
17.2 Line Integrals

With integrals  of a single  variable,  we integrate  over intervals  in ℝ (the real line).  With double  and triple  inte-

grals,  we integrate  over regions  in ℝ2 or ℝ3. Line integrals  (which  really  should  be called  curve integrals ) are 

another  class of integrals  that play an important  role in vector  calculus.  They are used to integrate  either  scalar-

valued  functions  or vector  fields  along curves.

Suppose  a thin,  circular  plate has a known  temperature  distribution  and you must  compute  the average  

temperature  along the edge of the plate.  The required  calculation  involves  integrating  the temperature  function  

over the curved boundary  of the plate.  Similarly,  to calculate  the amount  of work needed  to put a satellite  into 

orbit,  we integrate  the gravitational  force (a vector  field)  along the curved  path of the satellite.  Both these 

calculations  require  line integrals.  As you will see, line integrals  take several  different  forms.  It is the goal of this 

section  to distinguish  these various  forms  and show how and when each form should  be used.

Scalar Line Integrals in the Plane  »

We focus  first on line integrals  of scalar-valued  functions  over curves  in the xy-plane.  Assume  C  is a smooth  

curve of finite  length  given by r(t ) = 〈x(t ), y(t )〉, for a ≤ t ≤ b. We divide  [a, b] into n subintervals  using  the grid 

points  

a = to < t1 <⋯ < tn-1 < tn = b.

This partition  of [a, b] divides  C  into n subarcs (Figure  17.16 ), where  the arc length  of the kth subarc is 

denoted  Δsk . Let tk
*  be a point  in the kth subinterval  [tk-1, tk ], which  corresponds  to a point  (x(tk

*), y(tk
*)) on the 

kth subarc of C , for k = 1, 2, …, n.
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The parameter t resides on the t -axis. As t varies from a to b,

the curve C in the xy -plane is generated from (x(a), y(a)) to

(x(b), y(b)).

C : r(t ) = 〈x(t ), y(t )〉, for a ≤ t ≤ b

Figure 17.16

Now consider  a scalar-valued  function  z = f (x, y) defined  on a region  containing  C . Evaluating  f  at 

(x(tk
*), y(tk

*)) and multiplying  this value by Δsk , we form the sum 

Sn = 
k=1

n

f (x(tk
*), y(tk

*)) Δsk ,

which  is similar  to a Riemann  sum. We now let Δ be the maximum  value of {Δs1, …, Δsn}. If the limit  of the sum 

as n →∞ and Δ→ 0 exists  over all partitions,  then the limit  is called  the line integral  of f  over C .
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DEFINITION Scalar  Line Integral  in the Plane

Suppose  the scalar-valued  function  f  is defined  on a region  containing  the smooth  curve  C  given 

by r(t ) = 〈x(t ), y(t )〉, for a ≤ t ≤ b. The line integral  of f  over C  is 


C

f (x(t ), y(t )) d s = lim
Δ→0


k=1

n

f (x(tk
*), y(tk

*)) Δsk ,

provided  this limit  exists  over all partitions  of [a, b]. When  the limit  exists,  f  is said to be 

integrable on C .

The more compact  notation  
C

f (r(t )) d s, 
C

f (x, y) d s, and 
C

f d s are also used for the line integral  of f  

over C . It can be shown  that if f  is continuous  on a region  containing  C , then f  is integrable  over C .

There  are several  useful  interpretations  of the line integral  of a scalar  function.  If f (x, y) = 1, the line 

integral  
C

d s gives the length  of the curve  C , just as the ordinary  integral  
a

b

d x  gives the length  of the interval  

[a, b], which  is b - a. If f (x, y) ≥ 0 on C , then 
C

f (x, y) d s can be viewed  as the area of one side of the vertical,  

curtain-like  surface  that lies between  the graphs  of f  and C  (Figure  17.17 ). This interpretation  results  from 

regarding  the product  f (x(tk
*), y(tk

*)) Δsk  as an approximation  to the area of the kth panel  of the curtain.  Simi-

larly,  if f  is a density  function  for a thin wire represented  by the curve  C , then 
C

f (x, y) d s gives the mass of the 

wire—the  product  f (x(tk
*), y(tk

*)) Δsk  is an approximation  to the mass of the kth piece  of the wire (Exercises  

35–36).
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Evaluating Line Integrals  »

The line integral  of f  over C  given in the definition  is not an ordinary  Riemann  integral,  because  the integrand  is 

expressed  as a function  of t  while  the variable  of integration  is the arc length  parameter  s. We need a practical  

way to evaluate  such integrals;  the key is to use a change  of variables  to convert  a line integral  into an ordinary  

integral.  Let C  be given by r(t ) = 〈x(t ), y(t )〉, for a ≤ t ≤ b. Recall  from Section  14.4 that the length  of C  over the 

interval  [a, t ] is

s(t ) = 
a

t r ' (u) d u.

Differentiating  both sides of this equation  and using the Fundamental  Theorem  of Calculus  yields  

s ' (t ) = r ' (t ). We now make a standard  change  of variables  using  the relationship

d s = s ' (t ) d t = r ' (t ) d t .
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Quick Check 1   Explain  mathematically  why differentiating  the arc length  integral  leads to s ' (t ) = r ' (t ).  
◆

Answer  »

The Fundamental  Theorem  of Calculus  says that 
d

d t


a

t

f (u) d u = f (t ), which  applies  to 

differentiating  the arc length  integral.

Relying  on a result  from advanced  calculus,  the original  line integral  with respect  to s can be converted  

into an ordinary  integral  with respect  to t :


C

f d s = 
a

b

f (x(t ), y(t )) r ' (t ) d t

d s

.

Note  »

If t  represents  time,  then  the  relationship  d s = r ' (t ) d t  is a generalization  of 

the  familiar  formula  distance = (speed ) (time ).

THEOREM  17.1 Evaluating  Scalar  Line Integrals  in ℝ2

Let f  be continuous  on a region  containing  a smooth  curve  C : r(t ) = 〈x(t ), y(t )〉, for a ≤ t ≤ b. Then 


C

f d s = 
a

b

f (x(t ), y(t )) r ' (t ) d t

= 
a

b

f (x(t ), y(t )) x ' (t )2 + y ' (t )2 d t .

Note  »

If t  represents  time and C  is the path of a moving  object,  then r ' (t ) is the speed  of the object.  The speed 

factor r ' (t ) that appears  in the integral  relates  distance  traveled  along the curve  as measured  by s to the

elapsed  time as measured  by the parameter  t .

Notice  that if f (x, y) = 1, then the line integral  is 
a

b

x ' (t )2 + y ' (t )2 d t , which  is the arc length  formula  

for C . Theorem  17.1 leads to the following  procedure  for evaluating  line integrals.

