2 π- 1 - r 2 
0

1

dθ Evaluate inner integral

as an improper integral .

= 
0

2 π
dθ = 2 π. Evaluate outer integral .

For the paraboloid  z = 1 - x2 - y2, we use the parametric  description  (Example  1b or Table  17.3)

r(u, v) = 〈x, y , z〉 = v cos u, v sin u, 1 - v2,

for 0 ≤ u ≤ 2 π and 0 ≤ v ≤ 1. The required  vector  normal  to the surface  is
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tu ⨯ tv =

i j k

-v sin u v cos u 0

cos u sin u -2 v

= -2 v2 cos u, -2 v2 sin u, -v.

Notice  that the normal  vectors  point  downward  on the surface  (because  the z-component  is negative  for 

0 < v ≤ 1). In order  to find the upward  flux,  we negate  the normal  vector  and use the upward  normal  vector

-(tu ⨯ tv ) = 2 v2 cos u, 2 v2 sin u, v.

The flux integral  is evaluated  by substituting  for F = 〈x, y , z〉 and -(tu ⨯ tv ), and then evaluating  an iterated  

integral  in u and v:

 F ·n d S = 
0

1
0

2 πv cos u, v sin u, 1 - v2 ·2 v2 cos u, 2 v2 sin u, v d u d v Susbtitute for F and - (tu ⨯ t

= 
0

1
0

2 πv3 + v d u d v Simplify .

= 2 π v4

4
+

v2

2 0

1

=
3 π
2

. Evaluate integrals .

We see that the upward  flux is greater  for the hemisphere  than for the paraboloid.

Related  Exercises  45, 47  ◆
Quick Check 6   Explain  why the upward  flux for the radial  field in Example  8 is greater  for the 

hemisphere  than for the paraboloid.   ◆
Answer  »

The vector  field is everywhere  orthogonal  to the hemisphere,  so the hemisphere  has 
maximum  flux at every point.

Exercises  »

Getting  Started   »

Practice  Exercises   »

9–14.  Parametric  descriptions   Give a parametric  description  of the form 

r(u, v) = 〈x(u, v), y(u, v), z(u, v)〉 for the following  surfaces.  The descriptions  are not unique.  Specify  the 

required  rectangle  in the uv-plane.

9. The plane  2 x - 4 y + 3 z = 16

10. The cap of the sphere  x2 + y2 + z2 = 16, for 2 2 ≤ z ≤ 4

11. The frustum  of the cone z2 = x2 + y2, for 2 ≤ z ≤ 8

12. The cone z2 = 4 x2 + y2, for 0 ≤ z ≤ 4

13. The portion  of the cylinder  x2 + y2 = 9 in the first octant,  for 0 ≤ z ≤ 3
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14. The cylinder  y2 + z2 = 36, for 0 ≤ x ≤ 9

15–18.  Identify  the surface   Describe  the surface  with the given parametric  representation.

15. r(u, v) = 〈u, v, 2 u + 3 v - 1〉, for 1 ≤ u ≤ 3, 2 ≤ v ≤ 4

16. r(u, v) = 〈u, u + v, 2 - u - v〉, for 0 ≤ u ≤ 2, 0 ≤ v ≤ 2

17. r(u, v) = 〈v cos u, v sin u, 4 v〉, for 0 ≤ u ≤ π, 0 ≤ v ≤ 3

18. r(u, v) = 〈v, 6 cos u, 6 sin u〉, for 0 ≤ u ≤ 2 π, 0 ≤ v ≤ 2

19–24.  Surface  area using  a parametric  description   Find the area of the following  surfaces  using  a 

parametric  description  of the surface.

19. The half cylinder  {(r , θ, z) : r = 4, 0 ≤ θ ≤ π, 0 ≤ z ≤ 7}

20. The plane  z = 3 - x - 3 y  in the first octant

21. The plane  z = 10 - x - y  above  the square  x ≤ 2, y  ≤ 2

22. The hemisphere  x2 + y2 + z2 = 100, for z ≥ 0

23. A cone with base radius  r  and height  h, where  r  and h are positive  constants

24. The cap of the sphere  x2 + y2 + z2 = 4, for 1 ≤ z ≤ 2

25–28.  Surface  integrals  using  a parametric  description   Evaluate  the surface  integral   
S

f (x, y, z) d S 

using a parametric  description  of the surface.

