
16.2 Double Integrals over General Regions

Evaluating  double  integrals  over rectangular  regions  is a useful  place  to begin  our study of multiple  integrals.  

Problems  of practical  interest,  however,  usually  involve  nonrectangular  regions  of integration.  The goal of this 

section  is to extend  the methods  presented  in Section  16.1 so that they apply  to more general  regions  of 

integration.

General Regions of Integration  »

Consider  a continuous  function  f  defined  over a closed  bounded  nonrectangular region  R in the xy-plane.  As 

with rectangular  regions,  we use a partition  consisting  of rectangles,  but now, such a partition  does not cover  R 

exactly.  In this case,  only the n rectangles  that lie entirely  within  R are considered  to be in the partition  (Figure  

16.9). When  f  is nonnegative  on R, the volume  of the solid bounded  by the surface  z = f (x, y) and the xy-plane  

over R is approximated  by the Riemann  sum 

V ≈ 
k=1

n

f (xk
* , yk

*) ΔAk ,

where  ΔAk = Δxk Δyk  is the area of the kth rectangle  and (xk
* , yk

*) is any point  in the kth rectangle,  for 1 ≤ k ≤ n. 

As before,  we define  Δ to be the maximum  length  of the diagonals  of the rectangles  in the partition.

x divisions

y divisions

Δ → 0

R

x

y

Figure 16.9

Under  the assumptions  that f  is continuous  on R and that the boundary  of R consists  of a finite  number  

of smooth  curves,  two things  occur  as Δ→ 0 and the number  of rectangles  increases  (n →∞).
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 The rectangles  in the partition  fill R more and more completely;  that is, the union  of the rectangles  

approaches  R.

 Over all partitions  and all choices  of (xk
* , yk

*) within  a partition,  the Riemann  sums approach  a (unique)  limit.

The limit  approached  by the Riemann  sums is the double  integral  of f  over R; that is 

 
R

f (x, y) d A = lim
Δ→0


k=1

n

f (xk
* , yk

*) ΔAk .

When this limit  exists,  f  is integrable over R. If f  is nonnegative  on R, then the double  integral  equals  the 

volume  of the solid bounded  by the surface  z = f (x, y) and the xy-plane  over R (Figure  16.10 ).

x divisions

y divisions

Δ → 0

show volume

show grids

Figure 16.10

The double  integral   
R

f (x, y) d A has another  common  interpretation.  Suppose  R represents  a thin 

plate whose  density  at the point  (x, y) is f (x, y). The units  of density  are mass per unit area,  so the product  

f (xk
* , yk

*) ΔAk  approximates  the mass of the kth rectangle  in R. Summing  the masses  of the rectangles  gives an 

approximation  to the total  mass of R. In the limit  as n →∞ and Δ→ 0, the double  integral  equals  the mass of the 

plate.

Iterated Integrals  »
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Double  integrals  over nonrectangular  regions  are also evaluated  using iterated  integrals.  However,  in this more 

general  setting  the order  of integration  is critical.  Most  of the double  integrals  we encounter  fall into one of two 

categories  determined  by the shape  of the region  R.

The first type of region  has the property  that its lower  and upper  boundaries  are the graphs  of continuous  

functions  y = g (x) and y = h(x), respectively,  for a ≤ x ≤ b. Such regions  have any of the forms  shown  in Figure  

16.11.

Figure 16.11

Once again,  we appeal  to the general  slicing  method.  Assume  for the moment  that f  is nonnegative  on R 

and consider  the solid bounded  by the surface  z = f (x, y) and R (Figure  16.12 ). 

x

show surface

show grids

Figure 16.12

Imagine  taking  vertical  slices  through  the solid parallel  to the y z-plane.  The cross  section  through  the solid at a 
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fixed value of x  extends  from the lower  curve  y = g (x) to the upper  curve  y = h(x). The area of that cross  section  

is 

A(x) = 
g (x)

h(x)

f (x, y) d y , for a ≤ x ≤ b.

The volume  of the region  is given by a double  integral;  it is evaluated  by integrating  the cross-sectional  areas 

A(x) from x = a to x = b: 

 
R

f (x, y) d A = 
a

b


g (x)

h(x)

f (x, y) d y

A(x)

d x .