PROCEDURE Evaluating  the Line Integral  
C

f d s

1.  Find a parametric  description  of C  in the form r(t ) = 〈x(t ), y(t )〉, for a ≤ t ≤ b.

2.  Compute  r ' (t ) = x ' (t )2 + y ' (t )2 .

3.  Make substitutions  for x  and y  in the integrand  and evaluate  an ordinary  integral:  


C

f d s = 
a

b

f (x (t ), y (t )) r ' (t ) d t .

EXAMPLE  1 Average  temperature  on a circle
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The temperature  of the circular  plate  R = (x, y) : x2 + y2 ≤ 1 is T (x, y) = 100 x2 + 2 y2. Find the average  

temperature  along the edge of the plate.

Note  »

When  we  compute  the  average  value  by an ordinary  integral,  we  divide  by the  

length  of the  interval  of integration.  Analogously,  when  we  compute  the  

average  value  by a line  integral,  we  divide  by the  length  of the  curve:  

f =
1

L


C

f d s.

SOLUTION   »

Calculating  the average  value requires  integrating  the temperature  function  over the boundary  circle  

C = (x, y) : x2 + y2 = 1 and dividing  by the length  (circumference)  of C . The first step is to find a parametric  

description  for C . We use the standard  parametrization  for a unit circle  centered  at the origin,  

r = 〈x, y〉 = 〈cos t , sin t〉, for 0 ≤ t ≤ 2 π. Next,  we compute  the speed  factor  

r ' (t ) = x ' (t )2 + y ' (t )2 = (-sin t )2 + (cos t )2 = 1.

We substitute  x = cos t  and y = sin t  into the temperature  function  and express  the line integral  as an ordinary  

integral  with respect  to t : 


C

T (x, y) d s = 
0

2 π
100 x(t )2 + 2 y(t )2

T (t )

r ' (t )
1

d t
Write the line integral as an ordinary

integral with respect to t ; d s = r ' (t ) d t .

= 100 
0

2 πcos2 t + 2 sin2 t  d t Substitute for x and y .

= 100 
0

2 π1 + sin2 t  d t

3 π
cos2 t + sin2 t = 1

= 300 π. Use sin2 t =
1 - cos 2 t

2
and integrate .

The geometry  of this line integral  is shown  in Figure  17.18 . The temperature  function  on the boundary  

of C  is a function  of t . The line integral  is an ordinary  integral  with respect  to t  over the interval  [0, 2 π]. To find 

the average  value we divide  the line integral  of the temperature  by the length  of the curve,  which  is 2 π. There -

fore, the average  temperature  on the boundary  of the plate is 
300 π

2 π = 150.
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Note  »

Related  Exercises  17, 38  ◆
Quick Check 2   Suppose  r(t ) = 〈t , 0〉, for a ≤ t ≤ b, is a parametric  description  of C ; note that C  is the 

interval  [a, b] on the x-axis.  Show that 
C

f (x, y) d s = 
a

b

f (t , 0) d t , which  is an ordinary,  single-variable  

integral  introduced  in Chapter  5.  ◆
Answer  »

Line Integrals in ℝ
3
  »

The argument  that leads to line integrals  on plane  curves  extends  immediately  to three or more dimensions.  

Here is the corresponding  evaluation  theorem  for line integrals  in ℝ3.
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THEOREM  17.2 Evaluating  Scalar  Line Integrals  in ℝ3

Let f  be continuous  on a region  containing  a smooth  curve  C : r(t ) = 〈x(t ), y(t ), z(t )〉, for a ≤ t ≤ b. 

Then 


C

f d s = 
a

b

f (x(t ), y(t ), z(t )) r ' (t ) d t

= 
a

b

f (x(t ), y(t ), z(t )) x ' (t )2 + y ' (t )2 + z ' (t )2 d t .

Note  »

EXAMPLE  2 Line integrals  in ℝ
3

Evaluate  
C

(x y + 2 z) d s on the following  line segments.

a. The line from P(1, 0, 0) to Q(0, 1, 1)

b. The line from Q(0, 1, 1) to P(1, 0, 0)

Note  »

Recall  that  a parametric  equation  of a line  is 

r(t ) = 〈x0, y0, z0〉 + t 〈a , b , c〉,

where  〈x0, y0, z0〉 is a position  vector  associated  with  a fixed  point  on  the  line  

and  〈a , b , c〉 is a vector  parallel  to the  line.

SOLUTION   »

a. A parametric  description  of the line from P(1, 0, 0) to Q(0, 1, 1) is

r (t ) = 〈1, 0, 0〉 + t 〈-1, 1, 1〉 = 〈1 - t , t , t〉, for 0 ≤ t ≤ 1.

The speed  factor  is

r ' (t ) = x ' (t )2 + y ' (t )2 + z ' (t )2 = (-1)2 + 12 + 12 = 3 .

Substituting  x = 1 - t , y = t , and z = t , the value of the line integral  is


C

(x y + 2 z) d s = 
0

1

(1 - t )

x

t︸
y

+ 2 t⏟
2 z

3 d t Substitute for x, y , z.

= 3 
0

13 t - t 2 d t Simplify .

= 3
3 t 2

2
-

t 3

3 0

1

Integrate .

=
7 3

6
. Evaluate .

b. The line from Q(0, 1, 1) to P(1, 0, 0) may be described  parametrically  by
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r (t ) = 〈0, 1, 1〉 + t 〈1, -1, -1〉 = 〈t , 1 - t , 1 - t〉, for 0 ≤ t ≤ 1.

The speed  factor  is

r ' (t ) = x ' (t )2 + y ' (t )2 + z ' (t )2 = 12 + (-1)2 + (-1)2 = 3 .

We substitute  x = t , y = 1 - t , and z = 1 - t  and do a calculation  similar  to that in part (a). The value of the line 

integral  is again  
7 3

6
, emphasizing  the fact that a scalar  line integral  is independent  of the orientation  and 

parameterization  of the curve.

Related  Exercises  32–33  ◆
EXAMPLE  3 Flight of an eagle

An eagle  soars  on the ascending  spiral  path

C : r(t ) = 〈x(t ), y(t ), z(t )〉 = 2400 cos
t

2
, 2400 sin

t

2
, 500 t,

where  x, y , and z  are measured  in feet and t  is measured  in minutes.  How far does the eagle  fly over the time 

interval  0 ≤ t ≤ 10?

SOLUTION   »

Note  »

Because  we  are  finding  the  length  of a curve,  the  integrand  in this  line  integral  

is f (x , y , z) = 1.

The distance  traveled  is found  by integrating  the element  of arc length  d s along C , that is, L = 
C

d s. We now 

make a change  of variables  to the parameter  t  using

r ' (t ) = x ' (t )2 + y ' (t )2 + z ' (t )2

= -1200 sin
t

2

2

+ 1200 cos
t

2

2

+ 5002 Substitute derivatives .