25. f (x, y , z) = x2 + y2, where  S is the hemisphere  x2 + y2 + z2 = 36, for z ≥ 0

26. f (x, y , z) = y , where  S is the cylinder  x2 + y2 = 9, 0 ≤ z ≤ 3

27. f (x, y , z) = x, where  S is the cylinder  x2 + z2 = 1, 0 ≤ y ≤ 3

28. f (ρ, φ, θ) = cos φ, where  S is the part of the unit sphere  in the first octant

29–34.  Surface  area using  an explicit  description   Find the area of the following  surfaces  using  an explicit  

description  of the surface.

29. The part of the plane z = 2 x + 2 y + 4 over the region  R bounded  by the triangle  with vertices  (0, 0), 

(2, 0), and (2, 4)

30. The part of the plane z = x + 3 y + 5 over the region  R = {(x, y} : 1 ≤ x2 + y2 ≤ 4
31. The cone z2 = 4 x2 + y2, for 0 ≤ z ≤ 4

T 32. The trough  z =
1

2
x2, for -1 ≤ x ≤ 1, 0 ≤ y ≤ 4

33. The paraboloid  z = 2 x2 + y2, for 0 ≤ z ≤ 8
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34. The part of the hyperbolic  paraboloid  z = 3 + x2 - y2 above  the sector  

R = (r , θ) : 0 ≤ r ≤ 2 , 0 ≤ θ ≤ π
2



35–38.  Surface  integrals  using  an explicit  description   Evaluate  the surface  integral   
S

f (x, y, z) d S 

using an explicit  representation  of the surface.

35. f (x, y , z) = x y ; S is the plane z = 2 - x - y  in the first octant.

36. f (x, y , z) = x2 + y2; S is the paraboloid  z = x2 + y2, for 0 ≤ z ≤ 1.

37. f (x, y , z) = 25 - x2 - y2; S is the hemisphere  centered  at the origin  with radius  5, for z ≥ 0.

38. f (x, y , z) = ez ; S is the plane  z = 8 - x - 2 y  in the first octant.

39–42.  Average  values

39. Find the average  temperature  on that part of the plane 2 x + 2 y + z = 4 over the square  0 ≤ x ≤ 1, 

0 ≤ y ≤ 1, where  the temperature  is given by T (x, y , z) = e2 x+y+z-3.

T 40. Find the average  squared  distance  between  the origin  and the points  on the paraboloid  

z = 4 - x2 - y2, for z ≥ 0.

41. Find the average  value of the function  f (x, y , z) = x y z  on the unit sphere  in the first octant.

42. Find the average  value of the temperature  function  T (x, y , z) = 100 - 25 z  on the cone z2 = x2 + y2, 

for 0 ≤ z ≤ 2.

43–48.  Surface  integrals  of vector  fields   Find the flux of the following  vector  fields  across  the given 

surface  with the specified  orientation.  You may use either  an explicit  or parametric  description  of the 

surface.

43. F = 〈0, 0, -1〉 across  the slanted  face of the tetrahedron  z = 4 - x - y  in the first octant;  normal  

vectors  point  upward.

44. F = 〈x, y , z〉 across  the slanted  face of the tetrahedron  z = 10 - 2 x - 5 y  in the first octant;  normal  

vectors  point  upward.

45. F = 〈x, y , z〉 across  the slanted  surface  of the cone z2 = x2 + y2, for 0 ≤ z ≤ 1; normal  vectors  point  

upward.

46. F = 〈e-y , 2 z, x y〉 across  the curved  sides of the surface  S = {(x, y , z) : z = cos y , y  ≤ π, 0 ≤ x ≤ 4}; 

normal  vectors  point  upward.

47. F =
r

r3  across  the sphere  of radius  a centered  at the origin,  where  r = 〈x, y , z〉; normal  vectors  point  

outward.