The limits  of integration  in the iterated  integral  describe  the boundaries  of the region  of integration R.

EXAMPLE  1 Evaluating  a double  integral

Express  the integral   
R

2 x2 y d A as an iterated  integral,  where  R is the region  bounded  by the parabolas  

y = 3 x2 and y = 16 - x2. Then evaluate  the integral.

SOLUTION   »

The region  R is bounded  below  and above  by the graphs  of g (x) = 3 x2 and h(x) = 16 - x2, respectively.  Solving  

3 x2 = 16 - x2, we find that these curves  intersect  at x = -2 and x = 2, which  are the limits  of integration  in the x-

direction  (Figure  16.13 ).
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x

R

y = 16 - x2

y = 3 x2

-2 -1 1 2
x

y

The projection of R on the x-axis determines

the limits of integration in x.

The bounding curves

determine the limits

of integration in y .

Figure 16.13

Figure  16.14  shows  the solid bounded  by the surface  z = 2 x2 y  and the region  R. A typical  vertical  cross  

section  through  the solid parallel  to the y z-plane  at a fixed value of x  has area 

A(x) = 
3 x2

16-x2

2 x2 y d y .
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x

show grids

show labels

Figure 16.14

Integrating  these cross-sectional  areas between  x = -2 and x = 2, the iterated  integral  becomes  

 
R

2 x2 y d A = 
-2

2


3 x2

16-x2

2 x2 y d y

A(x)

d x Convert to an iterated integral .

= 
-2

2

x2 y2

3 x2

16-x2

d x
Evaluate inner integral

with respect to y .

= 
-2

2

x216 - x22 - 3 x22 d x Simplify .

= 
-2

2 -8 x6 - 32 x4 + 256 x2 d x Simplify .

≈ 663.2.
Evaluate outer integral

with respect to x.

Because  z = 2 x2 y ≥ 0 on R, the value of the integral  is the volume  of the solid shown  in Figure  16.14.

Related  Exercises  12, 46  ◆
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Quick Check 1   A region  R is bounded  by the x- and y-axes and the line x + y = 2. Suppose  you integrate  

first with respect  to y . Give the limits  of the iterated  integral  over R.  ◆
Answer  »

Inner integral:  0 ≤ y ≤ 2 - x. Outer  integral:  0 ≤ x ≤ 2.

Change  of Perspective

Suppose  that the region  of integration  R is bounded  on the left and right by the graphs  of continuous  functions  

x = g (y) and x = h(y), respectively,  on the interval  c ≤ y ≤ d . Such regions  may take any of the forms  shown  in 

Figure  16.15 .

Figure 16.15

To find the volume  of the solid bounded  by the surface  z = f (x, y) and R, we now take vertical  slices  

parallel  to the x z-plane.  In so doing,  the double  integral   
R

f (x, y) d A is converted  to an iterated  integral  in 

which  the inner  integration  is with respect  to x  over the interval  g (y) ≤ x ≤ h(y) and the outer  integration  is with 

respect  to y  over the interval  c ≤ y ≤ d . The evaluation  of double  integrals  in these two cases  is summarized  in 

the following  theorem.

THEOREM  16.2 Double  Integrals  over Nonrectangular  Regions

Let R be a region  bounded  below  and above  by the graphs  of the continuous  functions  y = g (x) 

and y = h(x), respectively,  and by the lines x = a and x = b (Figure  16.11).  If f  is continuous  on R, 

then 

 
R

f (x, y) d A = 
a

b


g (x)

h(x)

f (x, y) d y d x.

Let R be a region  bounded  on the left and right by the graphs  of the continuous  functions  x = g (y) 

and x = h(y), respectively,  and the lines y = c  and y = d  (Figure  16.15).  If f  is continuous  R, then 

 
R

f (x, y) d A = 
c

d


g (y )

h(y )

f (x, y) d x d y .

Note  »

EXAMPLE  2 Computing  a volume
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Find the volume  of the solid below  the surface  f (x, y) = 2 +
1

y
 and above  the region  R in the xy-plane  bounded  

by the lines y = x, y = 8 - x, and y = 1. Notice  that f (x, y) > 0 on R.

