
17.5 Divergence and Curl

Green’s  Theorem  sets the stage for the final  act in our exploration  of calculus.  The last four sections  of this 

chapter  have the following  goal:  to lift both forms  of Green’s  Theorem  out of the plane  (ℝ2) and into space  (ℝ3). 

It is done as follows.

 The circulation  form of Green’s  Theorem  relates  a line integral  over a simple  closed  oriented  curve  in the 

plane to a double  integral  over the enclosed  region.  In an analogous  manner,  we will see that Stokes’  

Theorem (Section  17.7)  relates  a line integral  over a simple  closed  oriented  curve  in ℝ3 to a double  integral  

over a surface  whose  boundary  is the same curve.

 The flux form of Green’s  Theorem  relates  a line integral  over a simple  closed  oriented  curve  in the plane to a 

double  integral  over the enclosed  region.  Similarly,  the Divergence  Theorem  (Section  17.8)  relates  an integral  

over a closed  oriented  surface  in ℝ3 to a triple  integral  over the region  enclosed  by that surface.

In order  to make these extensions,  we need a few more tools.

 The two-dimensional  divergence  and two-dimensional  curl must  be extended  to three dimensions  (this 

section).

 The idea of a surface  integral  must  be introduced  (Section  17.6).

The Divergence  »

Recall  that in two dimensions  the divergence  of the vector  field F = 〈f , g 〉 is 
∂ f

∂x
+
∂g

∂y
. The extension  to three 

dimensions  is straightforward.  If F = 〈f , g , h〉 is a differentiable  vector  field defined  on a region  of ℝ3, the 

divergence  is 
∂ f

∂x
+
∂g

∂y
+
∂h

∂z
.  The interpretation  of the three-dimensional  divergence  is much  the same as it is 

in two dimensions.  It measures  the expansion  or contraction  of the vector  field at each point.  If the divergence  

is zero at all points  of a region,  the vector  field is source  free  on that region.

Note  »

Recall  the del operator  ∇ that was introduced  in Section  15.5 to define  the gradient:  

∇ = i
∂
∂x

+ j
∂
∂y

+ k
∂
∂z

=  ∂
∂x

,
∂
∂y

,
∂
∂z

.

This object  is not really  a vector;  it is an operation  that is applied  to a function  or a vector  field.  Applying  it 

directly  to a scalar  function  f  results  in the gradient  of f :

∇ f =
∂ f

∂x
i +

∂ f

∂y
j +

∂ f

∂z
k = fx , fy , fz.

However,  if we form the dot product  of ∇ and a vector  field F = 〈f , g , h〉, the result  is 

∇ ·F =  ∂
∂x

,
∂
∂y

,
∂
∂z

 ·〈f , g , h〉 = ∂ f

∂x
+
∂g

∂y
+
∂h

∂y
,

which  is the divergence  of F, also denoted  div F. Like all dot products,  the divergence  is a scalar;  in this case,  it is 

a scalar-valued  function.

Note  »
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DEFINITION Divergence  of a Vector  Field

The divergence of a vector  field F = 〈f , g , h〉 that is differentiable  on a region  of ℝ3 is 

div F = ∇ ·F =
∂ f

∂x
+
∂g

∂y
+
∂h

∂z
.

If ∇ ·F = 0, the vector  field is source  free .

EXAMPLE  1 Computing  the divergence

Compute  the divergence  of the following  vector  fields.

a. F = 〈x, y , z〉     (a radial  field)

b. F = 〈-y , x - z, y〉     (a rotation  field)

c. F = 〈-y , x, z〉     (a spiral  flow)

SOLUTION   »

a. The divergence  is ∇ ·F = ∇ ·〈x, y , z〉 = ∂x

∂x
+
∂y

∂y
+
∂z

∂z
= 1 + 1 + 1 = 3. Because  the divergence  is positive,  

the flow expands  outward  at all points  (Figure  17.38 ).

b. The divergence  is 

∇ ·F = ∇ ·〈-y , x - z, y〉 = ∂ (-y)

∂x
+
∂ (x - z)

∂y
+
∂y

∂z
= 0 + 0 + 0 = 0,

so the field is source-free.

c. This field is a combination  of the two-dimensional  rotation  field F = 〈-y , x〉 and a vertical  flow in the z-

direction;  the net effect  is a field that spirals  upward  for z > 0 and spirals  downward  for z < 0. The divergence  is 

∇ ·F = ∇ ·〈-y , x, z〉 = ∂ (-y)

∂x
+
∂x

∂y
+
∂z

∂z
= 0 + 0 + 1 = 1.

The rotational  part of the field in x  and y  does not contribute  to the divergence.  However,  the z-component  of 

the field produces  a nonzero  divergence  (Figure  17.38).
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show a

radial field

show a

spiral flow

show labels

Figure 17.38

Related  Exercises  10–11  ◆
Divergence  of a Radial  Vector  Field

The vector  field considered  in Example  1a is just one of many  radial  fields  that have important  applications  (for 

example,  the inverse  square  laws of gravitation  and electrostatics).  The following  example  leads to a general  

result  for the divergence  of radial  vector  fields.