48. F = 〈-y , x, 1〉 across  the cylinder  y = x2, for 0 ≤ x ≤ 1, 0 ≤ z ≤ 4; normal  vectors  point  in the general  

direction  of the positive  y-axis.
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49. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a. If the surface  S is given by {(x, y , z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = 10}, then 

 
S

f (x, y , z) d S = 
0

1
0

1

f (x, y , 10) d x d y .

b. If the surface  S is given by {(x, y , z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, z = x}, then 

 
S

f (x, y , z) d S = 
0

1
0

1

f (x, y , x) d x d y .

c. The surface  r = v cos u, v sin u, v2, for 0 ≤ u ≤ π, 0 ≤ v ≤ 2, is the same as the surface  

r =  v cos 2 u, v sin 2 u, v, for 0 ≤ u ≤ π
2

, 0 ≤ v ≤ 4.

d. Given the standard  parameterization  of a sphere,  the normal  vectors  tu ⨯ tv  are outward  normal  

vectors.

50–53.  Miscellaneous  surface  integrals   Evaluate  the following  integrals  using the method  of your choice.  

Assume  normal  vectors  point  either  outward  or upward.

50.  
S

∇ ln r ·n d S, where  S is the hemisphere  x2 + y2 + z2 = a2, for z ≥ 0, and where  r = 〈x, y , z〉

51.  
S

r d S, where  S is the cylinder  x2 + y2 = 4, for 0 ≤ z ≤ 8, where  r = 〈x, y , z〉

52.  
S

x y z d S, where  S is that part of the plane  z = 6 - y  that lies in the cylinder  x2 + y2 = 4

53. 
S

〈x, 0, z〉
x2 + z2

·n d S, where  S is the cylinder  x2 + z2 = a2, y  ≤ 2

54. Cone and sphere   The cone z2 = x2 + y2, for z ≥ 0, cuts the sphere  x2 + y2 + z2 = 16 along a curve  C .

a. Find the surface  area of the sphere  below  C , for z ≥ 0.

b. Find the surface  area of the sphere  above  C .

c. Find the surface  area of the cone below  C , for z ≥ 0.

T 55. Cylinder  and sphere   Consider  the sphere  x2 + y2 + z2 = 4 and the cylinder  (x - 1)2 + y2 = 1, for 

z ≥ 0. Find the surface  area of the cylinder  inside  the sphere.

56. Flux on a tetrahedron   Find the upward  flux of the field F = 〈x, y , z〉 across  the plane 
x

a
+

y

b
+

z

c
= 1 

in the first octant.  Show that the flux equals  c  times  the area of the base of the region.  Interpret  the 

result  physically.

57. Flux across  a cone   Consider  the field F = 〈x, y , z〉 and the cone z2 =
x2 + y2

a2
, for 0 ≤ z ≤ 1.

a. Show that when a = 1, the outward  flux across  the cone is zero.  Interpret  the result.

b. Find the outward  flux (away  from the z-axis),  for any a > 0. Interpret  the result.

58. Surface  area formula  for cones   Find the general  formula  for the surface  area of a cone with height  

h and base radius a (excluding  the base).
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59. Surface  area formula  for spherical  cap   A sphere  of radius  a is sliced  parallel  to the equatorial  plane  

at a distance  a - h from the equatorial  plane (see figure).  Find the general  formula  for the surface  

area of the resulting  spherical  cap (excluding  the base)  with thickness  h.

Explorations  and Challenges   »

60. Radial  fields  and spheres   Consider  the radial  field F =
r

rp , where  r = 〈x, y , z〉 and p is a real 

number.  Let S be the sphere  of radius  a centered  at the origin.  Show that the outward  flux of F across  

the sphere  is 
4 π

ap-3
. It is instructive  to do the calculation  using both an explicit  and parametric  

description  of the sphere.

61–63.  Heat  flux   The heat flow vector  field for conducting  objects  is F = -k ∇T , where  T (x, y , z) is the 

temperature  in the object  and k > 0 is a constant  that depends  on the material.  Compute  the outward  flux 

of F across  the following  surfaces  S for the given temperature  distributions.  Assume  k = 1.

61. T (x, y , z) = 100 e-x-y ; S consists  of the faces of the cube x ≤ 1, y  ≤ 1, z ≤ 1.

62. T (x, y , z) = 100 e-x2-y 2-z2

; S is the sphere  x2 + y2 + z2 = a2.

63. T (x, y , z) = -ln x2 + y2 + z2; S is the sphere  x2 + y2 + z2 = a2.

64. Flux across  a cylinder   Let S be the cylinder  x2 + y2 = a2, for -L ≤ z ≤ L.

a. Find the outward  flux of the field F = 〈x, y , 0〉 across  S.

b. Find the outward  flux of the field F =
〈x, y , 0〉

x2 + y2p/2
=

r

rp  across  S, where  r is the distance  from 

the z-axis and p is a real number.

c. In part (b), for what  values  of p is the outward  flux finite  as a → ∞ (with L fixed)?

d. In part (b), for what  values  of p is the outward  flux finite  as L → ∞ (with a fixed)?

