
16.3 Double Integrals in Polar Coordinates

In Chapter  12, we explored  polar  coordinates  and saw that in certain  situations  they simplify  problems  consider -

ably.  The same is true when it comes  to integration  over plane regions.  In this section,  we learn how to formu -

late double  integrals  in polar  coordinates  and how to change  double  integrals  from Cartesian  coordinates  to 

polar coordinates.

Note  »

Recall  the  conversions  from  Cartesian  to polar  coordinates  (Section  12.2):  

x = r cos θ, y = r sin θ, or

r 2 = x2 + y 2, tan θ = y

x
.

Polar Rectangular Regions  »

Suppose  we want to find the volume  of the solid bounded  by the paraboloid  z = 9 - x2 - y2 and the x y-plane  

(Figure  16.27 ). The intersection  of the paraboloid  and the x y-plane  (z = 0) is the curve  9 - x2 - y2 = 0, or 

x2 + y2 = 9. Therefore,  the region  of integration  R is the disk of radius  3 in the x y-plane,  centered  at the origin,  

which,  when expressed  in Cartesian  coordinates,  is R = (x, y) : - 9 - x2 ≤ y ≤ 9 - x2 , -3 ≤ x ≤ 3. Using  the 

relationship  r 2 = x2 + y2 for converting  Cartesian  to polar  coordinates,  the region  of integration  expressed  in 

polar coordinates  is simply  R = {(r , θ) : 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2 π}. Furthermore,  the paraboloid  expressed  in polar  

coordinates  is z = 9 - r 2. This problem  (which  is solved  in Example  1) illustrates  how both the integrand  and the 

region  of integration  in a double  integral  can be simplified  by working  in polar  coordinates.

show surface

show region

rectangular

coordinates

polar coordinates

show grids

Figure 16.27

The region  of integration  in this problem  is an example  of a polar  rectangle . In polar  coordinates,  it has 

the form R = {(r , θ) : 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β}, where  β - α ≤ 2 π and a, b, α, and β are constants  (Figure  16.28 ). 
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Polar rectangles  are the analogs  of rectangles  in Cartesian  coordinates.  For this reason,  the methods  used in 

Section  16.1 for evaluating  double  integrals  over rectangles  can be extended  to polar  rectangles.  The goal is to 

evaluate  integrals  of the form  
R

f (x, y) d A, where  f  is a continuous  function  on the polar  rectangle  R. If f  is 

nonnegative  on R, this integral  equals  the volume  of the solid region  bounded  by the surface  z = f (x, y) and the 

region  R in the x y-plane.
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Figure 16.28

Our approach  is to divide  [a, b] into M  subintervals  of equal  length  Δr =
b - a

M
. We similarly  divide  [α, β] 

into m subintervals  of equal  length  Δθ = β - α
m

. Now look at the arcs of the circles  centered  at the origin  with 

radii

r = a, r = a + Δr , r = a + 2 Δr , …, r = b

and the rays

θ = α, θ = α + Δθ, θ = α + 2 Δθ, …, θ = β
emanating  from the origin  (Figure  16.29 ). These  arcs and rays divide  the region  R into n = M m polar  rectan -

gles that we number  in a convenient  way from k = 1 to k = n. The area of the k th rectangle  is denoted  by ΔAk , 
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k

and we let (rk
* , θk

* ) be the polar  coordinates  of an arbitrary  point  in that rectangle.  Note that this point  also has 

the Cartesian  coordinates  (xk
* , yk

*) = (rk
* cos θk

* , rk
* sin θk

* ). If f  is continuous  on R, the volume  of the solid region  

beneath  the surface  z = f (x, y) and above  R may be computed  with Riemann  sums using either  ordinary  

rectangles  (as in Sections  16.1 and 16.2)  or polar  rectangles.  Here,  we now use polar  rectangles.
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Figure 16.29

Consider  the “box”  whose  base is the kth polar  rectangle  and whose  height  is f (xk
* , yk

*); its volume  is 

f (xk
* , yk

*) ΔAk , for k = 1, …, n. Therefore,  the volume  of the solid region  beneath  the surface  z = f (x, y) with a 

base R, is approximately

V ≈ 
k=1

n

f (xk
* , yk

*) ΔAk .