SOLUTION   »

The region  R is bounded  on the left by x = y  and bounded  on the right by y = 8 - x, or x = 8 - y  (Figure  16.16 ). 

These  lines intersect  at the point  (4, 4). We take vertical  slices  through  the solid parallel  to the x z-plane  from 

y = 1 to y = 4. To visualize  these slices,  it helps  to draw lines through  R parallel  to the x-axis.

y

R

y = x or

x = y

y = 8 - x or

x = 8 - y

(4, 4)

1 2 3 4 5 6 7 8
x

1

2

3

4

5

y

The projection of R on the y-axis determines

the limits of integration in y .

The bounding curves

determine the limits

of integration in x.

Figure 16.16

Integrating  the cross-sectional  areas of slices  from y = 1 to y = 4, the volume  of the solid beneath  the 

graph of f  and above  R (Figure  16.17 ) is given by 
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R

2 +
1

y
d A = 

1

4


y

8-y

2 +
1

y
d x d y Convert to an iterated integral .

= 
1

4

2 +
1

y
x

y

8-y

d y
Evaluate inner integral

with respect to x.

= 
1

4

2 +
1

y
(8 - 2 y) d y Simplify .

= 
1

4

14 - 4 y +
8

y
d y Simplify .

= 14 y - 2 y2 + 8 ln y 
1

4 Evaluate outer integral

with respect to y .

= 12 + 8 ln 4 ≈ 23.09. Simplify .

y

show grids

show labels

Figure 16.17

Related  Exercise  74  ◆
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Quick Check 2   Could  the integral  in Example  2 be evaluated  by integrating  first (inner  integral)  with 

respect  to y?  ◆
Answer  »

Yes; however,  two separate  iterated  integrals  would  be required.

Choosing and Changing the Order of Integration  »

Occasionally  a region  of integration  is bounded  above  and below  by a pair of curves  and the region  is bounded  

on the right and the left by a pair of curves.  For example,  the region  R in Figure  16.18  is bounded  above  by 

y = x1/3 and below  by y = x2, and it is bounded  on the right by x = y  and on the left by x = y3. In these cases,  

we can choose  either  of two orders  of integration;  however,  one order  of integration  may be preferable.  The 

following  examples  illustrate  the valuable  techniques  of choosing  and changing  the order  of integration.

boundaries

above /below

right /left

x

R

y = x1/3

y = x2

1
x

1

y

R is bounded above and below , and on the

right and left by curves .

Figure 16.18

EXAMPLE  3 Volume  of a tetrahedron

Find the volume  of the tetrahedron  (pyramid  with four triangular  faces)  in the first octant  bounded  by the plane 

z = c - a x - b y  and the coordinate  planes  (x = 0, y = 0, z = 0). Assume  a, b, and c  are positive  real numbers  

(Figure  16.19 ).
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a

b

c

show grids

Figure 16.19

SOLUTION   »

Let R be the triangular  base of the tetrahedron  in the xy-plane;  it is bounded  by the x- and y-axes and the line 

a x + b y = c  (found  by setting  z = 0 in the equation  of the plane;  Figure  16.20 ). 
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x

a

b

c

R

c

b

c

a

a x + b y = c or

y =
c

b
-

a x

b

y = 0
x

y

Figure 16.20

We can view R as being  bounded  below  and above  by the lines y = 0 and y =
c

b
-

a x

b
, respectively.  The bound -

aries on the left and right are then x = 0 and x =
c

a
, respectively.  The volume  of the solid region  between  the 

plane and R is 

 
R

(c - a x - b y) d A = 
0

c/a


0

c/b-a x/b

(c - a x - b y) d y d x Convert to an iterated integral .

= 
0

c/a

c y - a x y -
b y2

2 0

c/b-a x/b

d x
Evaluate inner integral

with respect to y .

= 
0

c/a (a x - c)2

2 b
d x Simplify and factor .

=
c3

6 a b
.

Evaluate outer integral

with respect to x.