Quick Check 1   Show that if a vector  field has the form F = 〈f (y , z), g (x, z), h(x, y)〉, then div F = 0.  ◆
Answer  »

EXAMPLE  2 Divergence  of a radial  field

Compute  the divergence  of the radial  vector  field 

F =
r

r =
〈x, y , z〉

x2 + y2 + z2
.

SOLUTION   »

This radial  field has the property  that it is directed  outward  from the origin  and all vectors  have unit length  

(F  = 1). Let’s  compute  one piece  of the divergence;  the others  follow  the same pattern.  Using  the Quotient  

Rule,  the derivative  with respect  to x  of the first component  of F is 
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∂
∂x

x

x2 + y2 + z21/2 =
x2 + y2 + z21/2 - x2x2 + y2 + z2-1/2

x2 + y2 + z2
Quotient Rule

=
r - x2 r-1

r2 x2 + y2 + z2 = r

=
r2 - x2

r3 . Simplify .

A similar  calculation  of the y- and z-derivatives  yields  
r2 - y2

r3  and 
r2 - z2

r3 , respectively.  Adding  the three 

terms,  we find that 

∇ ·F =
r2 - x2

r3 +
r2 - y2

r3 +
r2 - z2

r3
= 3

r2
r3 -

x2 + y2 + z2

r3 Collect terms.

=
2

r . x2 + y2 + z2 = r2

Related  Exercise  18  ◆
Examples  1a and 2 give two special  cases  of the following  theorem  about  the divergence  of radial  vector  

fields (Exercise  73).

THEOREM  17.10 Divergence  of Radial  Vector  Fields

For a real number  p, the divergence  of the radial  vector  field 

F =
r

rp =
〈x, y , z〉

x2 + y2 + z2p/2 is ∇ ·F =
3 - p

rp .

EXAMPLE  3 Divergence  from a graph

To gain some intuition  about  the divergence,  consider  the two-dimensional  vector  field F = 〈f , g 〉 = x2, y and 

a circle  C  of radius  2 centered  at the origin  (Figure  17.39 ).

a. Without  computing  it, determine  whether  the two-dimensional  divergence  is positive  or negative  at the 

point  Q(1, 1). Why?

b. Confirm  your conjecture  in part (a) by computing  the two-dimensional  divergence  at Q.

c. Based on part (b), over what  regions  within  the circle  is the divergence  positive  and over what  regions  

within  the circle  is the divergence  negative?

d. By inspection  of the figure,  on what part of the circle  is the flux across  the boundary  outward?  Is the net 

flux out of the circle  positive  or negative?
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show

∇ ·F < 0

∇ ·F > 0

show

vector field

field points

labels

grids

Move the symbol ⊕ to

move point P.

P

Q(1, 1)

1 2
x

1

2

y

∇ ·F < 0 for x < -
1

2
∇ ·F > 0 for x > -

1

2

F = x2, y

Figure 17.39

SOLUTION   »

a. At Q(1, 1) the x-component  and the y-component  of the field are increasing  ( fx > 0 and gy > 0), so the 

field is expanding  at that point  and the two-dimensional  divergence  is positive.

b. Calculating  the two-dimensional  divergence,  we find that 

∇ ·F =
∂
∂x

x2 + ∂
∂y

(y) = 2 x + 1.

At Q(1, 1) the divergence  is 3, confirming  part (a).

Note  »

To understand  the  conclusion  reached  in the  solution  to Example  3a,  note  that  

as you  move  through  the  point  Q  from  left  to right,  the  horizontal  components  

of the  vectors  increase  in length  ( fx > 0). As  you  move  through  the  point  Q  in 

the  upward  direction,  the  vertical  components  of the  vectors  also  increase  in 

length  (gy > 0).

c. From part (b) we see that ∇ ·F = 2 x + 1 > 0 for x > -
1

2
 and ∇ ·F < 0 for x < -

1

2
. To the left of the line 
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x = -
1

2
 the field is contracting  and to the right of the line the field is expanding.

d. Using Figure  17.39,  it appears  that the field is tangent  to the circle  at two points  with x ≈ -1. For points  on 

the circle  with x < -1, the flow is into the circle;  for points  on the circle  with x > -1, the flow is out of the circle.  

It appears  that the net outward  flux across  C  is positive.  The points  where  the field changes  from inward  to 

outward  may be determined  exactly  (Exercise  46).