= 12002 + 5002 = 1300. sin2
t

2
+ cos2

t

2
= 1

It follows  that the distance  traveled  is

L = 
C

d s = 
0

10 r ' (t ) d t = 
0

10

1300 d t = 13,000 ft.

Related  Exercise  39  ◆
Quick Check 3   What  is the speed  of the eagle  in Example  3?  ◆
Answer  »

1300 ft /min
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Line Integrals of Vector Fields »

Line integrals  along curves  in ℝ2 or ℝ3 may also have integrands  that involve  vector  fields.  Such line integrals  

are different  from scalar  line integrals  in two respects.

 Recall  that an oriented  curve  is a parameterized  curve  for which  a direction  is specified.  The positive, or 

forward, orientation  is the direction  in which  the curve  is generated  as the parameter  increases.  For 

example,  the positive  direction  of the circle  r(t ) = 〈cos t , sin t〉, for 0 ≤ t ≤ 2 π, is counterclockwise.  As we will 

see, vector  line integrals  must  be evaluated  on oriented  curves,  and the value of a line integral  depends  on 

the orientation.

 The line integral  of a vector  field F along an oriented  curve  involves  a specific  component  of F relative  to the

curve.  We begin  by defining  vector  line integrals  for the tangential component  of F, a situation  that has 

many physical  applications.

Let C : r(s) = 〈x(s), y(s), z(s)〉 be a smooth  oriented  curve  in ℝ3 parameterized  by arc length  and let F be a 

vector  field that is continuous  on a region  containing  C . At each point  of C , the unit tangent  vector  T points  in 

the positive  direction  on C  (Figure  17.19 ). The component  of F in the direction  of T at a point  of C  is F cos θ, 

where  θ is the angle  between  F and T. Because  T is a unit vector,

F cos θ = F T cos θ = F ·T.
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Figure 17.19

Note  »

The first line integral  of a vector  field F that we introduce  is the line integral  of the scalar  F ·T along the curve  C . 

When we integrate  F ·T along C , the effect  is to add up the components  of F in the direction  of C  at each point  of 

C .

DEFINITION Line Integral  of a Vector  Field

Let F be a vector  field that is continuous  on a region  containing  a smooth  oriented  curve  C  

parameterized  by arc length.  Let T be the unit tangent  vector  at each point  of C  consistent  with the 

orientation.  The line integral  of F over C  is 
C

F ·T d s.

Note  »
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Some  texts  let  d s stand  for  T d s. Then  the  line  integral  
C

F ·T d s  is written  


C

F · d s.

Just as we did for line integrals  of scalar-valued  functions,  we need a method  for evaluating  vector  line integrals  

when the parameter  is not the arc length.  Suppose  that C  has a parameterization  r(t ) = 〈x(t ), y(t ), z(t )〉 for 

a ≤ t ≤ b. Recall  from Section  14.2 that the unit tangent  vector  at a point  on the curve  is T =
r ' (t )

r ' (t ) . Using  the 

fact that d s = r ' (t ) d t , the line integral  becomes


C

F ·T d s = 
a

b

F ·
r ' (t )

r ' (t )
T

r ' (t ) d t

d s

= 
a

b

F ·r ' (t ) d t .

This integral  may be written  in several  different  forms.  If F = 〈f , g , h〉, then the line integral  may be evaluated  in 

component  form as


C

F ·T d s = 
a

b

F ·r ' (t ) d t = 
a

b

(f (t ) x ' (t ) + g (t ) y ' (t ) + h(t ) z ' (t )) d t .

Note  »

Keep  in mind  that  f (t ) stands  for  f (x(t ), y (t ), z(t )) with  analogous  expressions  

for  g (t ) and  h(t ).

Another  useful  form is obtained  by noting  that

d x = x ' (t ) d t , d y = y ' (t ) d t , d z = z ' (t ) d t .

Making  these replacements  in the previous  integral  results  in the form


C

F ·T d s = 
C

f d x + g d y + h d z.

Finally,  if we let d r = 〈d x, d y , d z〉, then f d x + g d y + h d z = F ·d r, and we have


C

F ·T d s = 
C

F ·d r.

It is helpful  to become  familiar  with these various  forms  of the line integral.
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Different  Forms  of Line Integrals  of Vector  Fields

The line integral  
C

F ·T d s may be expressed  in the following  forms,  where  F = 〈f , g , h〉 and C  has 

a parameterization  r(t ) = 〈x(t ), y(t ), z(t )〉, for a ≤ t ≤ b: 


a

b

F ·r ' (t ) d t = 
a

b

(f (t ) x ' (t ) + g (t ) y ' (t ) + h(t ) z ' (t )) d t

= 
C

f d x + g d y + h d z

= 
C

F ·d r

For line integrals  in the plane,  we let F = 〈f , g 〉 and assume  C  is parameterized  in the form 

r(t ) = 〈x(t ), y(t )〉, for a ≤ t ≤ b. Then  


C

F ·T d s = 
a

b

(f (t ) x ' (t ) + g (t ) y ' (t )) d t = 
C

f d x + g d y = 
C

F ·d r.

EXAMPLE  4 Different  paths

Evaluate  
C

F ·T d s with F = 〈y - x, x〉 on the following  oriented  paths  in ℝ2 (Figure  17.20 ).

a. The quarter  circle  C1 from P(0, 1) to Q(1, 0)

b. The quarter  circle  -C1 from Q(1, 0) to P(0, 1)

c. The path C2 from P  to Q  via two line segments  through  O(0, 0)

Note  »

We  use  the  convention  that  -C  is the  curve  C  with  the  opposite  orientation.
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SOLUTION   »

a. Working  in ℝ2, a parametric  description  of the curve  C1 with the required  (clockwise)  orientation  is 

r(t ) = 〈sin t , cos t〉, for 0 ≤ t ≤ π
2

. Along  C1 the vector  field is 

F = 〈y - x, x〉 = 〈cos t - sin t , sin t〉.
The velocity  vector  is r ' (t ) = 〈cos t , -sin t〉, so the integrand  of the line integral  is

F ·r ' (t ) = 〈cos t - sin t , sin t〉 ·〈cos t , -sin t〉 = cos2 t - sin2 t

cos 2 t

- sin t cos t
1

2
sin 2 t

.

The value of the line integral  of F over C1 is
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0

π/2
F ·r ' (t ) d t = 

0

π/2
cos 2 t -

1

2
sin 2 t d t Substitute for F ·r ' (t ).

=
1

2
sin 2 t +

1

4
cos 2 t

0

π/2
Evaluate integral .