Note  »

In Example  3, it is just  as easy  to view  R  as being  bounded  on  the  left  and  the  

right  by the  lines  x = 0 and  x =
c

a
-

b y

a
, respectively,  and  integrating  first  with  

respect  to x .
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This result  illustrates  the volume  formula  for a tetrahedron.  The lengths  of the legs of the base are 
c

a
 and 

c

b
, 

which  means  the area of the base is 
c2

2 a b
. The height  of the tetrahedron  is c. Therefore,  the general  volume  

formula  is 

V =
c3

6 a b
=

1

3

c2

2 a b

area of

base

· c

height

=
1

3
(area of base) (height ).

Note  »

The  volume  of any tetrahedron  is 
1

3
(area of base ) (height ), where  any  of the  

faces  may  be chosen  as the  base  (Exercise  98).

Related  Exercise  73  ◆
EXAMPLE  4 Changing  the order of integration

Consider  the iterated  integral  
0

π


y

π
sin x2 d x d y . Sketch  the region  of integration  determined  by the 

limits  of integration  and then evaluate  the iterated  integral.

SOLUTION   »

The region  of integration  is R = (x, y) : y ≤ x ≤ π , 0 ≤ y ≤ π , which  is a triangle  (Figure  16.21a ). Evaluat -

ing the iterated  integral  as given (integrating  first with respect  to x) requires  integrating  sin x2, a function  whose  

antiderivative  is not expressible  in terms  of elementary  functions.  Therefore,  this order  of integration  is not 

feasible.

Figure 16.21
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Instead,  we change  our perspective  (Figure  16.21b ) and integrate  first with respect  to y . With this order  

of integration,  y  runs from y = 0 to y = x  in the inner  integral  and x  runs from x = 0 to x = π  in the outer  

integral:  

 
R

sin x2 d A = 
0

π


0

x

sin x2 d y d x

= 
0

π y sin x2
0

x

d x
Evaluate inner integral with

respect to y ; sin x2 is constant .

= 
0

π
x sin x2 d x Simplify .

= -
1

2
cos x2

0

π
Evaluate outer integral with respect to x.

= 1. Simplify .

This example  shows  that the order  of integration  can make a practical  difference.

Related  Exercises  58, 64  ◆
Quick Check 3   Change  the order  of integration  of the integral  

0

1


0

y

f (x, y) d x d y .  ◆
Answer  »

Regions Between Two Surfaces  »

An extension  of the preceding  ideas  allows  us to solve more general  volume  problems.  Let z = f (x, y) and 

z = g (x, y) be continuous  functions  with f (x, y) ≥ g (x, y) on a region  R in the xy-plane.  Suppose  we wish to 

compute  the volume  of the solid between  the two surfaces  over the region  R (Figure  16.22 ). Forming  a 

Riemann  sum for the volume,  the height  of a typical  box within  the solid is the vertical  distance  f (x, y) - g (x, y) 

between  the upper  and lower  surfaces.  Therefore,  the volume  of the solid between  the surfaces  is 

V =  
R

(f (x, y) - g (x, y)) d A.
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show volume

show grids

Figure 16.22

EXAMPLE  5 Region  bounded  by two surfaces

Find the volume  of the solid region  bounded  by the parabolic  cylinder  z = 1 + x2 and the planes  z = 5 - y  and 

y = 0 (Figure  16.23 ).
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show

z = 1 + x 2

z = 5 - y

y = 0

C

R

show grids

show labels

Figure 16.23

SOLUTION   »

The upper  surface  bounding  the solid is z = 5 - y  and the lower  surface  is z = 1 + x2; these two surfaces  intersect  

along a curve  C . Solving  5 - y = 1 + x2, we find that y = 4 - x2, which  is the projection  of C  onto the x y-plane.  

The back wall of the solid is the plane  y = 0, and its projection  onto the x y-plane  is the x-axis.  This line (y = 0) 

intersects  the parabola  y = 4 - x2 at x = ±2. Therefore,  the region  of integration  (Figure  16.23)  is 

R = (x, y) : 0 ≤ y ≤ 4 - x2, -2 ≤ x ≤ 2.
Notice  that R and the solid are symmetric  about  the y z-plane.  Therefore,  the volume  of the entire  solid is twice  

the volume  over that part of the solid that lies the first octant.  The volume  of the solid is 
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2 
0

2


0

4-x2

(5 - y)

f (x ,y )

- 1 + x2
g (x ,y )

d y d x = 2 
0

2


0

4-x2

4 - x2 - y d y d x Simplify the integrand .