Related  Exercises  21–22  ◆
Quick Check 2   Verify  the claim made  in part (d) of Example  3 by showing  that the net outward  flux of F 

across  C  is positive.  (Hint: If you use Green’s  Theorem  to evaluate  the integral  
C

f d y - g d x, convert  to 

polar coordinates.) ◆
Answer  »

The net outward  flux is 4 π

The Curl  »
Note  »

Review:  The  two-dimensional  curl  gx - fy  measures  the  rotation  of a vector  

field  at a point.  The  circulation  form  of Green’s  Theorem  implies  that  if the  two-

dimensional  curl  of a vector  field  is zero  throughout  a simply  connected  

region,  then  the  circulation  on  the  boundary  of the  region  is also  zero.  If the  

curl  is nonzero,  Green’s  Theorem  gives  the  circulation  along  the  curve.

Just as the divergence  ∇ ·F is the dot product  of the del operator  and F, the three-dimensional  curl is the cross  

product  ∇ ⨯ F. If we formally  use the notation  for the cross  product  in terms of a 3×3 determinant,  we obtain  

the definition  of the curl:  

∇ ⨯ F =

i j k

∂
∂x

∂
∂y

∂
∂z

f g h

⟵ Unit vectors

⟵ Components of ∇
⟵ Components of F

=
∂h

∂y
-
∂g

∂z
i +

∂ f

∂z
-
∂h

∂x
j +

∂g

∂x
-
∂ f

∂y
k

The curl of a vector  field,  also denoted  curl F, is a vector  with three components.  Notice  that the k-

component  of the curl (gx - fy ) is the two-dimensional  curl,  which  gives the rotation  in the xy-plane  at a point.  

The i- and j-components  of the curl correspond  to the rotation  of the vector  field in planes  parallel  to the yz-

plane (orthogonal  to i) and in planes  parallel  to the xz-plane  (orthogonal  to j) (Figure  17.40 ).
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show ∇ ⨯ F

show F = f , g, h 

Point P (3, 2, 2 )

x

y

z

show

around ∇ ⨯ F

i - component of ∇ ⨯ F

j - component of ∇ ⨯ F

k - component of ∇ ⨯ F

Show values for ∇ ⨯ F 

along with i-, j-, and

k-components of ∇ ⨯ F .

show labels

Figure 17.40

DEFINITION Curl of a Vector  Field

The curl of a vector  field F = 〈f , g , h〉 that is differentiable  on a region  of ℝ3 is 

∇ ⨯ F = curl F

=
∂h

∂y
-
∂g

∂z
i +

∂ f

∂z
-
∂h

∂x
j +

∂g

∂x
-
∂ f

∂y
k .

If ∇ ⨯ F = 0, the vector  field is irrotational.

Curl of a General  Rotation  Vector  Field

We can clarify  the physical  meaning  of the curl by considering  the vector  field F = a ⨯ r, where  a = 〈a1, a2, a3〉 is 

a nonzero  constant  vector  and r = 〈x, y , z〉. Writing  out its components,  we see that 
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F = a ⨯ r =

i j k

a1 a2 a3

x y z

= (a2 z - a3 y) i + (a3 x - a1 z) j + (a1 y - a2 x) k.

This vector  field is a general  rotation  field  in three dimensions.  With a1 = a2 = 0, and a3 = 1, we have the familiar  

two-dimensional  rotation  field 〈-y , x〉 with its axis in the k-direction.  More generally,  F is the superposition  of 

three rotation  fields  with axes in the i-, j-, and k-directions.  The result  is a single  rotation  field with an axis in the 

direction  of a (Figure  17.41 ).

a

ϕa

θa

show vector field

show

show labels

Figure 17.41

Three calculations  tell us a lot about  the general  rotation  field.  The first calculation  confirms  that ∇ ·F = 0 

(Exercise  42). Just as with rotation  fields  in two dimensions,  the divergence  of a general  rotation  field is zero.

The second  calculation  (Exercises  43–44)  uses the right-hand  rule for cross  products  to show that the 

vector  field F = a ⨯ r is indeed  a rotation  field that circles  the vector  a in a counterclockwise  direction  looking  

along the length  of a from head to tail (Figure  17.41).

The third calculation  (Exercise  45) says that ∇ ⨯ F = 2 a. Therefore,  the curl of the general  rotation  field is 

in the direction  of the axis of rotation  a (Figure  17.41).  The magnitude  of the curl is ∇ ⨯ F = 2 a. It can be 

shown  (Exercise  52) that if F is a velocity  field,  then a is the constant  angular  speed  of rotation  of the vector  

field,  denoted  ω. The angular  speed  is the rate (radians  per unit time)  at which  a small  particle  in the vector  field 

rotates  about  the axis of the field.  Therefore  the angular  speed  is half the magnitude  of the curl,  or 
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ω = a = 1

2
∇ ⨯ F.

The rotation  field F = a ⨯ r suggests  a related  question.  Suppose  a paddle  wheel  is placed  in the vector  

field F at a point  P  with the axis of the wheel  in the direction  of a unit vector  n (Figure  17.42 ). How should  n 

be chosen  so the paddle  wheel  spins  fastest?  The scalar  component  of ∇ ⨯ F in the direction  of n is 

(∇ ⨯ F) ·n = ∇ ⨯ F cos θ, (n = 1)

where  θ is the angle  between  ∇ ⨯ F and n. The scalar  component  is greatest  in magnitude  and the paddle  wheel  

spins fastest  when θ = 0 or θ = π; that is, when n and ∇ ⨯ F are parallel.  If the axis of the paddle  wheel  is orthogo -

nal to ∇ ⨯ F (θ = ±
π
2

), the wheel  doesn’t  spin.