= -
1

2
. Simplify .

b. A parameterization  of the curve  -C1 from Q to P  is r(t ) = 〈cos t , sin t〉 for 0 ≤ t ≤ π
2

. The vector  field along 

the curve  is 

F = 〈y - x, x〉 = 〈sin t - cos t , cos t〉,
and the velocity  vector  is r ' (t ) = 〈-sin t , cos t〉. A calculation  very similar  to that in part (a) results  in


-C1

F ·T d s = 
0

π/2
F ·r ' (t ) d t =

1

2
.

Comparing  the results  of parts  (a) and (b), we see that reversing  the orientation  of C1 reverses  the sign of the 

line integral  of a vector  field.

c. The path C2 consists  of two line segments.

 The segment  from P  to O  is parameterized  by r(t ) = 〈0, 1 - t〉, for 0 ≤ t ≤ 1. Therefore,  r ' (t ) = 〈0, -1〉 and 

F = 〈y - x, x〉 = 〈1 - t , 0〉. On this segment,  T = 〈0, -1〉.
The line integral  is split  into two parts  and evaluated  as follows:


C2

F ·T d s = 
P O

F ·T d s + 
O Q

F ·T d s

= 
0

1〈1 - t , 0〉 ·〈0, -1〉 d t + 
0

1〈-t , t〉 ·〈1, 0〉 d t Substitute for x, y , r '.

= 
0

1

0 d t + 
0

1

(-t ) d t Simplify .

= -
1

2
. Evaluate integrals .

The line integrals  in parts  (a) and (c) have the same value and run from P  to Q, but along different  paths.  We 

might  ask: For what  vector  fields  are the values  of a line integral  independent  of path?  We return  to this question  

in Section  17.3.

Note  »

Line  integrals  of vector  fields  satisfy  properties  similar  to those  of ordinary  

integrals.  If C  is a smooth  curve  from  A  to B , C1 is the  curve  from  A  to P , and  C2 

is the  curve  from  P  to B , where  P  is a point  on  C  between  A  and  B , then  


C

F ·d r = 
C1

F ·d r + 
C2

F ·d r.

Related  Exercises  42–43  ◆
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The solutions  to parts  (a) and (b) of Example  4 illustrate  a general  result  that applies  to line integrals  of 

vector  fields:  


-C

F ·T d s = -
C

F ·T d s.

Figure  17.21  provides  the justification  of this fact:  Reversing  the orientation  of C  changes  the sign of F ·T at 

each point  of C , which  changes  the sign of the line integral.

Figure 17.21

Work Integrals

A common  application  of line integrals  of vector  fields  is computing  the work done in moving  an object  in a 

force field (for example,  a gravitational  or electrical  field).  First  recall  (Section  6.7) that if F is a constant force 

field,  the work done in moving  an object  a distance  d  along the x-axis is W = Fx d , where  Fx = F cos θ is the 

component  of the force along the x-axis (Figure  17.22a ). Only the component  of F in the direction  of motion  

contributes  to the work.  More generally,  if F is a variable force field,  the work done in moving  an object  from 

x = a to x = b is W = 
a

b

Fx(x) d x, where  again  Fx  is the component  of the force in the direction  of motion  

(parallel  to the x-axis,  Figure  17.22b ).
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Figure 17.22

Quick Check 4   Suppose  a two-dimensional  force field is everywhere  directed  outward  from the origin  

and C  is a circle  centered  at the origin.  What  is the angle  between  the field and the unit vectors  tangent  to 

C ?  ◆
Answer  »

π
2

We now take this progression  one step further.  Let F be a variable  force field defined  in a region  D  of ℝ3, 

and suppose  C  is a smooth  oriented  curve  in D  along which  an object  moves.  The direction  of motion  at each 

point  of C  is given by the unit tangent  vector  T. Therefore,  the component  of F in the direction  of motion  is F ·T, 

which  is the tangential  component  of F along C . Summing  the contributions  to the work at each point  of C , the 

work done in moving  an object  along C  in the presence  of the force is the line integral  of F ·T (Figure  17.23 ).
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Figure 17.23

DEFINITION Work Done  in a Force  Field

Let F be a continuous  force field in a region  D  of ℝ3. Let 

C : r (t ) = 〈x (t ), y (t ), z(t )〉, for a ≤ t ≤ b,

be a smooth  curve  in D  with a unit tangent  vector  T consistent  with the orientation.  The work 

done in moving  an object  along C  in the positive  direction  is 

W = 
C

F ·T d s = 
a

b

F ·r ' (t ) d t .

Note  »

Just  to be clear,  a work  integral  is nothing  more  than  a line  integral  of the  

tangential  component  of a force  field.

EXAMPLE  5 An inverse  square  force

Gravitational  and electrical  forces  between  point  masses  and point  charges  obey inverse  square  laws:  They act 

along the line joining  the centers  and they vary as 
1

r 2
, where  r  is the distance  between  the centers.  The force of 
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attraction  (or repulsion)  of an inverse  square  force field is given by the vector  field F =
k 〈x, y , z〉

x2 + y2 + z23/2 , where  k  

is a physical  constant.  Because  r = 〈x, y , z〉, this force may also be written  F =
k r

r3 . Find the work done in 

moving  an object  along the following  paths.

a. C1 is the line segment  from (1, 1, 1) to (a, a, a), where  a > 1.

b. C2 is the extension  of C1 produced  by letting  a →∞.

SOLUTION   »

a. A parametric  description  of C1 consistent  with the orientation  is r(t ) = 〈t , t , t〉, for 1 ≤ t ≤ a, with 

r ' (t ) = 〈1, 1, 1〉. In terms  of the parameter  t , the force field is

F =
k 〈x, y , z〉

x2 + y2 + z23/2 =
k 〈t , t , t〉
3 t 23/2 .

The dot product  that appears  in the work integral  is

F ·r ' (t ) =
k 〈t , t , t〉
3 t 23/2 ·〈1, 1, 1〉 = 3 k t

3 3 t 3
=

k

3 t 2
.

Therefore,  the work done is

W = 
1

a

F ·r ' (t ) d t =
k

3


1

a

t-2 d t =
k

3
1 -

1

a
.

b. The path C2 is obtained  by letting  a →∞ in part (a). The required  work is

W = lim
a→∞

k

3
1 -

1

a
=

k

3
.

If F is a gravitational  field,  this result  implies  that the work required  to escape  Earth’s  gravitational  field is finite  

(which  makes  space  flight  possible).

Related  Exercise  55  ◆
Circulation and Flux of a Vector Field  »

Line integrals  are useful  for investigating  two important  properties  of vector  fields:  circulation and flux. These  

properties  apply  to any vector  field,  but they are particularly  relevant  and easy to visualize  if you think of F as 

the velocity  field for a moving  fluid.