= 2 
0

2 4 - x2 y -
y2

2 0

4-x2

d x
Evaluate inner integral

with respect to y .

= 
0

2x4 - 8 x2 + 16 d x Simplify .

=
x5

5
-

8 x3

3
+ 16 x

0

2
Evaluate outer integral

with respect to x.

=
256

15
. Simplify .

Note  »

To use  symmetry  to simplify  a double  integral,  you  must  check  that  both  the  

region  of integration  and  the  integrand  have  the  same  symmetry.

Related  Exercises  78–79  ◆
Decomposition of Regions  »

We occasionally  encounter  regions  that are more complicated  than those  considered  so far. A technique  called  

decomposition allows  us to subdivide  a region  of integration  into two (or more)  subregions.  If the integrals  over 

the subregions  can be evaluated  separately,  the results  are added  to obtain  the value of the original  integral.  For 

example,  the region  R in Figure  16.24  is divided  into two nonoverlapping  subregions  R1 and R2. By partition -

ing these regions  and using Riemann  sums,  it can be shown  that

 
R

f (x, y) d A =  
R1

f (x, y) d A +  
R2

f (x, y) d A.

This method  is illustrated  in Example  6. The analogue  of decomposition  with single  variable  integrals  is the 

property  
a

b

f (x) d x = 
a

c

f (x) d x + 
c

b

f (x) d x.

Figure 16.24

Finding Area by Double Integrals  »

An interesting  application  of double  integrals  arises  when the integrand  is f (x, y) = 1. The integral   
R

1 d A 

gives the volume  of the solid between  the horizontal  plane  z = 1 and the region  R. Because  the height  of this 
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solid is 1, its volume  equals  (numerically)  the area of R (Figure  16.25 ). Therefore,  we have a way to compute  

areas of regions  in the xy-plane  using double  integrals.

show volume

show grids

Figure 16.25

Areas  of Regions  by Double  Integrals

Let R be a region  in the xy-plane.  Then 

area of R =  
R

d A.

Note  »

EXAMPLE  6 Area of a plane region

Find the area of the region  R bounded  by y = x2, y = -x + 12, and y = 4 x + 12 (Figure  16.26 ).
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x

R1 R2

y = 4 x + 12

y = -x + 12

-2 -1 1 2 3
x

2

4

6

8

10

12

14

y

Area = 
-2

-0.3


x 2

4 x + 12

1 d y d x

Figure 16.26

SOLUTION   »

The region  R in its entirety  is bounded  neither  above  and below  by two curves,  nor on the left and right by two 

curves.  However,  when decomposed  along the y-axis,  R may be viewed  as two regions  R1 and R2 that are each 

bounded  above  and below  by a pair of curves.  Notice  that the parabola  y = x2 and the line y = -x + 12 intersect  

in the first quadrant  at the point  (3, 9), while  the parabola  and the line y = 4 x + 12 intersect  in the second  

quadrant  at the point  (-2, 4).

To find the area of R, we integrate  the function  f (x, y) = 1 over R1 and R2; the area is 

 
R1

1 d A +  
R2

1 d A Decompose region .

= 
-2

0


x2

4 x+12

1 d y d x + 
0

3


x2

-x+12

1 d y d x Convert to iterated integrals .

= 
-2

0 4 x + 12 - x2 d x + 
0

3-x + 12 - x2 d x
Evaluate inner integrals

with respect to y .

= 2 x2 + 12 x -
x3

3 -2

0

+ -
x2

2
+ 12 x -

x3

3 0

3
Evaluate outer integrals

with respect to x.

=
40

3
+

45

2
=

215

6
. Simplify .