This approximation  to the volume  is another  Riemann  sum. We let Δ be the maximum  value of Δr  and Δθ. If f  is 

continuous  on R, then as Δ→ 0, the sum approaches  a double  integral;  that is, 

 
R

f (x, y) d A = lim
Δ→0


k=1

n

f (xk
* , yk

*) ΔAk = lim
Δ→0


k=1

n

f (rk
* cos θk

* , rk
* sin θk

* ) ΔAk . (1)

The next step is to express  ΔAk  in terms  of Δr  and Δθ. Figure  16.30  shows  the k th polar  rectangle,  with 

an area ΔAk . The point  (rk
* , θk

* ) (in polar  coordinates)  is chosen  so that the outer  arc of the polar  rectangle  has 
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radius  rk
* +

Δr

2
 and the inner  arc has radius  rk

* -
Δr

2
. The area of the polar  rectangle  is

ΔAk = (area of outer sector ) - (area of inner sector )

=
1

2
rk
* +

Δr

2

2 Δθ - 1

2
rk
* -

Δr

2

2 Δθ Area of sector =
1

2
r 2 Δθ

= rk
* Δr Δθ. Expand and simplify .

Figure 16.30

Note  »

Recall  that  the  area  of a sector  of a circle  of radius  r  subtended  by an angle  θ is 

1

2
r 2 θ.

Substituting  this expression  for ΔAk  into equation  (1), we have

 
R

f (x, y) d A = lim
Δ→0


k=1

n

f (xk
* , yk

*) ΔAk = lim
Δ→0


k=1

n

f (rk
* cos θk

* , rk
* sin θk

* ) rk
* Δr Δθ.

This observation  leads to a theorem  that allows  us to write  a double  integral  in x  and y  as an iterated  integral  of 

f (r cos θ, r sin θ) r  in polar  coordinates.  It is an example  of a change  of variables,  explained  more generally  in 

Section  16.7.
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THEOREM  16.3 Change  of Variables  for Double  Integrals  over Polar  Rectangular  

Regions

Let f  be continuous  on the region  R in the x y-plane  expressed  in polar  coordinates  as 

R = {(r , θ) : 0 ≤ a ≤ r ≤ b, α ≤ θ ≤ β}, where  β - α ≤ 2 π. Then f  is integrable  over R, and the double  

integral  of f  over R is 

 
R

f (x, y) d A = α
β

a

b

f (r cos θ, r sin θ) r d r dθ.

Note  »

The  most  common  error  in evaluating  integrals  in polar  coordinates  is to omit

the  factor  of r  that  appears  in the  integrand.  In Cartesian  coordinates,  the  

element  of area  is d x d y ; in polar  coordinates,  the  element  of area  is r d r d θ, 

and  without  the  factor  of r , area  is not  measured  correctly.

Quick Check 1   Describe  in polar  coordinates  the region  in the first quadrant  between  the circles  of 

radius  1 and 2.  ◆
Answer »

EXAMPLE  1 Volume  of a paraboloid  cap

Find the volume  of the solid bounded  by the paraboloid  z = 9 - x2 - y2 and the x y-plane.

SOLUTION   »

Using x2 + y2 = r 2, the surface  is described  in polar  coordinates  by z = 9 - r 2. The paraboloid  intersects  the x y-

plane (z = 0) when z = 9 - r 2 = 0, or r = 3. Therefore,  the intersection  curve  is the circle  of radius  3 centered  at 

the origin.  The resulting  region  of integration  is the disk R = {(r , θ) : 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2 π} (Figure  16.31 ). 

Integrating  over R in polar  coordinates,  the volume  is

V = 
0

2 π
0

39 - r 2
z

r d r dθ Iterated integral for volume

= 
0

2 π 9 r 2

2
-

r 4

4 0

3

dθ Evaluate inner integral with respect to r .

= 
0

2 π 81

4
dθ = 81 π

2
. Evaluate outer integral with respect to θ.
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show surface
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Figure 16.31

Related  Exercises  12, 16  ◆
Quick Check 2   Express  the functions  f (x, y) = x2 + y25/2 and h(x, y) = x2 - y2 in polar  coordinates.   ◆
Answer  »

r 5, r 2cos2 θ - sin2 θ = r 2 cos 2 θ

EXAMPLE  2 Region  bounded  by two surfaces

Find the volume  of the region  bounded  by the paraboloid  z = x2 + y2 and the cone z = 2 - x2 + y2 .