Note  »

a

ϕa

θa

show vector field

show

ϕn

θn

show labels

Figure 17.42
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General  Rotation  Vector  Field

The general  rotation  vector  field is F = a ⨯ r, where  the nonzero  constant  vector  a = 〈a1, a2, a3〉 is 

the axis of rotation  and r = 〈x, y , z〉. For all choices  of a, ∇ ⨯ F = 2 a and ∇ ·F = 0. The constant  

angular  speed  of the vector  field is 

ω = a = 1

2
∇ ⨯ F.

Quick Check 3   Show that if a vector  field has the form F = 〈f (x), g (y), h(z)〉, then ∇ ⨯ F = 0.  ◆
Answer  »

EXAMPLE  4 Curl of a rotation  field

Compute  the curl of the rotation  field F = a ⨯ r, where  a = 〈2, -1, 1〉 and r = 〈x, y , z〉 (Figure  17.41).  What  is the 

direction  and the magnitude  of the curl?

SOLUTION   »

A quick  calculation  shows  that 

F = a ⨯ r = (-y - z) i + (x - 2 z) j + (x + 2 y) k.

The curl of the field is 

∇ ⨯ F =

i j k

∂
∂x

∂
∂y

∂
∂z

-y - z x - 2 z x + 2 y

= 4 i - 2 j + 2 k = 2 a.

We have confirmed  that ∇ ⨯ F = 2 a and that the direction  of the curl is the direction  of a, which  is the axis of 

rotation.  The magnitude  of ∇ ⨯ F is 2 a = 2 6 , which  is twice  the angular  speed  of rotation.

Related  Exercises  25–26  ◆
Working with Divergence and Curl  »

The divergence  and curl satisfy  many  of the same properties  that ordinary  derivatives  satisfy.  For example,  

given a real number  c  and differentiable  vector  fields  F and G, we have the following  properties.

Divergence Properties Curl Properties

∇ · (F + G) = ∇ ·F + ∇ ·G ∇ ⨯ (F + G) = (∇ ⨯F) + (∇ ⨯ G)

∇ · (c F) = c (∇ ·F) ∇ ⨯ (c F) = c (∇ ⨯ F)

These  and other  properties  are explored  in Exercises  65–72.

Additional  properties  that have importance  in theory  and applications  are presented  in the following  

theorems  and examples.
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THEOREM  17.11 Curl of a Conservative  Vector  Field

Suppose  F is a conservative  vector  field on an open region  D  of ℝ3. Let F = ∇φ, where  φ is a 

potential  function  with continuous  second  partial  derivatives  on D. Then ∇ ⨯ F = ∇ ⨯ ∇φ = 0; that 

is, the curl of the gradient  is the zero vector  and F is irrotational.

Proof:  We must  calculate  ∇ ⨯ ∇φ: 

∇ ⨯ ∇φ =

i j k

∂
∂x

∂
∂y

∂
∂z

φx φy φz

= φz y - φy z 
0

i + (φx z - φz x )

0

j + φy x - φx y 
0

k = 0.

The mixed  partial  derivatives  are equal  by Clairaut’s  Theorem  (Theorem  15.4).

The converse  of this theorem  (if ∇ ⨯ F = 0, then F is a conservative  field)  is handled  in Section  17.7 by 

means  of Stokes’  Theorem.   ◆

THEOREM  17.12 Divergence  of the Curl

Suppose  F = 〈f , g , h〉, where  f , g , and h have continuous  second  partial  derivatives.  Then 

∇ · (∇ ⨯ F) = 0: The divergence  of the curl is zero.

Note »

Proof:  Again,  a calculation  is needed:

∇ · (∇ ⨯ F) =
∂
∂x

∂h

∂y
-
∂g

∂z
+

∂
∂y

∂ f

∂z
-
∂h

∂x
+

∂
∂z

∂g

∂x
-
∂ f

∂y

= hy x - hx y 
0

+ (gx z - gz x )

0

+ fz y - fy z 
0

= 0.

Clairaut’s  Theorem  (Theorem  15.4)  ensures  that the mixed  partial  derivatives  are equal.   ◆

The gradient,  the divergence,  and the curl may be combined  in many  ways—some  of which  are unde-

fined.  For example,  the gradient  of the curl ( ∇ (∇ ⨯ F) ) and the curl of the divergence  ( ∇ ⨯ (∇ ·F) ) are unde-

fined.  However,  a combination  that is defined  and is important  is the divergence  of the gradient  ∇ ·∇u, where  u 

is a scalar-valued  function.  This combination  is denoted  ∇2 u and is called  the Laplacian of u; it arises  in many  

physical  situations  (Exercises  56–58,  62). Carrying  out the calculation,  we find that 

∇ ·∇u =
∂
∂x

∂u

∂x
+

∂
∂y

∂u

∂y
+

∂
∂z

∂u

∂z
=
∂2 u

∂x2
+
∂2 u

∂y2
+
∂2 u

∂z2
.