Related  Exercise  86  ◆
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Quick Check 4   Consider  the triangle  R with vertices  (-1, 0), (1, 0), and (0, 1) as a region  of integration.  If 

we integrate  first with respect  to x, does R need to be decomposed?  If we integrate  first with respect  to y , 

does R need to be decomposed?   ◆
Answer  »

No; yes

Exercises  »

Getting  Started   »

Practice  Exercises   »

11–27.  Evaluating  integrals   Evaluate  the following  integrals.

11. 
0

1


x

1

6 y d y d x

12. 
0

1


0

2 x

15 x y2 d y d x

13. 
0

2


x2

2 x

x y d y d x

14. 
-π/4
π/4


sin x

cos x

d y d x

15. 
-2

2


x2

8-x2

x d y d x

16. 
0

ln 2


ex

2

d y d x

17. 
0

1


0

x

2 ex2

d y d x

18. 
0

π/23


0

x

y cos x3 d y d x

19. 
0

ln 2


ey

2 y

x
d x d y

20. 
0

4


y

2 y

x y d x d y

21. 
0

π/2


y

π/2
6 sin (2 x - 3 y) d x d y

22. 
0

π/2


0

cos y

esin y d x d y
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23. 
0

π/2


0

y cos y

d x d y

24. 
0

1


tan-1 x

π/4
2 x d y d x

25. 
0

4


- 16-y 2

16-y 2

2 x y d x d y

26. 
0

1


0

x

2 ex d y d x

27. π/2
π


0

y 2

cos
x

y
d x d y

28–34.  Regions  of integration   Sketch  each region  R and write  an iterated  integral  of a continuous  

function  f  over region  R. Use the order  d y d x.

28. R = (x, y) : 0 ≤ x ≤ 2, 3 x2 ≤ y ≤ -6 x + 24
29. R = {(x, y) : 1 ≤ x ≤ 2, x + 1 ≤ y ≤ 2 x + 4}

30. R = (x, y) : 0 ≤ x ≤ 4, x2 ≤ y ≤ 8 x 
31. R is the triangular  region  with vertices  (0, 0), (0, 2), and (1, 0).

32. R is the triangular  region  with vertices  (0, 0), (0, 2), and (1, 1).

33. R is the region  in the first quadrant  bounded  by a circle  of radius  1 centered  at the origin.

34. R is the region  in the first quadrant  bounded  by the y-axis and the parabolas  y = x2 and y = 1 - x2.

35–42.  Regions  of integration   Write  an iterated  integral  of a continuous  function  f  over the region  R. Use 

the order  d y d x. Start  by sketching  the region  of integration  if it is not supplied.

35.

36.
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37. R is the region  bounded  by y = 4 - x, y = 1, and x = 0

38. R = {(x, y) : 0 ≤ x ≤ y (1 - y)}

39. R is the region  bounded  by y = 2 x + 3, y = 3 x - 7, and y = 0

40. R is the region  in quadrants  2 and 3 bounded  by the semicircle  with radius  3 centered  at (0, 0)

41.  R is the region  bounded  by the triangle  with vertices  (0, 0), (2, 0), and (1, 1).

42. R is the region  in the first quadrant  bounded  by the x-axis,  the line x = 6 - y , and the curve  y = x

43–56.  Evaluating  integrals   Evaluate  the following  integrals.  A sketch  is helpful.

43.  
R

x y d A; R is bounded  by x = 0, y = 2 x + 1, and y = -2 x + 5.

44.  
R

(x + y) d A; R is the region  in the first quadrant  bounded  by x = 0, y = x2, and y = 8 - x2.

45.  
R

y2 d A; R is bounded  by x = 1, y = 2 x + 2, and y = -x - 1.

46.  
R

x2 y d A; R is the region  in quadrants  1 and 4 bounded  by the semicircle  of radius  4 centered  at 

(0, 0).

47.  
R

12 y d A; R is bounded  by y = 2 - x, y = x , and y = 0.

48.  
R

y2 d A; R is bounded  by y = 1, y = 1 - x, and y = x - 1.

49.  
R

3 x y d A; R is the region  in the first quadrant  bounded  by y = 2 - x, y = 0, and x = 4 - y2.

50.  
R

(x + y) d A; R is bounded  by y = x and y = 4.