65. Flux across  concentric  spheres   Consider  the radial  fields  F =
〈x, y , z〉

x2 + y2 + z2p/2
=

r

rp , where  p is a 

real number.  Let S consist  of the spheres  A and B centered  at the origin  with radii  0 < a < b, 

respectively.  The total  outward  flux across  S consists  of the flux out of S across  the outer  sphere  B 

minus  the flux into S across  the inner  sphere  A.

a. Find the total  flux across  S with p = 0. Interpret  the result.

b. Show that for p = 3 (an inverse  square  law),  the flux across  S is independent  of a and b.
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66–69.  Mass  and center  of mass   Let S be a surface  that represents  a thin shell  with density  ρ. The 

moments  about  the coordinate  planes  (see Section  16.6)  are My z =  
S

x ρ(x, y , z) d S, 

Mx z =  
S

y ρ(x, y , z) d S, and Mx y =  
S

z ρ(x, y , z) d S. The coordinates  of the center  of mass of the shell  

are x =
My z

m
, y =

Mx z

m
, and z =

Mx y

m
, where  m is the mass of the shell.  Find the mass and center  of mass of 

the following  shells.  Use symmetry  whenever  possible.

66. The constant-density  hemispherical  shell  x2 + y2 + z2 = a2, z ≥ 0

67. The constant-density  cone with radius  a, height  h, and base in the x y-plane

68. The constant-density  half cylinder  x2 + z2 = a2, -
h

2
≤ y ≤ h

2
, z ≥ 0

69. The cylinder  x2 + y2 = a2, 0 ≤ z ≤ 2, with density  ρ(x, y , z) = 1 + z

70. Outward  normal  to a sphere   Show that tu ⨯ tv  = a2 sin u for a sphere  of radius  a defined  

parametrically  by r(u, v) = 〈a sin u cos v, a sin u sin v, a cos u〉, where  0 ≤ u ≤ π and 0 ≤ v ≤ 2 π.

71. Special  case of surface  integrals  of scalar-valued  functions   Suppose  a surface  S is defined  as 

z = g (x, y) on a region  R. Show that tx ⨯ ty = -zx , -zy , 1 and that 

 
S

f (x, y , z) d S =  
R

f (x, y , g (x, y)) zx
2 + zy

2 + 1 d A.

72. Surfaces  of revolution   Suppose  y = f (x) is a continuous  and positive  function  on [a, b]. Let S be 

the surface  generated  when the graph  of f  on [a, b] is revolved  about  the x-axis.

a. Show that S is described  parametrically  by r(u, v) = 〈u, f (u) cos v, f (u) sin v〉, for a ≤ u ≤ b, 

0 ≤ v ≤ 2 π.

b. Find an integral  that gives the surface  area of S.

c. Apply  the result  of part (b) to the surface  generated  with f (x) = x3, for 1 ≤ x ≤ 2.

d. Apply  the result  of part (b) to the surface  generated  with f (x) = 25 - x21/2
, for 3 ≤ x ≤ 4.

73. Rain on roofs   Let z = s(x, y) define  a surface  over a region  R in the x y-plane,  where  z ≥ 0 on R. 

Show that the downward  flux of the vertical  vector  field F = 〈0, 0, -1〉 across  S equals  the area of R. 

Interpret  the result  physically.

74. Surface  area of a torus

a. Show that a torus with radii  R > r  (see figure)  may be described  parametrically  by 

r(u, v) = 〈(R + r cos u) cos v, (R + r cos u) sin v, r sin u〉, for 0 ≤ u ≤ 2 π, 0 ≤ v ≤ 2 π.

b. Show that the surface  area of the torus is 4 π2 R r .
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75. Surfaces  of revolution—single  variable   Let f  be differentiable  and positive  on the interval  [a, b]. 

Let S be the surface  generated  when the graph  of f  on [a, b] is revolved  about  the x-axis.  Use 

Theorem  17.14 to show that the area of S (as given in Section  6.6) is 


a

b

2 π f (x) 1 + f ' (x)2 d x.
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