We close with a result  that is useful  in its own right but also intriguing  because  it parallels  the Product  

Rule from single-variable  calculus.
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THEOREM  17.13 Product  Rule for the Divergence

Let u be a scalar-valued  function  that is differentiable  on a region  D  and let F be a vector  field that 

is differentiable  on D. Then 

∇ · (u F) = ∇u ·F + u (∇ ·F) .

The rule says that the “derivative”  of the product  is the “derivative”  of the first function  multiplied  by the 

second  function  plus the first function  multiplied  by the “derivative”  of the second  function.  However,  in each 

instance  “derivative”  must  be interpreted  correctly  for the operations  to make sense.  The proof  of the theorem  

requires  a direct  calculation  (Exercise  67). Other  similar  vector  calculus  identities  are presented  in Exercises  

68–72.

Quick Check 4   Is ∇ · (u F) a vector  function  or a scalar  function?   ◆
Answer  »

EXAMPLE  5 More properties  of radial  fields

Let r = 〈x, y , z〉 and let φ =
1

r = x2 + y2 + z2-1/2
 be a potential  function.

a. Find the associated  gradient  field F = ∇ 1

r .

b. Compute  ∇ ·F.

SOLUTION   »

a. The gradient  has three components.  Computing  the first component  reveals  a pattern:  

∂φ
∂x

=
∂
∂x

x2 + y2 + z2-1/2
= -

1

2
x2 + y2 + z2-3/2

2 x = -
x

r3 .

Making  a similar  calculation  for the y- and z-derivatives,  the gradient  is 

F = ∇ 1

r = -
〈x, y , z〉

r3 = -
r

r3 .

This result  reveals  that F is an inverse  square  vector  field (for example,  a gravitational  or electric  field),  and its 

potential  function  is φ =
1

r .

b. The divergence  ∇ ·F = ∇ · -
r

r3  involves  a product  of the vector  function  r = 〈x, y , z〉 and the scalar  

function  r-3. Applying  Theorem  17.13,  we find that 

∇ ·F = ∇ · -
r

r3 = -∇ 1

r3 ·r -
1

r3 ∇ ·r.

A calculation  similar  to part (a) shows  that ∇ 1

r3 =
-3 r

r5  (Exercise  35). Therefore,  
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∇ ·F = ∇ · -
r

r3 = - ∇ 1

r3
-3 rr5

·r -
1

r3 ∇ ·r
3

=
3 r

r5 ·r -
3

r3 Substitute for ∇ 1

r3 .

=
3 r2
r5 -

3

r3 r ·r = r2
= 0.

The result  is consistent  with Theorem  17.10 (with p = 3): The divergence  of an inverse  square  vector  field in ℝ3 

is zero.  It does not happen  for any other  radial  fields  of this form.

Related  Exercises  35–36  ◆
Summary of Properties of Conservative Vector Fields  »

We can now extend  the list of equivalent  properties  of conservative  vector  fields  F defined  on an open con-

nected  region.  Theorem  17.11 is added  to the list given at the end of Section  17.3.

Properties  of a Conservative  Vector  Field

Let F be a conservative  vector  field whose  components  have continuous  second  partial  derivatives  

on an open connected  region  D  in ℝ3. Then F has the following  equivalent  properties.

1.  There  exists  a potential  function  φ such that F = ∇φ (definition).

2.  
C

F ·d r = φ(B) - φ(A) for all points  A and B in D  and all piecewise-smooth  oriented  curves  C  in 

D  from A to B.

3.  
C

F ·d r = 0 on all simple  piecewise-smooth  closed  oriented  curves  C  in D.

4.  ∇ ⨯ F = 0 at all points  of D.

Exercises  »

Getting  Started   »

Practice  Exercises   »

9–16. Divergence  of vectors  fields   Find the divergence  of the following  vector  fields.

9. F = 〈2 x, 4 y , -3 z〉
10. F = 〈-2 y , 3 x, z〉
11. F = 〈12 x, -6 y , -6 z〉
12. F = x2 y z, -x y2 z, -x y z2
13. F = x2 - y2, y2 - z2, z2 - x2
14. F = 〈e-x+y , e-y+z , e-z+x〉
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15. F =
〈x, y , z〉

1 + x2 + y2

16. F = 〈y z sin x, x z cos y , x y cos z〉
17–20. Divergence  of radial  fields   Calculate  the divergence  of the following  radial  fields.  Express  the 

result  in terms of the position  vector  r and its length  r. Check  for agreement  with Theorem  17.10.