51.  
R

3 x2 d A; R is bounded  by y = 0, y = 2 x + 4, and y = x3.
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52.  
R

8 x y d A; R = (x, y) : 0 ≤ y ≤ sec x, 0 ≤ x ≤ π
4


53.  
R

(x + y) d A; R is the region  bounded  by y =
1

x
 and y =

5

2
- x.

54.  
R

y

1 + x + y2
d A; R = (x, y) : 0 ≤ x ≤ y , 0 ≤ y ≤ 1

55.  
R

x sec2 y d A; R = (x, y) : 0 ≤ y ≤ x2, 0 ≤ x ≤ π
2



56.  
R

8 x y

1 + x2 + y2
d A; R = {(x, y) : 0 ≤ y ≤ x, 0 ≤ x ≤ 2} 

57–62.  Changing  order  of integration   Reverse  the order  of integration  in the following  integrals.

57. 
0

2


x2

2 x

f (x, y) d y d x

58. 
0

3


0

6-2 x

f (x, y) d y d x

59. 
1/2

1


0

- ln y

f (x, y) d x d y
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60. 
0

1


1

ey

f (x, y) d x d y

61. 
0

1


0

cos-1 y

f (x, y) d x d y

62. 
1

e


0

ln x

f (x, y) d y d x

63–68.  Changing  order  of integration   Reverse  the order  of integration  and evaluate  the integral.

63. 
0

1


y

1

ex2

d x d y

64. 
0

π


x

π
sin y2 d y d x

65. 
0

1/2


y 2

1/4

y cos 16 π x2 d x d y

66. 
0

4


x

2 x

y5 + 1
d y d x

67. 
0

π3


y

π3

x4 cos x2 y d x d y

68. 
0

2


0

4-x2 x e2 y

4 - y
d y d x

69–70.  Two integrals  to one  Draw the regions  of integration  and write  the following  integrals  as a single  

iterated  integral.

69. 
0

1


ey

e

f (x, y) d x d y + 
-1

0


e-y

e

f (x, y) d x d y

70. 
-4

0


0

16-x2

f (x, y) d y d x + 
0

4


0

4-x

f (x, y) d y d x

71–80.  Volumes   Find the volume  of the following  solids.

71. The solid bounded  by the cylinder  z = 2 - y2, the x y-plane,  the x z-plane,  and the planes  y = x  and 

x = 1
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72. The solid bounded  between  the cylinder  z = 2 sin2 x  and the x y-plane  over the region  

R = {(x, y) : 0 ≤ x ≤ y ≤ π}

73. The tetrahedron  bounded  by the coordinate  planes  (x = 0, y = 0, and z = 0) and the plane  

z = 8 - 2 x - 4 y

74. The solid in the first octant  bounded  by the coordinate  planes  and the surface  z = 1 - y - x2

75. The segment  of the cylinder  x2 + y2 = 1 bounded  above  by the plane z = 12 + x + y  and below  by 

z = 0

76. The solid S between  the surfaces  z = ex-y  and z = -ex-y , where  S intersects  the xy-plane  in the 

region  R = {(x, y) : 0 ≤ x ≤ y , 0 ≤ y ≤ 1}
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77. The solid above  the region  R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 2 - x} and between  the planes  

-4 x - 4 y + z = 0 and -2 x - y + z = 8

78. The solid in the first octant  bounded  by the planes  x = 0, y = 0, z = 1, and z = 2 - y , and the cylinder  

y = 1 - x2
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79. The solid above  the region  R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 - x} bounded  by the paraboloids  

z = x2 + y2 and z = 2 - x2 - y2 and the coordinate  planes  in the first octant

80. The solid bounded  by the parabolic  cylinder  z = x2 + 1, and the planes  z = y + 1 and y = 1
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T 81–84.  Volume  using  technology   Find the volume  of the following  solids.  Use a computer  algebra  system  

to evaluate  an appropriate  iterated  integrals.