Circulation

We assume  F = 〈f , g , h〉 is a continuous  vector  field on a region  D  of ℝ3, and we take C  to be a closed smooth  

oriented  curve  in D. The circulation of F along C  is a measure  of how much  of the vector  field points  in the 

direction  of C . More simply,  as you travel  along C  in the forward  direction,  how often is the vector  field at your 

back and how often is it in your face?  To determine  the circulation,  we simply  “add up” the components  of F in 

the direction  of the unit tangent  vector  T at each point.  Therefore,  circulation  integrals  are another  example  of 

line integrals  of vector  fields.
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Note  »

In the  definition  of circulation,  a closed  curve  is a curve  whose  initial  and  

terminal  points  are  the  same,  as defined  formally  in Section  17.3.

DEFINITION Circulation

Let F be a continuous  vector  field on a region  D  of ℝ3 and let C  be a closed  smooth  oriented  curve  

in D. The circulation of F on C  is 
C

F ·T d s, where  T is the unit vector  tangent  to C  consistent  with 

the orientation.

Note  »

Though  we  define  circulation  integrals  for  smooth  curves,  these  integrals  may  

be computed  on  piecewise-smooth  curves.  We  adopt  the  convention  that  

piecewise refers  to a curve  with  finitely  many  pieces.

EXAMPLE  6 Circulation  of two-dimensional  flows

Let C  be the unit circle  with counterclockwise  orientation.  Find the circulation  on C  for the following  vector  

fields.

a. The radial  flow field F = 〈x, y〉
b. The rotation  flow field F = 〈-y , x〉
SOLUTION   »

a. The unit circle  with the specified  orientation  is described  parametrically  by r(t ) = 〈cos t , sin t〉, for 

0 ≤ t ≤ 2 π. Therefore,  r ' (t ) = 〈-sin t , cos t〉 and the circulation  of the radial  field F = 〈x, y〉 is


C

F ·T d s = 
0

2 π
F ·r ' (t ) d t Evaluation of a line integral

= 
0

2 π〈cos t , sin t〉
F = 〈x ,y〉

·〈-sin t , cos t〉
r' (t )

d t Substitute for F and r '.

= 
0

2 π
0 d t = 0. Simplify .

The tangential  component  of the radial  vector  field is zero everywhere  on C , so the circulation  is zero (Figure  

17.24).

b. The circulation  for the rotation  field F = 〈-y , x〉 is
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C

F ·T d s = 
0

2 π
F ·r ' (t ) d t Evaluation of a line integral

= 
0

2 π〈-sin t , cos t〉
F = 〈-y ,x〉

·〈-sin t , cos t〉
r' (t )

d t Substitute for F and r '.

= 
0

2 π
(sin2 t + cos2 t

1

) d t Simplify .

= 2 π.

In this case,  at every point  of C , the vector  field is in the direction  of the tangent  vector;  the result  is a positive  

circulation  (Figure  17.24).

F = x, y  radial field

F = -y , x 

rotation field

-2 -1 1 2
x

-2

-1

1

y

On the unit circle, F = 〈x, y〉 is orthogonal

to C and has zero circulation on C .

Figure 17.24

Related  Exercise  57  ◆
EXAMPLE  7 Circulation  of a three-dimensional  flow

Find the circulation  of the vector  field F = 〈z, x, -y〉 on the tilted ellipse  C : r(t ) = 〈cos t , sin t , cos t〉, for 

0 ≤ t ≤ 2 π (Figure  17.25 ).
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Figure 17.25

SOLUTION   »

We first determine  that

r ' (t ) = 〈x ' (t ), y ' (t ), z ' (t )〉 = 〈-sin t , cos t , -sin t〉 .

Substituting  x = cos t , y = sin t , and z = cos t  into F = 〈z, x, -y〉, the circulation  is


C

F ·T d s = 
0

2 π
F ·r ' (t ) d t Evaluation of a line integral

= 
0

2 π〈cos t , cos t , -sin t〉 ·〈-sin t , cos t , -sin t〉 d t Substitute for F and r '.

= 
0

2 π
(-sin t cos t + 1) d t Simplify ; sin2 t + cos2 t = 1.

= 2 π. Evaluate integral .

Figure  17.25 shows  the projection  of the vector  field on the unit tangent  vectors  at various  points  on C . 

The circulation  is the “sum”  of the scalar  components  associated  with these projections,  which,  in this case,  is 

positive.

Related  Exercise  53  ◆
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Flux of Two-Dimensional  Vector  Fields

Assume  F = 〈f , g 〉 is a continuous  vector  field on a region  R of ℝ2. We let C  be a smooth  oriented  curve  in R that 

does not intersect  itself;  C  may or may not be closed.  To compute  the flux of the vector  field across  C , we “add 

up” the components  of F orthogonal or normal to C  at each point  of C . Notice  that every point  on C  has two 

unit vectors  normal  to C . Therefore,  we let n denote  the unit vector  in the xy-plane  normal  to C  in a direction  to 

be defined  momentarily.  Once the direction  of n is defined,  the component  of F normal  to C  is F ·n, and the flux 

is the line integral  of F ·n along C , which  we denote  
C

F ·n d s.

Note  »

In the  definition  of flux,  the  non-self-intersecting  property  of C  means  that  C  is 

a simple curve,  as defined  formally  in Section  17.3.

The first step is to define  the unit normal  vector  at a point  P  of C . Because  C  lies in the x y-plane,  the unit 

vector  T tangent  to C  at P  also lies in the x y-plane.  Therefore,  its z-component  is 0, and we let T = Tx , Ty , 0. As 

always,  k = 〈0, 0, 1〉 is the unit vector  in the z-direction.  Because  a unit vector  n in the xy-plane  normal  to C  is 

orthogonal  to both T and k, we determine  the direction  of n by letting  n = T⨯k (Figure  17.26 ). This choice  has 

two implications.

Note  »

Recall  that  a ⨯b is orthogonal  to both  a and  b.

 If C  is a closed  curve  oriented  counterclockwise  (when  viewed  from above),  the unit normal  vector  points  

outward along the curve  (Figure  17.26).  When  F also points  outward  at a point  on C , the angle  θ between  F 

and n satisfies  0 ≤ θ < π
2

. At all such points,  F ·n > 0 and there is a positive  contribution  to the flux across  C . 

When F points  inward  at a point  on C , 
π
2
< θ ≤ π and F ·n < 0, which  means  there is a negative  contribution  

to the flux at that point.

 If C  is not a closed  curve,  the unit normal  vector  points  to the right (when  viewed  from above)  as the curve  is 

traversed  in the forward  direction.
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0

Figure 17.26

Quick Check 5   Sketch  a closed  curve  on a sheet  of paper  and draw a unit tangent  vector  T on the curve  

pointing  in the counterclockwise  direction.  Explain  why n = T⨯k is an outward unit normal  vector.   ◆
Answer  »

T and k are unit vectors,  so n is a unit vector.  By the right-hand  rule for cross-products,  n 
points  outward  from the curve.