17. F =
〈x, y , z〉

x2 + y2 + z2
=

r

r2

18. F =
〈x, y , z〉

x2 + y2 + z23/2 =
r

r3

19. F =
〈x, y , z〉

x2 + y2 + z22 =
r

r4

20. F = 〈x, y , z〉 x2 + y2 + z2 = r r2
21–22. Divergence  and flux from  graphs   Consider  the following  vector  fields,  the circle  C , and two points  

P and Q.

a. Without  computing  the divergence,  does the graph  suggest  that the divergence  is positive  or 

negative  at P and Q? Justify  your answer.

b. Compute  the divergence  and confirm  your conjecture  in part (a).

c. On what part of C  is the flux outward?  Inward?

d. Is the net outward  flux across  C  positive  or negative?

21. F = 〈x, x + y〉

22. F = x, y2
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23–26. Curl  of a rotational  field   Consider  the following  vector  fields,  where  r = 〈x, y , z〉.
a. Compute  the curl of the field and verify  that it has the same direction  as the axis of rotation.

b. Compute  the magnitude  of the curl of the field.

23. F = 〈1, 0, 0〉 ⨯ r

24. F = 〈1, -1, 0〉 ⨯ r

25. F = 〈1, -1, 1〉 ⨯ r

26. F = 〈1, -2, -3〉 ⨯ r

27–34. Curl  of a vector  field   Compute  the curl of the following  vector  fields.

27. F = x2 - y2, x y , z
28. F = 0, z2 - y2, -y z
29. F = x2 - z2, 1, 2 x z
30. F = r = 〈x, y , z〉

31. F =
〈x, y , z〉

x2 + y2 + z23/2 =
r

r3

32. F =
〈x, y , z〉

x2 + y2 + z21/2 =
r

r
33. F = z2 sin y , x z2 cos y , 2 x z sin y
34. F = 3 x z3 ey 2

, 2 x z3 ey 2

, 3 x z2 ey 2 
35–38. Derivative  rules   Prove  the following  identities.  Use Theorem  17.13 (Product  Rule)  whenever  

possible.
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35. ∇ 1

r3 =
-3 r

r5  (used in Example  5)

36. ∇ 1

r2 =
-2 r

r4

37. ∇ ·∇ 1

r2 =
2

r4  (Hint: Use Exercise  36.)

38. ∇ (ln r) = r

r2
39. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a. For a function  f  of a single  variable,  if f ' (x) = 0 for all x  in the domain,  then f  is a constant  

function.  If ∇ ·F = 0 for all points  in the domain,  then F is constant.

b. If ∇ ⨯ F = 0, then F is constant.

c. A vector  field consisting  of parallel  vectors  has zero curl.

d. A vector  field consisting  of parallel  vectors  has zero divergence.

e. curl F is orthogonal  to F.

40. Another  derivative  combination   Let F = 〈f , g , h〉 and let u be a differentiable  scalar-valued  

function.

a. Take the dot product  of F and the del operator;  then apply  the result  to u to show that 

(F ·∇) u = f
∂
∂x

+ g
∂
∂y

+ h
∂
∂z

u

= f
∂u

∂x
+ g

∂u

∂y
+ h

∂u

∂z
.

b. Evaluate  (F ·∇) x y2 z3 at (1, 1, 1), where  F = 〈1, 1, 1〉.
41. Does it make  sense?   Are the following  expressions  defined?  If so, state whether  the result  is a scalar  

or a vector.  Assume  F is a sufficiently  differentiable  vector  field and φ is a sufficiently  differentiable  

scalar-valued  function.

a. ∇ ·φ
b. ∇F

c. ∇ ·∇φ
d. ∇ (∇ ·φ)
e. ∇ (∇ ⨯ φ)
f. ∇ · (∇ ·F)

g. ∇ ⨯ ∇φ
h. ∇ ⨯ (∇ ·F)

i. ∇ ⨯ (∇ ⨯ F)

42. Zero divergence  of the rotation  field   Show that the general  rotation  field F = a ⨯ r, where  a is a 

nonzero  constant  vector  and r = 〈x, y , z〉, has zero divergence.
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43. General  rotation  fields

a. Let a = 〈0, 1, 0〉, let r = 〈x, y , z〉, and consider  the rotation  field F = a ⨯ r. Use the right-hand  rule 

for cross  products  to find the direction  of F at the points  (0, 1, 1), (1, 1, 0), (0, 1, -1), and 

(-1, 1, 0).

b. With a = 〈0, 1, 0〉, explain  why the rotation  field F = a ⨯ r circles  the y-axis in the 

counterclockwise  direction  looking  along a from head to tail (that  is, in the negative  y-direction).

44. General  rotation  fields   Generalize  Exercise  43 to show that the rotation  field F = a ⨯ r circles  the 

vector  a in the counterclockwise  direction  looking  along a from head to tail.

45. Curl of the rotation  field   For the general  rotation  field F = a ⨯ r, where  a is a nonzero  constant  

vector  and r = 〈x, y , z〉, show that curl F = 2 a.