81. The column  with a square  base R = {(x, y) : x ≤ 1, y  ≤ 1} cut by the plane z = 4 - x - y

82. The solid between  the paraboloid  z = x2 + y2 and the plane z = 1 - 2 y

83. The wedge  sliced  from the cylinder  x2 + y2 = 1 by the planes  z = a (2 - x) and z = a (x - 2), where  

a > 0

84. The solid bounded  by the elliptical  cylinder  x2 + 3 y2 = 12 and the planes  z = 0, and the paraboloid  

z = 3 x2 + y2 + 1

85–90.  Area of plane  regions   Use double  integrals  to compute  the area of the following  regions.  

85. The region  bounded  by the parabola  y = x2 and the line y = 4

86. The region  bounded  by the parabola  y = x2 and the line y = x + 2

87. The region  in the first quadrant  bounded  by y = ex  and x = ln 2

88. The region  bounded  by y = 1 + sin x  and y = 1 - sin x  on the interval  [0, π]
89. The region  in the first quadrant  bounded  by y = x2, y = 5 x + 6, and y = 6 - x

90. The region  bounded  by the lines x = 0, x = 4, y = x, and y = 2 x + 1

91. Explain  why or why not   Determine  whether  the following  statements  are true and give an 

explanation  or counterexample.

a. In the iterated  integral  
c

d


a

b

f (x, y) d x d y , the limits  a and b must  be constants  or functions  

of x.

b. In the iterated  integral  
c

d


a

b

f (x, y) d x d y , the limits  c  and d  must  be functions  of y .

c. Changing  the order  of integration  gives 
0

2


1

y

f (x, y) d x d y = 
1

y


0

2

f (x, y) d y d x.

28 Chapter 16 •  Multiple Integration

Copyright © 2019 Pearson Education, Inc.



Explorations  and Challenges   »

92. Related  integrals   Evaluate  each integral.

a. 
0

4


0

4

(4 - x - y) d x d y

b. 
0

4


0

44 - x - y  d x d y

93. Sliced  block   Find the volume  of the solid bounded  by the planes  x = 0, x = 5, z = y - 1, z = -2 y - 1, 

z = 0, and z = 2. 

94. Square  region   Consider  the region  R = {(x, y) : x + y  ≤ 1} shown  in the figure.

a. Use a double  integral  to show that the area of R is 2.

b. Find the volume  of the square  column  whose  base is R and whose  upper  surface  is 

z = 12 - 3 x - 4 y .

c. Find the volume  of the solid above  R and beneath  the cylinder  x2 + z2 = 1.

d. Find the volume  of the pyramid  whose  base is R and whose  vertex  is on the z-axis at (0, 0, 6).

95–96.  Average  value   Use the definition  for the average  value  of a function  over a region  R (Section  16.1),  

f =
1

area of R
 

R

f (x, y) d A.

95. Find the average  value of a - x - y  over the region  R = {(x, y) : x + y ≤ a, x ≥ 0, y ≥ 0}, where  a > 0.

96. Find the average  value of z = a2 - x2 - y2 over the region  R = (x, y) : x2 + y2 ≤ a2, where  a > 0.

T 97–98.  Area integrals   Consider  the following  regions  R. Use a computer  algebra  system  to evaluate  the 

integrals.

a. Sketch  the region  R.

b. Evaluate   
R

d A to determine  the area of the region.

c. Evaluate   
R

x y d A.

97. R is the region  between  both branches  of y =
1

x
 and the lines y = x +

3

2
 and y = x -

3

2
.
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98. R is the region  bounded  by the ellipse  
x2

18
+

y2

36
= 1 with y ≤ 4 x

3
.

99–102.  Improper  integrals   Many  improper  double  integrals  may be handled  using  the techniques  for 

improper  integrals  in one variable  (Section  8.9).  For example,  under  suitable  conditions  on f, 


a

∞


g (x)

h(x)

f (x, y) d y d x = lim
b→∞

a

b


g (x)

h(x)

f (x, y) d y d x.

Use or extend  the one-variable  methods  for improper  integrals  to evaluate  the following  integrals.

99. 
1

∞


0

e-x

x y d y d x

100. 
1

∞


0

1x2 2 y

x
d y d x

101. 
0

∞


0

∞
e-x-y d y d x

102. 
-∞
∞


-∞
∞ 1

x2 + 1 y2 + 1 d y d x
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