Calculating  the cross  product  for the unit normal  vector  n, we find that

n = T⨯k =

i

Tx

0

j

Ty

0

k

0

1

= Ty i - Tx j.

Because  T =
r ' (t )

r ' (t ) , the components  of T are
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T = Tx , Ty , 0 = 〈x ' (t ), y ' (t ), 0〉
r ' (t ) .

We now have an expression  for the unit normal  vector:

n = Ty i - Tx j =
y ' (t )

r ' (t ) i -
x ' (t )

r ' (t ) j =
〈y ' (t ), -x ' (t )〉

r ' (t ) .

To evaluate  the flux integral  
C

F ·n d s, we make a familiar  change  of variables  by letting  d s = r ' (t ) d t . 

The flux of F = 〈f , g 〉 across  C  is then


C

F ·n d s = 
a

b

F ·
〈y ' (t ), -x ' (t )〉

r ' (t )
n

r ' (t ) d t

d s

= 
a

b

(f (t ) y ' (t ) - g (t ) x ' (t )) d t .

This is one useful  form of the flux integral.  Alternatively,  we can note that d x = x ' (t ) d t  and d y = y ' (t ) d t  and 

write


C

F ·n d s = 
C

f d y - g d x.

DEFINITION Flux

Let F = 〈f , g 〉 be a continuous  vector  field on a region  R of ℝ2. Let C : r(t ) = 〈x(t ), y(t )〉, for 

a ≤ t ≤ b, be a smooth  oriented  curve  in R that does not intersect  itself.  The flux of the vector  field 

across  C  is 


C

F ·n d s = 
a

b

(f y ' (t ) - g x ' (t )) d t ,

where  n = T⨯k is the unit normal  vector  and T is the unit tangent  vector  consistent  with the 

orientation.  If C  is a closed  curve  with counterclockwise  orientation,  n is the outward  normal  

vector  and the flux integral  gives the outward  flux  across  C .

Note  »

Like  circulation  integrals,  flux  integrals  may  be computed  on  piecewise-

smooth  curves  by finding  the  flux  on  each  piece  and  adding  the  results.

The concepts  of circulation  and flux can be visualized  in terms of headwinds  and crosswinds.  Suppose  the wind 

patterns  in your neighborhood  can be modeled  with a vector  field F (that  doesn’t  change  with time).  Now 

imagine  taking  a walk around  the block in a counterclockwise  direction  along a closed  path.  At different  points  

along your walk,  you encounter  winds  from various  directions  and with various  speeds.  The circulation  of the 

wind field F along your path is the net amount  of headwind  (negative  contribution)  and tailwind  (positive  

contribution)  that you encounter  during  your walk.  The flux of F across  your path is the net amount  of cross-

wind (positive  from your left and negative  from your right)  encountered  on your walk.

EXAMPLE  8 Flux of two-dimensional  flows

Find the outward  flux across  the unit circle  with counterclockwise  orientation  for the following  vector  fields.
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a. The radial  vector  field F = 〈x, y〉
b. The rotation  flow field F = 〈-y , x〉
SOLUTION   »

a. The unit circle  with counterclockwise  orientation  has a description  r(t ) = 〈x(t ), y(t )〉 = 〈cos t , sin t〉, for 

0 ≤ t ≤ 2 π. Therefore,  x ' (t ) = -sin t  and y ' (t ) = cos t . The components  of F are f = x(t ) = cos t  and 

g = y(t ) = sin t . It follows  that the outward  flux is


a

b

(f y ' (t ) - g x ' (t )) d t = 
0

2 π
cos t

f (t )

cos t

y ' (t )

- sin t

g (t )

(-sin t )

x ' (t )

d t

= 
0

2 π
1 d t = 2 π. cos2 t + sin2 t = 1

Because  the radial  vector  field points  outward  and is aligned  with the unit normal  vectors  on C , the outward  

flux is positive  (Figure  17.27 ).

b. For the rotation  field,  f = -y(t ) = -sin t  and g = x(t ) = cos t . The outward  flux is


a

b

(f y ' (t ) - g x ' (t )) d t = 
0

2 π
-sin t

f (t )

cos t

y ' (t )

- cos t

g (t )

(-sin t )

x ' (t )

d t

= 
0

2 π
0 d t = 0.

Because  the rotation  field is orthogonal  to n at all points  of C , the outward  flux across  C  is zero (Figure  17.27).  

The results  of Examples  6 and 8 are worth  remembering:  On a unit circle  centered  at the origin,  the radial vector  

field 〈x, y〉 has outward  flux 2 π and zero circulation.  The rotation vector  field 〈-y , x〉 has zero outward  flux and 

circulation  2 π.
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On the unit circle, F = 〈x, y〉 is orthogonal

to C and has positive outward flux on C .

Figure 17.27

Related  Exercises  59–60  ◆
Exercises  »

Getting  Started   »

Practice  Exercises   »

17–34.  Scalar  line integrals  Evaluate  the following  line integrals  along  the curve  C .

17. 
C

x y d s; C  is the unit circle  r(t ) = 〈cos t , sin t〉, for 0 ≤ t ≤ 2 π.

18. 
C

x2 - 2 y2 d s; C  is the line r(t ) =  t

2
,

t

2
, for 0 ≤ t ≤ 4.

19. 
C

(2 x + y) d s; C  is the line segment  r(t ) = 〈3 t , 4 t〉, for 0 ≤ t ≤ 2.

20. 
C

x d s; C  is the curve  r(t ) = t 3, 4 t , for 0 ≤ t ≤ 1.

21. 
C

x y3 d s; C  is the quarter-circle  r(t ) = 〈2 cos t , 2 sin t〉, for 0 ≤ t ≤ π /2.

22. 
C

3 x cos y d s; C  is the curve  r(t ) = 〈 sin t , t〉, for 0 ≤ t ≤ π /2.
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23. 
C

(y - z) d s; C  is the helix  r(t ) = 〈3 cos t , 3 sin t , 4 t〉, for 0 ≤ t ≤ 2 π.

24. 
C

(x - y + 2 z) d s; C  is the circle  r(t ) = 〈1, 3 cos t , 3 sin t〉, for 0 ≤ t ≤ 2 π.

25. 
C

x2 + y2 d s; C  is the circle  of radius  4 centered  at (0, 0).

26. 
C

x2 + y2 d s; C  is the line segment  from (0, 0) to (5, 5).

27. 
C

x

x2 + y2
d s; C  is the line segment  from (1, 1) to (10, 10).

28. 
C

(x y)1/3 d s; C  is the curve  y = x2, for 0 ≤ x ≤ 1.

29. 
C

x y d s; C  is a portion  of the ellipse  
x2

4
+

y2

16
= 1 in the first quadrant,  oriented  counterclockwise.