46. Inward  to outward   Find the exact  points  on the circle  x2 + y2 = 2 at which  the field 

F = 〈f , g 〉 = x2, y switches  from pointing  inward  to outward  on the circle,  or vice versa.

47. Maximum  divergence   Within  the cube {(x, y , z) : x ≤ 1, y  ≤ 1, z ≤ 1}, where  does div F have the 

greatest  magnitude  when F = x2 - y2, x y2 z, 2 x z?
48. Maximum  curl   Let F = 〈z, 0, -y〉.

a. Find the scalar  component  of curl F in the direction  of the unit vector  n = 〈1, 0, 0〉.
b. Find the scalar  component  of curl F in the direction  of the unit vector  n =  1

3
, -

1

3
,

1

3
.

c. Find the unit vector  n that maximizes  scaln 〈-1, 1, 0〉 and state the value of scaln 〈-1, 1, 0〉 in 

this direction.

49. Zero component  of the curl   For what vectors  n is (curl F) ·n = 0 when F = 〈y , -2 z, -x〉?
50–51.  Find a vector  field   Find a vector  field F with the given curl.  In each case,  is the vector  field you 

found unique?

50. curl F = 〈0, 1, 0〉
51. curl F = 〈0, z, -y〉

Explorations  and Challenges   »

52. Curl and angular  speed   Consider  the rotational  velocity  field v = a ⨯ r, where  a is a nonzero  

constant  vector  and r = 〈x, y , z〉. Use the fact that an object  moving  in a circular  path of radius  R 

with speed  v has an angular  speed  of ω =
v
R

.

a. Sketch  a position  vector  a, which  is the axis of rotation  for the vector  field,  and a position  vector  

r of a point  P  in ℝ3. Let θ be the angle  between  the two vectors.  Show that the perpendicular  

distance  from P  to the axis of rotation  is R = r sin θ.

b. Show that the speed  of a particle  in the velocity  field is a ⨯ r and that the angular  speed  of the 

object  is a.
c. Conclude  that ω =

1

2
∇ ⨯ v.
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53. Paddle  wheel  in a vector  field   Let F = 〈z, 0, 0〉 and let n be a unit vector  aligned  with the axis of a 

paddle  wheel  located  on the x-axis (see figure).

a. If the paddle  wheel  is oriented  with n = 〈1, 0, 0〉, in what  direction  (if any) does the wheel  spin?

b. If the paddle  wheel  is oriented  with n = 〈0, 1, 0〉, in what  direction  (if any) does the wheel  spin?

c. If the paddle  wheel  is oriented  with n = 〈0, 0, 1〉, in what  direction  (if any) does the wheel  spin?

54. Angular  speed   Consider  the rotational  velocity  field v = 〈-2 y , 2 z, 0〉.
a. If a paddle  wheel  is placed  in the xy-plane  with its axis normal  to this plane,  what  is its angular  

speed?

b. If a paddle  wheel  is placed  in the xz-plane  with its axis normal  to this plane,  what  is its angular  

speed?

c. If a paddle  wheel  is placed  in the yz-plane  with its axis normal  to this plane,  what  is its angular  

speed?

55. Angular  speed   Consider  the rotational  velocity  field v = 〈0, 10 z, -10 y〉. If a paddle  wheel  is placed  

in the plane x + y + z = 1 with its axis normal  to this plane,  how fast does the paddle  wheel  spin 

(revolutions  per unit time)?

56–58.  Heat  flux   Suppose  a solid object  in ℝ3 has a temperature  distribution  given by T (x, y , z). The heat 

flow vector  field in the object  is F = -k ∇T , where  the conductivity  k > 0 is a property  of the material.  Note 

that the heat flow vector  points  in the direction  opposite  to that of the gradient,  which  is the direction  of 

greatest  temperature  decrease.  The divergence  of the heat flow vector  is ∇ ·F = -k ∇ ·∇T = -k ∇2 T  (the 

Laplacian  of T ). Compute  the heat flow vector  field and its divergence  for the following  temperature  

distributions.

56. T (x, y , z) = 100 e- x2+y 2+z2

57. T (x, y , z) = 100 e-x2+y 2+z2

58. T (x, y , z) = 100 1 + x2 + y2 + z2 
59. Gravitational  potential   The potential  function  for the gravitational  force field due to a mass M  at 

the origin  acting  on a mass m is φ =
G M m

r , where  r = 〈x, y , z〉 is the position  vector  of the mass m 

and G  is the gravitational  constant.
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a. Compute  the gravitational  force field F = -∇φ.

b. Show that the field is irrotational;  that is ∇ ⨯ F = 0.

60. Electric  potential   The potential  function  for the force field due to a charge  q at the origin  is 

φ =
1

4 π ϵ0

q

r , where  r = 〈x, y , z〉 is the position  vector  of a point  in the field and ϵ0 is the permittivity  

of free space.

a. Compute  the force field F = -∇φ.

b. Show that the field is irrotational;  that is ∇ ⨯ F = 0.