SOLUTION   »

As discussed  in Section  16.2,  the volume  of a solid bounded  by two surfaces  z = f (x, y) and z = g (x, y) over a 

region  R in the xy-plane  is given by  
R

(f (x, y) - g (x, y)) d A, where  f (x, y) ≥ g (x, y) over R. Because  the 

paraboloid  z = x2 + y2 lies below  the cone z = 2 - x2 + y2  (Figure  16.32 ), the volume  of the solid bounded  

by the surfaces  is 

V =  
R

2 - x2 + y2  - x2 + y2 d A,
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where  the boundary  of R is the curve  of intersection  C  of the surfaces  projected  onto the xy-plane.  

z = 2 - x 2
+ y 2

= 2 - r

z = x 2
+ y 2

= r 2

0 ≤ r ≤ 1

show

intersection curve C

region R

show grids

Figure 16.32

To find C , we set the equations  of the surfaces  equal  to one another.  Writing  x2 + y2 = 2 - x2 + y2  seems  like a 

good start,  but it leads to algebraic  difficulties.  Instead,  we write  the equation  of the cone as x2 + y2 = 2 - z  

and then substitute  this equation  into the equation  for the paraboloid:  

z = x2 + z2 Parboloid

z = (2 - z)2 x2 + y2 = 2 - z (cone)

z2 - 5 z + 4 = 0 Simplify .

(z - 1) (z - 4) = 0 Factor .

z = 1 or z = 4. Solve for z.

The solution  z = 4 is an extraneous  root (see Quick  Check  3). Setting  z = 1 in the equation  of either  the 

paraboloid  or the cone leads to x2 + y2 = 1, which  is an equation  of the curve  C  in the plane  z = 1. Projecting  C  

onto the xy-plane,  we conclude  that the region  of integration  (written  in polar  coordinates)  is 

R = {(r , θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2 π}.
Converting  the original  volume  integral  into polar  coordinates  and evaluating  it over R, we have 
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V =  
R

2 - x2 + y2  - x2 + y2 d A Double integral for volume

= 
0

2 π
0

12 - r - r 2 r d r dθ Convert to polar coordinates ; x2 + y2 = r 2.

= 
0

2 π
r 2 -

1

3
r 3 -

1

4
r 4

0

1

dθ Evaluate the inner integral .

= 
0

2 π 5

12
dθ = 5 π

6
. Evaluate the outer integral .

Related  Exercises  33, 40  ◆
Quick Check 3   Give a geometric  explanation  for the extraneous  root z = 4 found  in Example  2.  ◆
Answer  »

z = 2 - x2 + y2  is the lower  half of the double-napped  cone (2 - z)2 = x2 + y2. Imagine  both 

halves  of this cone in Figure  16.32:  It is apparent  that the paraboloid  z = x2 + y2 intersects  the 

cone twice,  once when z = 1 and once when z = 4.

EXAMPLE  3 Annular  region

Find the volume  of the region  beneath  the surface  z = x y + 10 and above  the annular  region  

R = {(r , θ) : 2 ≤ r ≤ 4, 0 ≤ θ ≤ 2 π}. (An annulus is the region  between  two concentric  circles.)

SOLUTION   »

The region  of integration  suggests  working  in polar  coordinates  (Figure  16.33 ). 
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show surface

show region

show grids

Figure 16.33

Substituting  x = r cos θ and y = r sin θ, the integrand  becomes

x y + 10 = (r cos θ) (r sin θ) + 10 Substitute for x and y .

= r 2 sin θ cos θ + 10 Simplify .

=
1

2
r 2 sin 2 θ + 10. sin 2 θ = 2 sin θ cos θ

Substituting  the integrand  into the volume  integral,  we have

V = 
0

2 π
2

4 1

2
r 2 sin 2 θ + 10 r d r dθ Iterated integral for volume

= 
0

2 π
2

4 1

2
r 3 sin 2 θ + 10 r d r dθ Simplify .