30. 
C

(2 x - 3 y) d s; C  is the line segment  from (-1, 0) to (0, 1) followed  by the line segment  from (0, 1) 

to (1, 0).

31. 
C

(x + y + z) d s; C  is the semicircle  r(t ) = 〈2 cos t , 0, 2 sin t〉, for 0 ≤ t ≤ π.

32. 
C

x y

z
d s; C  is the line segment  from (1, 4, 1) to (3, 6, 3).

33. 
C

x z d s; C  is the line segment  from (0, 0, 0) to (3, 2, 6) followed  by the line segment  from (3, 2, 6) 

to (7, 9, 10).

34. 
C

x ey z d s; C  is r(t ) = 〈t , 2 t , -2 t〉, for 0 ≤ t ≤ 2.

35–36.  Mass  and density   A thin wire represented  by the smooth  curve  C  with a density  ρ (units  of mass per 

length)  has a mass M = 
C

ρ d s. Find the mass of the following  wires  with the given density.

T 35. C : (x, y) : y = 2 x2, 0 ≤ x ≤ 3; ρ(x, y) = 1 + x y

36. C : r(θ) = 〈cos θ, sin θ〉, for 0 ≤ θ ≤ π; ρ(θ) = 2 θ
π + 1

37–38.  Average  values   Find the average  value  of the following  functions  on the given curves.

37. f (x, y) = x + 2 y  on the line segment  from (1, 1) to (2, 5)

38. f (x, y) = x ey  on the unit circle  centered  at the origin
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39–40.  Length  of curves   Use a scalar  line integral  to find the length  of the following  curves.

39. r(t ) = 20 sin
t

4
, 20 cos

t

4
,

t

2
, for 0 ≤ t ≤ 2

40. r(t ) = 〈30 sin t , 40 sin t , 50 cos t〉, for 0 ≤ t ≤ 2 π
41–46.  Line integrals  of vector  fields  in the plane   Given  the following  vector  fields  and oriented  curves  C , 

evaluate  
C

F ·T d s.

41. F = 〈x, y〉 on the parabola  r(t ) = 4 t , t 2, for 0 ≤ t ≤ 1

42. F = 〈-y , x〉 on the semicircle  r(t ) = 〈4 cos t , 4 sin t〉, for 0 ≤ t ≤ π
43. F = 〈y , x〉 on the line segment  from (1, 1) to (5, 10)

44. F = 〈-y , x〉 on the parabola  y = x2 from (0, 0) to (1, 1)

45. F =
〈x, y〉

x2 + y23/2  on the curve  r(t ) = t 2, 3 t 2, for 1 ≤ t ≤ 2

46. F =
〈x, y〉

x2 + y2
 on the line segment  r(t ) = 〈t , 4 t〉, for 1 ≤ t ≤ 10

47–48.  Line integrals  from graphs   Determine  whether  
C

F ·d r along  the paths  C1 and C2 shown  in the 

following  vector  fields  is positive  or negative.  Explain  your reasoning.

a. 
C1

F ·d r

b. 
C2

F ·d r

47.

48.
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49–56.  Work  integrals   Given  the force field F, find the work required  to move an object  on the given 

oriented  curve.

49. F = 〈y , -x〉 on the line segment  from (1, 2) to (0, 0) followed  by the line segment  from (0, 0) to (0, 4)

50. F = 〈x, y〉 on the line segment  from (-1, 0) to (0, 8) followed  by the line segment  from (0, 8) to (2, 8)

51. F = 〈y , x〉 on the parabola  y = 2 x2 from (0, 0) to (2, 8)

52. F = 〈y , -x〉 on the line segment  y = 10 - 2 x  from (1, 8) to (3, 4)

53. F = 〈x, y , z〉 on the tilted ellipse  r(t ) = 〈4 cos t , 4 sin t , 4 cos t〉 , for 0 ≤ t ≤ 2 π

54. F = 〈-y , x, z〉 on the helix  r(t ) = 2 cos t , 2 sin t ,
t

2 π  , for 0 ≤ t ≤ 2 π

55. F =
〈x, y , z〉

x2 + y2 + z23/2  on the line segment  from (1, 1, 1) to (10, 10, 10)

T 56. F =
〈x, y , z〉

x2 + y2 + z2
 on the line segment  from (1, 1, 1) to (8, 4, 2)

57–58.  Circulation   Consider  the following  vector  fields  F and closed  oriented  curves  C  in the plane  (see 

figures).

a. Based on the picture,  make a conjecture  about  whether  the circulation  of F on C  is positive,  

negative,  or zero.

b. Compute  the circulation  and interpret  the result.

57. F = 〈y - x, x〉; C : r(t ) = 〈2 cos t , 2 sin t〉 , for 0 ≤ t ≤ 2 π
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58. F =
〈y , -2 x〉
4 x2 + y2

; C : r(t ) = 〈2 cos t , 4 sin t〉 , for 0 ≤ t ≤ 2 π

59–60.  Flux   Consider  the vector  fields  and curves  in Exercises  57–58.

a. Based on the picture,  make  a conjecture  about  whether  the outward  flux of F across  C  is positive,  

negative,  or zero.

b. Compute  the flux for the vector  fields  and curves.

59. F and C  given in Exercise  57

60. F and C  given in Exercise  58

61. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.
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a. If a curve  has a parametric  description  r(t ) = 〈x(t ), y(t ), z(t )〉, where  t  is the arc length,  then 

r ' (t ) = 1.

b. The vector  field F = 〈y , x〉 has both zero circulation  along and zero flux across  the unit circle  

centered  at the origin.

c. If at all points  of a path a force acts in a direction  orthogonal  to the path,  then no work is done in 

moving  an object  along the path.

d. The flux of a vector  field across  a curve  in ℝ2 can be computed  using a line integral.

62. Flying  into a headwind   An airplane  flies in the x z-plane,  where  x  increases  in the eastward  

direction  and z ≥ 0 represents  vertical  distance  above  the ground.  A wind blows  horizontally  out of 

the west,  producing  a force F = 〈150, 0〉. On which  path between  the points  (100, 50) and (-100, 50) 

is the most  work done overcoming  the wind?

a. The straight  line r(t ) = 〈x(t ), z(t )〉 = 〈-t , 50〉, for -100 ≤ t ≤ 100

b. The arc of a circle  r(t ) = 〈100 cos t , 50 + 100 sin t〉, for 0 ≤ t ≤ π
63. Flying  into a headwind

a. How does the result  of Exercise  62 change  if the force due to the wind is F = 〈141, 50〉 
(approximately  the same magnitude,  but different  direction)?

b. How does the result  of Exercise  62 change  if the force due to the wind is F = 〈141, -50〉 
(approximately  the same magnitude,  but different  direction)?