61. Navier-Stokes  equation  The Navier-Stokes  equation  is the fundamental  equation  of fluid dynamics  

that models  the flow in everything  from bathtubs  to oceans.  In one of its many  forms  

(incompressible,  viscous  flow),  the equation  is 

ρ ∂V

∂ t
+ (V ·∇) V = -∇p +μ (∇ ·∇) V.

 In this notation  V = 〈u, v, w〉 is the three-dimensional  velocity  field,  p is the (scalar)  pressure,  ρ is 

the constant  density  of the fluid,  and μ is the constant  viscosity.  Write  out the three component  

equations  of this vector  equation.  (See Exercise  40 for an interpretation  of the operations.)

T 62. Stream  function  and vorticity   The rotation  of a three-dimensional  velocity  field V = 〈u, v, w〉 is 

measured  by the vorticity ω = ∇ ⨯ V. If ω = 0 at all points  in the domain,  the flow is irrotational.  

a. Which  of the following  velocity  fields  is irrotational:  V = 〈2, -3 y , 5 z〉 or V = 〈y , x - z, -y〉?
b. Recall  that for a two-dimensional  source-free  flow V = 〈u, v, 0〉, a stream  function  ψ(x, y) may 

be defined  such that u = ψy  and v = -ψx . For such a two-dimensional  flow,  let ζ = k ·∇ ⨯ V be the 

k-component  of the vorticity.  Show that ∇2ψ = ∇ ·∇ψ = -ζ.

c. Consider  the stream  function  ψ(x, y) = sin x sin y  on the square  region  

R = {(x, y) : 0 ≤ x ≤ π, 0 ≤ y ≤ π}. Find the velocity  components  u and v; then sketch  the velocity  

field.

d. For the stream  function  in part (c), find the vorticity  function  ζ  as defined  in part (b). Plot 

several  level  curves  of the vorticity  function.  Where  on R is it a maximum?  A minimum?

63. Ampere’s  Law   One of Maxwell’s  equations  for electromagnetic  waves  is ∇ ⨯ B = C
∂E

∂ t
, where  E is 

the electric  field,  B is the magnetic  field,  and C  is a constant.

a. Show that the fields  

E(z, t ) = A sin (k z -ωt ) i B(z, t ) = A sin (k z -ωt ) j

satisfy  the equation  for constants  A, k , and ω, provided  ω =
k

C
.

b. Make a rough  sketch  showing  the directions  of E and B.

64. Splitting  a vector  field   Express  the vector  field F = 〈x y , 0, 0〉 in the form V + W, where  ∇ ·V = 0 and 

∇ ⨯ W = 0.

65. Properties  of div and curl   Prove  the following  properties  of the divergence  and curl.  Assume  F and 

G are differentiable  vector  fields  and c  is a real number.

a. ∇ · (F + G) = ∇ ·F + ∇ ·G

b. ∇ ⨯ (F + G) = (∇ ⨯ F) + (∇ ⨯ G)
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c. ∇ · (c F) = c (∇ ·F)

d. ∇ ⨯ (c F) = c (∇ ⨯ F)

66. Equal  curls   If two functions  of one variable,  f  and g , have the property  that f ' = g ', then f  and g  

differ  by a constant.  Prove  or disprove:  If F and G are nonconstant  vector  fields  in ℝ2 with 

curl F = curl G and div F = div G at all points  of ℝ2, then F and G differ  by a constant  vector.

67–72.  Identities   Prove  the following  identities.  Assume  φ is a differentiable  scalar-valued  function  and F 

and G are differentiable  vector  fields,  all defined  on a region  of ℝ3.

67. ∇ · (φ F) = ∇φ ·F + φ ∇ ·F  (Product  Rule)

68. ∇ ⨯ (φ F) = (∇φ ⨯ F) + (φ ∇ ⨯ F)  (Product  Rule)

69. ∇ · (F ⨯ G) = G · (∇ ⨯ F) - F · (∇ ⨯ G)

70. ∇ ⨯ (F ⨯ G) = (G ·∇) F - G (∇ ·F) - (F ·∇) G + F (∇ ·G)

71. ∇ (F ·G) = (G ·∇) F + (F ·∇) G + G ⨯ (∇ ⨯ F) + F ⨯ (∇ ⨯ G)

72. ∇ ⨯ (∇ ⨯ F) = ∇ (∇ ·F) - (∇ ·∇) F

73. Divergence  of radial  fields   Prove  that for a real number  p, with r = 〈x, y , z〉, ∇ ·
〈x, y , z〉
rp =

3 - p

rp .

74. Gradients  and radial  fields   Prove  that for a real number  p, with r = 〈x, y , z〉, ∇ 1

rp =
-p r

rp+2
.

75. Divergence  of gradient  fields   Prove  that for a real number  p, with r = 〈x, y , z〉, 
∇ ·∇ 1

rp =
p (p - 1)

rp+2
.
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