= 
0

2 π r 4

8
sin 2 θ + 5 r 2

2

4

dθ Evaluate inner integral with respect to r .

= 
0

2 π
(30 sin 2 θ + 60) dθ Simplify .

= (15 (-cos 2 θ) + 60 θ)02 π = 120 π. Evaluate outer integral with respect to θ.
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Related  Exercises  22, 38  ◆
More General Polar Regions  »

In Section  16.2 we generalized  double  integrals  over rectangular  regions  to double  integrals  over nonrectangu -

lar regions.  In an analogous  way, the method  for integrating  over a polar  rectangle  may be extended  to more 

general  regions.  Consider  a region  bounded  by two rays θ = α and θ = β, where  β - α ≤ 2 π, and two curves  

r = g (θ) and r = h(θ) (Figure  16.34 ):

R = {(r , θ) : 0 ≤ g (θ) ≤ r ≤ h(θ), α ≤ θ ≤ β}.
The double  integral   

R

f (r , θ) d A is expressed  as an iterated  integral  in which  the inner  integral  has limits  

r = g (θ) and r = h(θ), and the outer  integral  runs from θ = α to θ = β. If f  is nonnegative  on R, the double  integral  

gives the volume  of the solid bounded  by the surface  z = f (r , θ) and R.

θ

α

β

polar grid

y

R = {(r , θ) : 0 ≤ g (θ) ≤ r ≤ h(θ), α ≤ θ ≤ β}

r = h(θ)
r = g (θ)

θ = α

θ = β Outer interval

of integration :

α ≤ θ ≤ β Inner interval

of integration :

g (θ) ≤ r ≤ h(θ)

θ = 0.78

α = 0.26

β = 1.31

Figure 16.34

10 Chapter 16 •  Multiple Integration

Copyright © 2019 Pearson Education, Inc.



THEOREM  16.4 Change  of Variables  for Double  Integrals  over More  General  Polar  

Regions

Let f  be continuous  on the region  in the x y-plane  expressed  in polar  coordinates  as  

R = {(r , θ) : 0 ≤ g (θ) ≤ r ≤ h(θ), α ≤ θ ≤ β},
where  0 < β - α ≤ 2 π. Then  

 
R

f (r , θ) d A = α
β

g (θ)
h(θ)

f (r , θ) r d r dθ.

Note  »

EXAMPLE  4 Specifying  regions

Write an iterated  integral  for  
R

g (r , θ) d A for the following  regions  R in the x y-plane.

a. The region  outside  the circle  r = 2 (with radius  2 centered  at (0, 0)) and inside  the circle  r = 4 cos θ (with 

radius  2 centered  at (2, 0))

b. The region  inside  both circles  of part (a)

Note »

Recall  from  Section  12.2  that  the  polar  equation  r = 2 a sin θ describes  a circle  

of radius  a  with  center  (0, a). The  polar  equation  r = 2 a cos θ describes  a 

circle  of radius  a  with  center  (a , 0).

SOLUTION  »

a. Equating  the two expressions  for r , we have 4 cos θ = 2 or cos θ = 1

2
, so the circles  intersect  when θ = ±

π
3

 

(Figure  16.35 ). The inner  boundary  of R is the circle  r = 2, and the outer  boundary  is the circle  r = 4 cos θ. 

Therefore,  the region  of integration  is R = (r , θ) : 2 ≤ r ≤ 4 cos θ, -
π
3
≤ θ ≤ π

3
 and the iterated  integral  is

 
R

g (r , θ) d A = 
-π/3
π/3

2

4 cos θ
g (r , θ) r d r dθ.
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θ

polar grid

x

y

The inner and outer boundaries of R are

traversed , for -π /3 ≤ θ ≤ π /3.

Radial lines enter the region R

at r = 2 and exit the region at

r = 4 cos θ.

r = 4 cos θr = 2

θ = -
π
3

θ = π
3

2 4

θ = 0.26

Figure 16.35

b. From part (a) we know that the circles  intersect  when θ = ±
π
3

. The region  R consists  of three subregions  

R1, R2, and R3 (Figure  16.36 ).

 For -
π
2
≤ θ ≤ -

π
3

, R1 is bounded  by r = 0 (inner  curve)  and r = 4 cos θ (outer  curve).