64. Changing  orientation   Let f (x, y) = x + 2 y  and let C  be the unit circle.

a. Find a parameterization  of C  with a counterclockwise  orientation  and evaluate  
C

f d s.

b. Find a parameterization  of C  with a clockwise  orientation  and evaluate  
C

f d s.

c. Compare  the results  of (a) and (b).

65. Changing  orientation   Let f (x, y) = x  and let C  be the segment  of the parabola  y = x2 joining  O(0, 0) 

and P(1, 1).

a. Find a parameterization  of C  in the direction  from O to P . Evaluate  
C

f d s.

b. Find a parameterization  of C  in the direction  from P  to O. Evaluate  
C

f d s.

c. Compare  the results  of (a) and (b).

66. Work in a rotation  field   Consider  the rotation  field F = 〈-y , x〉 and the three paths  shown  in the 

figure.  Compute  the work done on each of the three paths.  Does it appear  that the line integral  


C

F ·T d s is independent  of the path,  where  C  is any path from (1, 0) to (0, 1)?
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67. Work in a hyperbolic  field   Consider  the hyperbolic  force field F = 〈y , x〉 (the streamlines  are 

hyperbolas)  and the three paths  shown  in the figure  for Exercise  66. Compute  the work done in the 

presence  of F on each of the three paths.  Does it appear  that the line integral  
C

F ·T d s is 

independent  of the path,  where  C  is any path from (1, 0) to (0, 1)?

68–72.  Assorted  line integrals   Evaluate  each line integral  using  the given curve  C. 

68. 
C

x2 d x + d y + y d z; C is the curve  r (t ) = t , 2 t , t 2, for 0 ≤ t ≤ 3.

T 69. 
C

x 3 y d x + x z d y + (x + y)2 d z; C is the helix r (t ) = 〈2 t , sin t , cos t〉, for 0 ≤ t ≤ 4 π.

T 70. 
C

x 2

y4
d s; C  is the segment  of the parabola  x = 3 y2 from (3, 1) to (27, 3).

71. 
C

y

x2 + y2
d x -

x

x2 + y2
d y ; C is a quarter-circle  from (0, 4) to (4, 0). 

72. 
C

(x + y) d x + (x - y) d y + x d z; C  is the line segment  from (1, 2, 4) to (3, 8, 13).

73. Flux across  curves  in a vector  field   Consider  the vector  field F = 〈y , x〉 shown  in the figure.

a. Compute  the outward  flux across  the quarter  circle  C : r(t ) = 〈2 cos t , 2 sin t〉, for 0 ≤ t ≤ π
2

.

b. Compute  the outward  flux across  the quarter  circle  C : r(t ) = 〈2 cos t , 2 sin t〉, for 
π
2
≤ t ≤ π.

c. Explain  why the flux across  the quarter  circle  in the third quadrant  equals  the flux computed  in 

part (a).

d. Explain  why the flux across  the quarter  circle  in the fourth  quadrant  equals  the flux computed  in 

part (b).

e. What is the outward  flux across  the full circle?

Section 17.2  Line Integrals 33

Copyright © 2019 Pearson Education, Inc.



Explorations  and Challenges   »

74–75.  Zero circulation  fields

74. For what values  of b and c  does the vector  field F = 〈b y , c x〉 have zero circulation  on the unit circle  

centered  at the origin  and oriented  counterclockwise?

75. Consider  the vector  field F = 〈a x + b y , c x + d y〉. Show that F has zero circulation  on any oriented  

circle  centered  at the origin,  for any a, b, c, and d , provided  b = c.

76–77.  Zero flux fields

76. For what values  of a and d  does the vector  field F = 〈a x, d y〉 have zero flux across  the unit circle  

centered  at the origin  and oriented  counterclockwise?

77. Consider  the vector  field F = 〈a x + b y , c x + d y〉. Show that F has zero flux across  any oriented  

circle  centered  at the origin,  for any a, b, c, and d , provided  a = -d .

78. Heat flux in a plate   A square  plate R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1} has a temperature  distribution  

T (x, y) = 100 - 50 x - 25 y .

a. Sketch  two level  curves  of the temperature  in the plate.

b. Find the gradient  of the temperature  ∇T (x, y).

c. Assume  the flow of heat is given by the vector  field F = -∇T (x, y). Compute  F.

d. Find the outward  heat flux across  the boundary  {(x, y) : x = 1, 0 ≤ y ≤ 1}.

e. Find the outward  heat flux across  the boundary  {(x, y) : 0 ≤ x ≤ 1, y = 1}.

79. Inverse  force  fields   Consider  the radial  field F =
r

rp =
〈x, y , z〉
rp , where  p > 1 (the inverse  square  

law corresponds  to p = 3). Let C  be the line from (1, 1, 1) to (a, a, a), where  a > 1, given by 

r(t ) = 〈t , t , t〉, for 1 ≤ t ≤ a.

a. Find the work done in moving  an object  along C  with p = 2.

b. If a →∞ in part (a), is the work finite?

c. Find the work done in moving  an object  along C  with p = 4.

d. If a →∞ in part (c), is the work finite?

e. Find the work done in moving  an object  along C  for any p > 1.

f. If a →∞ in part (e), for what values  of p is the work finite?

80. Line integrals  with respect  to dx  and d y   Given  a vector  field F = 〈f , 0〉 and curve  C  with 

parameterization  r(t ) = 〈x(t ), y(t )〉, for a ≤ t ≤ b, we see that the line integral  
C

f d x + g d y  

simplifies  to 
C

f d x.

a. Show that 
C

f d x = 
a

b

f (t ) x ' (t ) dt .

b. Use the vector  field F = 〈0, g 〉 to show that 
C

g d y = 
a

b

g (t ) y ' (t ) dt .

c. Evaluate  
C

x y d x, where  C  is the line segment  from (0, 0) to (5, 12).
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d. Evaluate  
C

x y d y , where  C  is a segment  of the parabola  x = y2 from (1,-1) to (1,1) .

81–82.  Looking  ahead:  Area from line integrals   The area of a region  R in the plane,  whose  boundary  is 

the curve  C , may be computed  using  line integrals  with the formula  

area of R = 
C

x d y = -
C

y d x.

81. Let R be the rectangle  with vertices  (0, 0), (a, 0), (0, b), and (a, b), and let C  be the boundary  of R 

oriented  counterclockwise.  Use the formula  A = 
C

x d y  to verify  that the area of the rectangle  is a b.

82. Let R = {(r , θ) : 0 ≤ r ≤ a, 0 ≤ θ ≤ 2 π} be the disk of radius  a centered  at the origin  and let C  be the 

boundary  of R oriented  counterclockwise.  Use the formula  A = -
C

y d x  to verify  that the area of the 

disk is π a2.
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