Therefore,  the double  integral  is expressed  in three parts:

 
R

g (r , θ) d A = 
-π/2
-π/3

0

4 cos θ
g (r , θ) r d r dθ + 

-π/3
π/3

0

2

g (r , θ) r d r dθ + π/3
π/2

0

4 cos θ
g (r , θ) r d r dθ
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show R

show R1

show R2

show R3

θ

polar grid

y

r = 4 cos θr = 2

θ = -
π
3

θ = π
3

2 4

θ = 0.26

Figure 16.36

Related  Exercise  44  ◆
Areas of Regions  »

In Cartesian  coordinates,  the area of a region  R in the x y-plane  is computed  by integrating  the function  

f (x, y) = 1 over R; that is, A =  
R

d A. This fact extends  to polar  coordinates.

Area of Polar  Regions

The area of the region  R = {(r , θ) : 0 ≤ g (θ) ≤ r ≤ h(θ), α ≤ θ ≤ β}, where  β - α ≤ 2 π, is 

A =  
R

d A = α
β

g (θ)
h(θ)

r d r dθ.

Note  »

Do not  forget  the  factor  of r  in the  area  integral!

EXAMPLE  5 Area within  a lemniscate

Compute  the area of the region  in the first and fourth  quadrants  outside  the circle  r = 2  and inside  the 
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lemniscate  r 2 = 4 cos 2 θ (Figure  16.37 ).

θ

polar grid

x

y

r = 2 cos 2 θ

r = 2

θ = -
π
6

θ = π
6

2

θ = 0.26

Figure 16.37

SOLUTION   »

The equation  of the circle  can be written  as r 2 = 2. Equating  the two expressions  for r 2, the circle  and the 

lemniscate  intersect  when 2 = 4 cos 2 θ, or cos 2 θ = 1

2
. The angles  in the first and fourth  quadrants  that satisfy  

this equation  are θ = ±
π
6

 (Figure  16.37).  The region  between  the two curves  is bounded  by the inner  curve  

r = g (θ) = 2  and the outer  curve  r = h(θ) = 2 cos 2 θ . Therefore,  the area of the region  is

A = 
-π/6
π/6

2

2 cos 2 θ
r d r dθ

= 
-π/6
π/6 r 2

2 2

2 cos 2 θ
dθ Evaluate inner integral with respect to r .

= 
-π/6
π/6

(2 cos 2 θ - 1) dθ Simplify .

= (sin 2 θ - θ) 
-π/6
π/6

Evaluate outer integral with respect to θ.

= 3 -
π
3

. Simplify .

Related  Exercises  50–51  ◆
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Quick Check 4   Express  the area of the disk R = {(r , θ) : 0 ≤ r ≤ a, 0 ≤ θ ≤ 2 π} in terms  of a double  integral  

in polar  coordinates.   ◆
Answer  »


0

2 π
0

a

r d r dθ = π a2

Average Value over a Planar Polar Region  »

We have encountered  the average  value of a function  in several  different  settings.  To find the average  value of a 

function  over a region  in polar  coordinates,  we again  integrate  the function  over the region  and divide  by the 

area of the region.

EXAMPLE  6 Average  y-coordinate

Find the average  value of the y-coordinates  of the points  in the semicircular  disk of radius  a given by 

R = {(r , θ) : 0 ≤ r ≤ a, 0 ≤ θ ≤ π}. 
SOLUTION   »

The double  integral  that gives the average  value we seek is y =
1

area of R
 

R

y d A. We use the fact that the area 

of R is 
π a2

2
 and the y-coordinates  of points  in the semicircular  disk are given by y = r sin θ. Evaluating  the 

average  value integral  we find that

y =
1

π a2 2


0

π
0

a

r sin θ r d r dθ

=
2

π a2


0

π
sin θ r 3

3 0

a

dθ Evaluate inner integral with respect to r .

=
2

π a2

a3

3


0

π
sin θ dθ Simplify .

=
2 a

3 π (-cos θ)
0

π
Evaluate outer integral with respect to θ.

=
4 a

3 π . Simplify .

Note that 
4

3 π ≈ 0.42, so the average  value of the y-coordinates  is less than half the radius  of the disk.

Related  Exercise  53  ◆
Exercises  »

Getting  Started   »

Practice  Exercises   »

11–14.  Volume  of solids   Find the volume  of the solid bounded  by the surface  z = f (x, y) and the x y-plane.
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11. f (x, y) = 4 - x2 + y2

12. f (x, y) = 16 - 4 x2 + y2
13. f (x, y) = e-x2+y 2 8 - e-2

14. f (x, y) =
20

1 + x2 + y2
- 2

15–18.  Solids  bounded  by paraboloids   Find the volume  of the solid below  the paraboloid  z = 4 - x2 - y2 

and above  the following  polar  rectangles.

15. R = {(r , θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2 π}

16. R = {(r , θ) : 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2 π}
17. R = {(r , θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2 π}
18. R = (r , θ) : 1 ≤ r ≤ 2, -

π
2
≤ θ ≤ π

2


19–20.  Solids  bounded  by hyperboloids   Find the volume  of the solid below  the hyperboloid  

z = 5 - 1 + x2 + y2  and above  the following  polar  rectangles.

19. R = (r , θ) : 3 ≤ r ≤ 2 2 , 0 ≤ θ ≤ 2 π
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20. R = (r , θ) : 3 ≤ r ≤ 15 , -
π
2
≤ θ ≤ π

21–30.  Cartesian  to polar  coordinates   Evaluate  the the following  integrals  using  polar  coordinates.  

Assume  (r , θ) are polar  coordinates.  A sketch  is helpful.

21.  
R

x2 + y2 d A; R = {(r , θ) : 0 ≤ r ≤ 4, 0 ≤ θ ≤ 2 π}

22.  
R

2 x y d A; R = {(r , θ) : 1 ≤ r ≤ 3, 0 ≤ θ ≤ π /2}

23.  
R

2 x y d A; R = (x, y) : x2 + y2 ≤ 9, y ≥ 0

24.  
R

d A

1 + x2 + y2
; R = {(r , θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ π}

25.  
R

d A

16 - x2 - y2
; R = (x, y) : x2 + y2 ≤ 4, x ≥ 0, y ≥ 0

26.  
R

e-x2-y 2

d A; R = (x, y) : x2 + y2 ≤ 9

27. 
-1

1
- 1-x2

1-x2

x2 + y23/2 d y d x

28. 
0

3
0

9-x2

x2 + y2 d y d x

29.  
R

x2 + y2 d A; R = (x, y) : 1 ≤ x2 + y2 ≤ 4

30. 
-4

4
0

16-y 2

16 - x2 - y2 d x d y

31–40.  Volume  between  surfaces   Find the volume  of the following  solids.

31. The solid bounded  by the paraboloid  z = x2 + y2 and the plane z = 9
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32. The solid bounded  by the paraboloid  z = 2 - x2 - y2 and the plane z = 1

33. The solid bounded  by the paraboloids  z = x2 + y2 and z = 2 - x2 - y2

34. The solid bounded  by the paraboloids  z = 2 x2 + y2 and z = 27 - x2 - 2 y2
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35. The solid bounded  below  by the paraboloid  z = x2 + y2 - x - y  and above  by the plane x + y + z = 4

36. The solid bounded  by the cylinder x2 + y2 = 4 and the planes z = 3 - x  and z = x - 3

37. The solid bounded  by the paraboloid  z = 18 - x2 - 3 y2 and the hyperbolic  paraboloid  z = x2 - y2

38.  The solid outside  the cylinder  x2 + y2 = 1 that is bounded  above  by the hyperbolic  paraboloid  

z = -x2 + y2 + 8 and below  by the paraboloid  z = x2 + 3 y2
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39. The solid outside  the cylinder  x2 + y2 = 1 that is bounded  above  by the sphere  x2 + y2 + z2 = 8 and 

below by the cone z = x2 + y2

40. The solid bounded  by the cone z = 2 - x2 + y2 and the upper  half of a hyperboloid  of two sheets  

z = 1 + x2 + y2

41–46.  Describing  general  regions   Sketch  the following  regions  R. Then express   
R

g (r , θ) d A as an 

iterated  integral  over R in polar  coordinates.

41. The region  inside  the limaçon  r = 1 +
1

2
cos θ
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42. The region  inside  the leaf of the rose r = 2 sin 2 θ in the first quadrant

43. The region  inside  the lobe of the lemniscate  r 2 = 2 sin 2 θ in the first quadrant

44. The region  outside  the circle  r = 2 and inside  the circle  r = 4 sin θ
45. The region  outside  the circle  r = 1 and inside  the rose r = 2 sin 3 θ in the first quadrant

46. The region  outside  the circle  r =
1

2
 and inside  the cardioid  r = 1 + cos θ

47–52.  Computing  areas   Use a double  integral  to find the area of the following  regions.

47. The annular  region  {(r , θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ π}
48. The region  bounded  by the cardioid  r = 2 (1 - sin θ)
49. The region  bounded  by all leaves  of the rose r = 2 cos 3 θ
50. The region  inside  both the cardioid  r = 1 - cos θ and the circle  r = 1

51. The region  inside  both the cardioid  r = 1 + sin θ and the cardioid  r = 1 + cos θ
52. The region  bounded  by the spiral  r = 2 θ, for 0 ≤ θ ≤ π, and the x-axis

53–54.  Average  values   Find the following  average  values.

53. The average  distance  between  points  of the disk {(r , θ) : 0 ≤ r ≤ a} and the origin

54. The average  value of 
1

r 2
 over the annulus  {(r , θ) : 2 ≤ r ≤ 4}

55. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a. Let R be the unit disk centered  at (0, 0). Then  
R

x2 + y2 d A = 
0

2 π
0

1

r 2 d r dθ.

b. The average  distance  between  the points  of the hemisphere  z = 4 - x2 - y2  and the origin  is 2 

(calculus  not required).

c. The integral  
0

1
0

1-y 2

ex2+y 2

d x d y  is easier  to evaluate  in polar  coordinates  than in 

Cartesian  coordinates.

56. Areas  of circles   Use integration  to show that the circles  r = 2 a cos θ and r = 2 a sin θ have the same 

area, which  is π a2.

57. Filling  bowls  with water   Which  bowl holds  more water  if it is filled to a depth  of 4 units?

•  The paraboloid  z = x2 + y2, for 0 ≤ z ≤ 4

•  The cone z = x2 + y2 , for 0 ≤ z ≤ 4

•  The hyperboloid  z = 1 + x2 + y2 , for 1 ≤ z ≤ 5
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58. Equal  volumes   To what height  (above  the bottom  of the bowl)  must  the cone and paraboloid  bowls  

of Exercise  57 be filled to hold the same volume  of water  as the hyperboloid  bowl filled to a depth  of 

4 units  (1 ≤ z ≤ 5)?

59. Volume  of a hyperbolic  paraboloid   Consider  the surface  z = x2 - y2.

a. Find the region  in the x y-plane  in polar  coordinates  for which  z ≥ 0.

b. Let R = (r , θ) : 0 ≤ r ≤ a, -
π
4
≤ θ ≤ π

4
, which  is a sector  of a circle  of radius  a. Find the volume  

of the region  below  the hyperbolic  paraboloid  and above  the region  R.

60. Volume of a sphere  Use double  integrals  in polar  coordinates  to verify  that the volume  of a sphere  

of radius  a is 
4

3
π a3. 

61. Volume  Find the volume  of the solid bounded  by the cylinder  (x - 1)2 + y2 = 1, the plane z = 0, and 

the cone z = x2 + y2  (see figure).  (Hint: Use symmetry.)  

62. Volume   Find the volume  of the solid bounded  by the paraboloid  z = 2 x2 + 2 y2, the plane  z = 0, 

and the cylinder  x2 + (y - 1)2 = 1. (Hint: Use symmetry.)

Explorations  and Challenges   »

63–64.  Miscellaneous  integrals   Evaluate  the following  integrals  using  the method  of your choice.  A sketch  

is helpful.

63.  
R

d A

4 + x2 + y2
; R = (r , θ) : 0 ≤ r ≤ 2,

π
2
≤ θ ≤ 3 π

2


64.  
R

x - y

x2 + y2 + 1
d A; R is the region  bounded  by the unit circle  centered  at the origin.

65–68.  Improper  integrals   Improper  integrals  arise in polar  coordinates  when the radial  coordinate  r  

becomes  arbitrarily  large.  Under  certain  conditions,  these  integrals  are treated  in the usual  way: 

α
β

a

∞
g (r , θ) r d r dθ = lim

b→∞α
β

a

b

g (r , θ) r d r dθ.

Use this technique  to evaluate  the following  integrals.
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65. 
0

π/2
1

∞ cos θ
r 3

r d r dθ

66.  
R

d A

x2 + y25/2 ; R = {(r , θ) : 1 ≤ r <∞, 0 ≤ θ ≤ 2 π}

67.  
R

e-x2-y 2

d A; R = (r , θ) : 0 ≤ r <∞, 0 ≤ θ ≤ π
2


68.  
R

d A

1 + x2 + y22 ; R is the first quadrant .

T 69. Slicing  a hemispherical  cake   A cake is shaped  like a hemisphere  of radius  4 with its base on the x y-

plane.  A wedge  of the cake is removed  by making  two slices  from the center  of the cake outward,  

perpendicular  to the x y-plane  and separated  by an angle  of φ.

a. Use a double  integral  to find the volume  of the slice for φ =
π
4

. Use geometry  to check  your 

answer.

b. Now suppose  the cake is sliced  horizontally  at z = a > 0 and let D be the piece of cake above  the 

plane z = a. For what approximate  value of a is the volume  of D  equal  to the volume  in part (a)? 

T 70. Mass from density  data   The following  table gives the density  (in units  of gcm2) at selected  points  

(in polar  coordinates)  of a thin semicircular  plate of radius  3. Estimate  the mass of the plate and 

explain  your method.

θ = 0 θ = π /4 θ = π /2 θ = 3 π /4 θ = π

r = 1 2.0 2.1 2.2 2.3 2.4

r = 2 2.5 2.7 2.9 3.1 3.3

r = 3 3.2 3.4 3.5 3.6 3.7

71. A mass  calculation   Suppose  the density  of a thin plate represented  by the polar  region  R is ρ(r , θ) 
(in units  of mass per area).  The mass of the plate is  

R

ρ(r , θ) d A. Find the mass of the thin half 

annulus  R = {(r , θ) : 1 ≤ r ≤ 4, 0 ≤ θ ≤ π} with a density  ρ(r , θ) = 4 + r sin θ.

72. Area formula   In Section  12.3 it was shown  that the area of a region  enclosed  by the polar  curve  

r = g (θ) and the rays θ = α and θ = β, where  β - α ≤ 2 π, is A =
1

2
α

β
r 2 dθ. Prove  this result  using  the 

area formula  with double  integrals.

73. Normal  distribution   An important  integral  in statistics  associated  with the normal  distribution  is 

I = 
-∞
∞

e-x2

d x. It is evaluated  in the following  steps.
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a. In Section  8.9, it is shown  that 
0

∞
e-x2

d x  converges  (in the narrative  following  Example  7). Use 

this result  to explain  why 
-∞
∞

e-x2

d x  converges.

b. Assume  

I 2 = 
-∞
∞

e-x2

d x 
-∞
∞

e-y 2

d y = 
-∞
∞

-∞
∞

e-x2-y 2

d x d y ,

where  we have chosen  the variables  of integration  to be x  and y  and then written  the product  as 

an iterated  integral.  Evaluate  this integral  in polar  coordinates  and show that I = π . Why is the 

solution  I = - π  rejected?

c. Evaluate  
0

∞
e-x2

d x, 
0

∞
x e-x2

d x, and 
0

∞
x2 e-x2

d x  (using  part (a) if needed).

74. Existence  of integrals   For what  values  of p does the integral   
R

d A

x2 + y2p  exist  in the following  

cases?  Assume  (r , θ) are polar  coordinates.

a. R = {(r , θ) : 1 ≤ r <∞, 0 ≤ θ ≤ 2 π}
b. R = {(r , θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2 π}

75. Integrals  in strips   Consider  the integral  

I =  
R

d A

1 + x2 + y22 ,

where  R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ a}.

a. Evaluate  I  for a = 1. (Hint: Use polar  coordinates.)

b. Evaluate  I  for arbitrary  a > 0.

c. Let a →∞ in part (b) to find I  over the infinite  strip R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y <∞}.
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